DEEP LEARNING

Lecture 12: Deep Learning on Graphs
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GNN Applications
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Image source: Wang, Pengyang, Yanjie Fu, Hui Xiong, and Xiaolin Li. "Adversarial substructured representation learning for mobile user profiling." In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 130-138. 2019.



Image source:

GNN Applications

= Text classification

o fit ©—Qengland fit (1) Boalseor england
goalscor oalscor®. 0 club R fit “—a club
. B high #/-0 club @ england 1.2 goalscor
unit ® england high goalscorG—0 england club  #*=¢  high
S Kengland o high great o -0 club @) club 12 goalscor
He is a true great club Q goalscord 0 england *—4¢  fijt
rue
Eosléc'-"lrergor C'(;-'t; . . fit ¢ ‘e england ¥ @) fit 1:—2 goalscor
and England, and i it »-high fit
. ! . goalscorG—0C club england england s s club
is fitting that he is ° .
now the highest great * O 0 england unit e o england (5) high 374 goalscor
goalscorer for both graph node sequence high neighborhood lﬁt Igb : high neighborhood england +“—4  fit
.. . Y lub goaiscorc-—e clu oalscorC—0 18!
United and England.| generating goalscor clu selection N tTSSEthﬂV 5 o g normalization © great 1.2 goalscor
,,,,,,,,,,,,,,,,,,,,,,,,,,,, N=8nodes great 9t1€AS high KS = 3 nodes cdub 37
nodes club true
iginal Window Size = 3 true . high true e -0 great g unlt g Eoalscer
Original text unit Q I england 3“4  high
7 england england o—5, goalscor
Graph-of-words fic tA o] true  +2 goalscor
true goalscord™ o club club (8) great s —a england
Sort Neighborhood Normalization ReLU + Normalization + Pooling Sliding Direction
s/2 F1
:< D — Sigmoid
S L F2 4
0
Y - =) =
L
D 3
Document Gruph-of—w?rds H
Representing .
Input: document =
N Nodes Ny Dropout Dropout
Word vector: D channel K1 k li o= s . Output : K Labels
ernels Max Pooling k2 kernel | k3 ’ Dropout|
O Representing by high dimension semantic vector N 15 Max Poolin Max Pooling F2xF3
(gxN+1)xN (1x5xk1+1)xk2 (1x5xk2+1)xk3 S/2xk3xF1  F1xF2 (F3+1)xK

Graph Generation Graph Preprocessing

A S 1585 (BRI REEIRHSBR)

School of Informatics Xiamen University (National Characteristic Demonstration Software School)

Deep Convolution Neural Networks Layers

Full Connection Layers Sigmafd Layer
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Peng, Hao, Jianxin Li, Yu He, Yaopeng Liu, Mengjiao Bao, Lihong Wang, Yanggiu Song, and Qiang Yang. "Large-scale hierarchical text classification with recursively regularized deep graph-cnn." In Proceedings of the 2018 World Wide Web Conference, pp. 1063-1072. 2018.



GNN Applications

= Relation extraction

Relation: per:parents
Gwathmey was born in 1938, the only child of

painter Robert Gwathmey and his wife, Kosalie, a

photographer.
born
GwatMld
the only Gwathmey

of Robert and wife

«— v

Relation: per:cause of death Relation: per:employee of

"It 1s with great sorrow that we note the passing of Hwang, architect of the Pyongyang regime's
Merce Cunningham, who died peacefully in his ideology of “juche” or self-reliance, was once
home last night of narural causes", the Cunningham secretary of the ruling Workers’ Party and a tutor
Dance Foundation and the Merce Cunningham to current leader Kim Jong-Il.

Dance Company said in a statement.

secretary

Cunningham %\‘
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of Merce die Hwang was once Party

— r S,

e Rosalie who peacefully home causes architect of Worker and tutor
photographer of  natural the ruling ’
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Image source: Zhang, Yuhao, Peng Qi, and Christopher D. Manning. "Graph convolution over pruned dependency trees improves relation extraction." arXiv preprint arXiv:1809.10185 (2018).
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Conv.
Inputs: Word Embeddings X Hidden states Outputs: Object classifiers w
(k dimensions ) (¢, dimensions) (D dimensions )
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Image source: Wang, Xiaolong, Yufei Ye, and Abhinav Gupta. "Zero-shot recognition via semantic embeddings and knowledge graphs." In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 6857-6866. 2018.



GNN Applications

®Point cloud semantic segmentation

Image source: Wang, Yue, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, and Justin M. Solomon. "Dynamicgraph cnn for learning on point clouds." Acm Transactions On Graphics (tog) 38, no. 5(2019): 1-12.




GNN Applications

mVisual question answering
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playing

Neural
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Image source: Teney, Damien, Linggiao Liu, and Anton van Den Hengel. "Graph-structured representations for visual question answering." In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1-9. 2017.



GNN Applications

® Physics systems

Random Control System Trajectories

Pendulum Cartpole Acrobot Swimmer6
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Video source: Sanchez-Gonzalez, Alvaro, NicolasHeess, Jost Tobias Springenberg, Josh Merel, Martin Riedmiller, Raia Hadsell, and Peter Battaglia. "Graph networks as learnable physics engines for inference and control." arXiv preprint arXiv:1806.01242 (2018).



GNN Applications

= Molecular fingerprints
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Image source: Duvenaud, David K., Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel, Alan Aspuru-Guzik, and Ryan P. Adams. "Convolutional networks on graphs for learning molecular fingerprints." In Advances in neural information processing systems, pp.2224-2232.2015.
httn://blog molcalx com cn/2019/01/29/fingerorint html




GNN Applications

®Protein interface prediction
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Image source: Fout, Alex, Jonathon Byrd, Basir Shariat, and Asa Ben-Hur. "Protein interface prediction using graph convolutional networks." In Advances in neural information processing systems, pp. 6530-6539. 2017.



GNN Applications

mPolypharmacy side effects
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Image source: Zitnik, Marinka, Monica Agrawal, and Jure Leskovec. "Modeling polypharmacy side effects with graph convolutional networks." Bioinformatics 34, no. 13 (2018): i457i466.



= Graph Representation Learning

= Deepwalk
= LINE
= Node2vec
= Graph Neural Networks
= GCN
" GraphSAGE
= GAT

= Application to Recommender System

= Recent Advances
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GRAPH REPRESENTATION LEARNING




Machine
learning
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Image source: Lecture 7, cs224w, Stanford University
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Machine
learning
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Image source: Lecture 7, cs224w, Stanford University




Graph Representation Learning

® Given the graph, the only information we have is
G =(V,E)

and their corresponding labels.
® What are the features?

= We can do feature engingering:

ith other nodes;
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Graph Representation Learning

® Goal: Efficiently learn task-independent features (embeddings) from graphs.

O " node vec
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A > Feature representation,
/ embedding
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Image source: Lecture 7, cs224w, Stanford University




Graph Representation Learning

®Can we directly apply CNN or RNN on graphs?

®Probably no, because images and texts are structured.
®|mages are 2d matrices.
= Texts are sequences.

®Graphs are far more complex.
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Graph Representation Learning

Before the age of deep learning, we have some traditional machine learning
methods:

® L ocally Linear Embedding: low dimensional representations of each node can
be represented by the linear combination of its neighbors.

1 2
mlnzz Xi —EWijxj
L J

® Laplacian Eigenmaps: low dimensional representations of connected nodes are

similar.
1 ‘ ‘ZW
min— E Xi — X; -
2L i j ij
L)

® Graph Factorization: matrix factorization.
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Graph Representation Learning

= Problem of these methods: can’t scale!

mKey idea: If we assume that the connected nodes share similar
properties (e.g. labels) in a graph, we should make their
representations similar.

mRecall something?

m\Word2vec and xxx2vec!

®But how to generate training pairs?
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DEEPWALK




Deepwalk: Online learning of social representations
B Perozzi, R Al-Rfou, S Skiena - Proceedings of the 20th ACM SIGKDD ..., 2014 - dl.acm.org

... DeepWalk, a ... DeepWalk generalizes recent advancements in language modeling and

Deepwalk

Y% Save DY Cite Cited by 10106 Related articles All 22 versions

unsupervised feature learning (or deep learning) from sequences of words to graphs. DeepWalk ...

(VSJ Uy, Us, 1]6)

(v, V10, Vg, Vg)

Then what?

Skipgram!
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Algorithm 1 DEEPWALK(G, w, d, v, t)
Input: graph G(V, E)

window size w
embedding size d
walks per vertex
walk length ¢

Output: matrix of vertex representations ® € R!VI*4
1: Initialization: Sample ® from U/!V1*4

2: Build a binary Tree 7" from V

3: for : =0 to v do

4: O = Shuffle(V)

5) for each v; € O do

6: W, = RandomW alk(G,v;,t)

7: SkipGram(®, W,,, w)

8 end for

9: end for
Algorithm 2 SkipGram(®, W,,, w)

1: for each v; € W,, do

2:  for each u, € W,,[j —w :j+ w] do

3: J(®) = —log Pr(uy | ®(v;))

4. b= —ax g—;;

5 end for

6: end for 22

Image source: Perozzi, Bryan, Rami Al-Rfou, and Steven Skiena. "Deepwalk: Online learing of social representations." In Proceedings of the 20th ACM SIGKDD intemational conference on Knowledge discovery and data mining, pp. 701-710. 2014.



Deepwalk
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Image source: Perozzi, Bryan, Rami Al-Rfou, and Steven Skiena. "Deepwalk: Online learming of social representations." In Proceedings of the 20th ACM SIGKDD intemational conference on Knowledge discovery and data mining, pp. 701-710. 2014.



Difference

" Notice any difference between Deepwalk and Word2vec?
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= Task: multi-label classification.

" Take Flickr as an example:
= Nodes: users.
= Links: following between users.

= Categories: subscribe to different interest groups (e.g. black and white photos, or

animals).
Data | BlogCatalog Flickr YouTube
Categories 39 195 47
Nodes (n) 10, 312 80, 513 1, 138, 499
Links (m) 333, 983 5, 899, 882 2, 990, 443
Network Density 6.3x 1073 1.8x1073 4.6x 1076
Maximum Degree 3, 992 5, 706 28, 754
Average Degree 65 146 5
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Source: Tang, Lei, and Huan Liu. "Scalable leaming of collective behavior based on sparse social dimensions." In Proceedings of the 18th ACM conference on Information and knowledge management, pp. 1107-1116. 2009.



Problems of Deepwalk

mDeepwalk is a pioneer work that builds a bridge between graph
representation and word2vec.

mHowever, it is not specifically designed for graphs.

®How about directed graph? Weighted graph?

G ANA S E AR5 (R RSLR IR PSR 9 & MR T HENRESEAR 26
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LINE




Line: Large-scale information network embedding
J Tang, M Qu, M Wang, M Zhang, J Yan... - Proceedings of the 24th ..., 2015 - dl.acm.org

... We compare the LINE model with several existing graph embedding methods that are able

to scale up to very large networks. We do not compare with some classical graph embedding ...

Y% Save DY Cite Cited by 5808 Related articles All 16 versions

mFirst-order proximity in the real world data is not
sufficient for preserving the global network
structures.

mSecond-order proximity is also very important.

® |t can be interpreted as nodes with shared neighbors
being likely to be similar.

uThe degree of overlap of two people’s friendship
networks correlates with the strength of ties
between them.
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LINE

mVertex 6 and 7 should be
placed closely in the low- 1O
dimensional space as they ZO
are connected through a

strong tie.

8

® . O
oo O
6 O1O

3
mVertex 5 and 6 should also be O
placed closely as they share 4 O

similar neighbors.
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Image source: Tang, Jian, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. "Line: Large-scale information network embedding." In Proceedings of the 24th international conference on world wide web, pp. 1067-1077. 2015.



LINE with First-Order Proximity

= For each undirected edge (i,j), the joint probability between vertex v; and

Vj as follows:
1

1+ exp(—uju;)

pl(vi,vj) =

® Use their edge weight as the label, W is total weight in the graph.

= Minimize the KL-divergence between p; and ‘}31\ The constant W' can be

omitted in minimization
— Z w;; logp, (vi, vj).

(i,))EE
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LINE with First-Order Proximity

mFor each directed edge (i,j), we first define the conditional
probability of “context” v; generated by vertex v; as:

1
1+ exp(—u;"u;)

P1(Vj|vi) =

mHere, we use difference representations for center and context
just like Word2vec, why?

G ANA S E AR5 (R RSLR IR PSR 9 & MR T HENRESEAR 31
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LINE with Second-Order Proximity

=|If we consider the second-order proximity, v; can be the

neighbor of v;’s neighbor.

- exp(u; u;)

pa(vjlvi) = V]
k=1

exp(uy, u;)

where V| is the number of vertices or “contexts.”

G ANA S E AR5 (R RSLR IR PSR 9 & MR T HENRESEAR 37
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LINE with Second-Order Proximity

= Similarly, minimize the KL-divergence:

- z w;jlogp, (vjlv;) .

JEN (1)

where N (i) is the neighborhood of v;, including first and second order.

= w;; depends on two situation:

= v; is the neighbor of v;: w;; is simply the weight.

= v; is the neighbor of neighbor of v;: w;; = ZkeN(i) Wi %, d; is the
k
out-degree of vy,.

) ALK G 15 8 5B (45 B RS R AR T 528 9 &M AT HENHESHAR 33
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Combining First-Order and Second-Order Proximities

Two ways:
®Train separately and then concatenate.

®Jointly train the objective function.

() AR § 155 R (5 R RS LRS00 9 & M AT HENBEEEAR 34
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(b) DeepWalk (c) LINE(2nd)
Visualization of the co-author network. The authors are mapped to the 2-D space using
the t-SNE package with learned embeddings as input. Color of a node indicates the
community of the author. Red: “data Mining,” blue: “machine learning,” green:

“computer vision.”
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Image source: Tang, Jian, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. "Line: Large-scale information network embedding." In Proceedings of the 24th international conference on world wide web, pp. 1067-1077. 2015.



Deepwalk vs LINE

mDeepwalk is actually a returnable DFS.
mLINE is a 2-level BFS.

Can we combine DFS and BFS?

() AR § 155 R (5 R RS LRS00 9 & MR T tansesEAR 36
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NODE2VEC




node2vec: Scalable feature learning for networks

A Grover, J Leskovec - Proceedings of the 22nd ACM SIGKDD ..., 2016 - dl.acm.org

... node2vec, an algorithmic framework for learning continuous feature representations for nodes
in networks. In node2vec, ... We demonstrate the efficacy of node2vec over existing state-of...
Y% Save U9 Cite Cited by 10798 Related articles All 25 versions

Node2vec

=Motivation: It is now either DFS (Deepwalk) or BFS (LINE).
It is too rigid to explore the network neighborhood.

2Can we make it flexible?
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Node2vec

Jure Leskovec

Professor of Computer Science, Stanford University

£ cs.stanford.edu H9EB F B2 30 - BT

Data mining Machine Learning Graph Neural Networks

Rl

Inductive representation learning on large graphs
W Hamilton, Z Ying, J Leskovec
Advances in neural information processing systems 30

Knowledge Graphs Complex Networks

5| FREL =20)

17429 2017

node2vec: Scalable feature learning for networks
A Grover, J Leskovec
Proceedings of the 22nd ACM SIGKDD international conference on Knowledge ...

12961 2016

How powerful are graph neural networks?
K Xu, W Hu, J Leskovec, S Jegelka
arXiv preprint arXiv:1810.00826

SNAP Datasets: Stanford large network dataset collection
J Leskovec, A Krevl

On the opportunities and risks of foundation models
R Bommasani, DA Hudson, E Adeli, R Altman, S Arora, S von Arx, ...
arXiv preprint arXiv:2108.07258

Graph convolutional neural networks for web-scale recommender systems
RYing, R He, K Chen, P Eksombatchai, WL Hamilton, J Leskovec
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=" Nodes u and s belonging to the same tightly knit community.

"Nodes u and sy in the two distinct communities share the same
structural role of a hub node.

= Should u be similar to s; or s¢?

® Both, but in different perspective.

) ALK G 15 8 5B (45 B RS R AR T 528 9 &M AT HENHESHAR 40
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Image source: Grover, Aditya, and Jure Leskovec. "node2vec: Scalable feature learning for networks." In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 855-864. 2016.



® Real-world networks commonly exhibit a mixture of such equivalences.
® The representations should be flexible to have similar embeddings for:
® nodes from the same network community;

®m nodes that share similar roles.

Gy) AR5 15 R 5PR (T B LR SE R AR TR 52 PR 9 # M~ T HENRESRAR a1
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Image source: Grover, Aditya, and Jure Leskovec. "node2vec: Scalable feature learning for networks." In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 855-864. 2016.



® |dea: use flexible, biased random walks that can trade off between local
and global views of the network.

= Walk of length 3 (Np(u) of size 3):
= Ngrs(u) = {sq,s,, S3}, local microscopic view.

= Npps(u) = {s4, S5, S¢}, global macroscopic view.
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Image source: Grover, Aditya, and Jure Leskovec. "node2vec: Scalable feature learning for networks." In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 855-864. 2016.



= The probability from ¢;_; to ¢; is:

Tvx if(v,x) €E
P(c; =x|ci_i=v) =1 Z

0 otherwise

mThe first step is same for both DFS and BFS, by simply setting:

Tlyx = Wyy
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= Consider a random walk that just traversed edge (t, v) and now resides at node v.

® For the steps after the second step, we set

Tyx = Apq (t, X)Wy

where

I
[—
=
L
~
=
|l

and d;, € {0,1,2} denotes the shortest path distance between nodes t and x.
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Image source: Grover, Aditya, and Jure Leskovec. "node2vec: Scalable feature learning for networks." In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 855-864. 2016.



"p and g are hyperparameters, to control
how we move from the second step.

= Return parameter p:
® Return back to the previous node.
® [n-out parameter q:

® Moving outwards (DFS) vs. inwards (BFS)

= |ntuitively, g is the “ratio” of BFS vs. DFS
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Image source: Grover, Aditya, and Jure Leskovec. "node2vec: Scalable feature learning for networks." In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 855-864. 2016.



Cases:

=p large, g large: non-returnable BFS.

=p large, g small: non-returnable DFS.

=p small, g large: returnable BFS.

=p small, g small: returnable DFS.

#p = g = 1: random walk.
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Image source: Grover, Aditya, and Jure Leskovec. "node2vec: Scalable feature learning for networks." In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 855-864. 2016.



DFS
p=1,qg=0.5
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®DFS travels to the world,
therefore know the
difference.

"BFS only sees the
neighborhood, therefore
only know the difference
between itself and its
neighborhood.
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How to Use Node Embeddings

After we obtain the embedding z; for node i, how to use?
= Clustering/community detection: Clustering on nodes z;.
= Node classification: Predict label f (z;) of node i based on z;.

= Link prediction: Predict edge (i, j) based on f(z;, z;) by concatenate, avg, product, or
take a difference between the embeddings:

= Concatenate: f(Zi,Zj) — 9([Zi'zj])
= Hadamard: f(Zi;Zj) =9(z; ® zj)
= Sum/Avg: f(Zi;Zj) =g(z; + Zj)

= Distance: f(zl-,zj) = g(”Zi — Zj”z)

) ALK G 15 8 5B (45 B RS R AR T 528 9 & MR T HENBEERAR 49

Cimas’  School of Informatics Xiamen University (National Characteristic Demonstration Software School)



Shallow Encoders

Embedding
lookup
Shallow encoders:
Node u Dot product
=One-layer of data transformation. S
v
® A single hidden layer maps node Node v
u to embedding z,, by
= f(zv,v € NR(u)).
Embedding
lookup
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Shallow Encoders

Limitations of shallow embedding methods:

= No parameter sharing:
® Every node has its own unique embedding.
® Transductive, not inductive:
® Cannot generate embeddings for nodes that are not seen during training.
® Do not incorporate node features:
" Many graphs have features that we can and should leverage.
m Separated from downstream tasks.
® Training is not end-to-end.
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GRAPH NEURAL NETWORKS




Deep Graph Encoder

®|nstead of directly learning embedding, can we learn mapping
to generate embedding?

graph convolution

/ droy graph convolution
\ RelLU ﬁ\ﬁ\
\ y y

class
P . Q ﬁ ——P> —>@

/
'

y
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Image source: https://www.experoinc.com/post/node-classification-by-graph-convolutional-network

softmax
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GCN




Semi-supervised classification with graph convolutional networks
TN Kipf, M Welling - arXiv preprint arXiv:1609.02907, 2016 - arxiv.org

We present a scalable approach for semi-supervised learning on graph-structured data that
is based on an efficient variant of convolutional neural networks which operate directly on ...

¥y Save DY Cite Cited by 29001 Related articles All 23 versions £

®|dea: Node’s neighborhood defines a computation graph.

. a-r
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Image source: Hamilton, Will, Zhitao Ying, and Jure Leskovec. "Inductive representation learning on large graphs." In Advances in neural information processing systems, pp. 1024-1034. 2017.



GCN: Basic Setting

Assume we have a graph G:

=1/ is the vertex set.
® A is the adjacency matrix (assume binary).

s X € R™IVI is a matrix of node initial features.

mNode initial features:

® Social networks: user profile, user image.

® Biological networks: gene expression profiles, gene functional
information.

® No features: one-hot vector or constant vector.
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GCN: Architecture

TARGET NODE

INPUT GRAPH

N AR 1A SR (BRI RS AR T 52BR)

School of Informatics Xiamen University (National Characteristic Demonstration Software School)

Image source: Ying, Rex, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, and Jure Leskovec. "Graph convolutional neural networks for web-scale recommender systems." In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 974-983. 2018.



GCN: Architecture

Average the information from the previous
layer and apply neural network
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Image source: Ying, Rex, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, and Jure Leskovec. "Graph convolutional neural networks for web-scale recommender systems." In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 974-983. 2018.



GCN: Multiple Layers

®Model can be of arbitrary  Layer-2 Layer-1 Layer-0
depth:

" Nodes have embeddings at
each layer.

" Layer-0 embedding of node u
is its input feature, x,,. A {

" Layer-K  embedding  gets
information from nodes that
are K hops away.
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GCN: Parameter Sharing

® Every node defines a computation graph based on its neighborhood!

@
Shared ® ® r
parameters!| |-

aNn il T Rt

®ee®
TARGET NODE : % %‘ ‘ i ‘
.\)C:::: — = . .“’l:: % Lo =

Shared
—— | parameters!

INPUT GRAPH —

I T o . B g

TR
e
3 q) ]
.
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Image source: Ying, Rex, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, and Jure Leskovec. "Graph convolutional neural networks for web-scale recommender systems." In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 974-983. 2018.



GCN: Deep Encoder

= For each node v, its embedding at Layer-k is h¥:

hg = Xy
hk 1
h11§=O' Wk z +Bkhk L ,k=1,...,K
IN(v)]
U€EeN (v)
z, = h;
= W, is the parameter at Layer-k for the averaged neighborhood of node

U,

= B, is the parameter at Layer-k for node v itself.
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GCN: Deep Encoder

®|n original GCN paper, the neural network is represented by (sparse)
matrix operations.

hE=acl W z o + B, hi1
v k |N(v)| k't

U€eN (v)

can be formulated as
.1 __ 1
H* = o(D"2AD zZH* 'w,)

where A = A + Iy is the adjacency matrix with added self-connections,
D;; = ¥; A;; is the degree matrix.
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GCN: Training

®Train in a supervised manner: Directly train the end-to-end
model for a supervised task (e.g., node classification).

Safe or toxic drug?
/ g

.

drug-drug interaction network
PIKR S 15 528 (AF B T IRSE R IR FR52BR)

3 i,
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chai, William L. Hamilton, and Jure Les kovec. "Graph convolutional neural networks for web-scale recommender systems." In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 974-983. 2018



GCN: Training

®Train in an unsupervised manner:

mUse only the graph structure.

®“Similar” nodes have similar embedding.

mHow to find similar nodes?

mDeepwalk, node2vec, ...
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GRAPHSAGE




Inductive representation learning on large graphs

W Hamilton, Z Ying, J Leskovec - Advances in neural ..., 2017 - proceedings.neurips.cc

... Here we present GraphSAGE, a general, inductive ... Instead of training individual embeddings
for each node, we learn a ... Our algorithm outperforms strong baselines on three inductive ...

Y% Save DY Cite Cited by 12636 Related articles All 22 versions %

uSo far we have aggregated the neighbor messages by taking
their (weighted) average.

mi=o| W, ) M | ponk
% k |N(U)| k'*v

UEN (v)
It is very straightforward and simple.

ECan we make it more sophisticated to learn more latent
information from a graph?

) AP RS 15 5B (5 B IR S R AR R 52 B

5\
Ui’ School of Informatics Xiamen University (National Characteristic Demonstration Software School)

M AT HENRESEAR 66




GraphSAGE

Algorithm 1: GraphSAGE embedding generation (i.e., forward propagation) algorithm

Input : Graph G(V, £); input features {x,, Vv € V}; depth K; weight matrices
WF VE € {1, ..., K}; non-linearity o; differentiable aggregator functions
AGGREGATEy, Vk € {1,..., K}; neighborhood function A/ : v — 2V

Output : Vector representations z,, forall v € V

1 h) « x,,VveV;
2 fork=1..K do
3 for v € Vdo
4

Generalizes the aggregation function

hfﬁd,(v) ¢ AGGREGATE({h*~! vu € N(v)});
5 h? + o (Wk - CONCAT(hF~1, hﬁf(v)))
6 end \
7 | h¥ « h¥/||hk|,, Vo eV Replay sum by concat
s end
9 Z, hUK,V‘U eV
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Image source: Hamilton, Will, Zhitao Ying, and Jure Leskovec. "Inductive representation learning on large graphs." In Advances in neural information processing systems, pp. 1024-1034. 2017.



GraphSAGE

Mean aggregator

k—1
hy,

IN(v)]

mNearly equivalent to the convolutional propagation rule used in
GCN.

AGGREGATE, = 2

U€EeN (v)

®This concatenation can be viewed as a simple form of a “skip
connection” between the different layers.
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GraphSAGE

LSTM aggregator

AGGREGA’

=| STMs have t

'Ex = LSTM(|hE™1, vu € n(N(v))])

ne ac

vantage of larger expressive capability.

" Apply LSTM to random permutation of the node’s neighbors

n(N(v)).

G ANA S E AR5 (R RSLR IR PSR 9 & MR T HENRESEAR 69
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GraphSAGE

Pooling aggregator
AGGREGATE;, = max({o(W o0 hs, + b), Vu; € N(v)})

where max is taken element-wise.

mBy applying the max-pooling operator to each of the computed
features, the model effectively captures different aspects of the
neighborhood set.
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Transductive vs. Inductive

BGNN is usually in a semi-supervised learning manner.

®The unlabelled node is involved during training.

mSemi-supervised learning can be grouped into two
categories:

" Transductive: The testing data is from the unlablled data.

®|nductive: The testing data is unseen in training.
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Inductive Capacity for New Nodes

unseen nodes.

" E.g. new user and new item in a recommendation system.

\/\ \/ ............... \/v
\ \

P> | |~

Generate embedding

Train on known graph New node arrives
for new node
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®Many application settings constantly encounter previously
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Inductive Capacity for New Graphs

#The trained GCN parameters can also be used to generalize to
entirely unseen graphs.

mE.g. train on protein interaction graph from model organism A and
generate embeddings on newly collected data about organism B.

Train on one graph Generalize to new graph
() AR 1E LBTR (%ew |ﬂa¢k1¢:§-ﬁw—a> TN A AT HANHESHAR 23
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GAT




Graph attention networks
P Veli¢kovi¢, G Cucurull, A Casanova... - arXiv preprint arXiv ..., 2017 - arxiv.org

... , we introduce an attention-based architecture to perform node classification of graph-structured
data. The idea is to compute the hidden representations of each node in the graph, by ...

Y% Save DY Cite Cited by 8284 Related articles All 11 versions 9%

® Check the neighborhood aggregation of GCN again:

hE=cl W 2 b + B, hk1
v k |N(U)| kTtv

Uu€eN (v)

= What is the weight of each neighbor u € N(v) that contributes to node
v?
1

IN(v)]

[t simply assumes that all neighbors are equally important to node v.
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GAT

®Can we simply learn a weight for each node in the graph?

® Important node (e.g. with large degree) deserves large weight.

" Probably not.
" The importance of each node to each neighbor should be different.

mGoal: Specify arbitrary importance to different neighbors of each
node in the graph.

= |dea: Compute embedding h% of each node in the graph following
an attention network.
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GAT

=First compute attention coefficients of e,, across node v, and
its neighbor u based on their representation at layer k — 1:

Cvu = a(th‘lL(L_l’ thtl‘;_l)
me.,,, indicates the importance of node u message to node v.

mThe attention network a can just be a simple single-layer neural
network:

a(p,q) = A'[p.q]
where A is a learnable parameter.
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®Then normalize over all neighbors to get the weight a,,,;:
eXp evu

Apu =
ZkEN(v) €XP evk

mThe final attention-weighted aggregation is:

hk = g z o, W, k!

Uu€eN (v)
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GAT: Multi-Head Attention

mBorrow the idea of multi-head attention from Transformer:

T
hk = ¢ z Z a,ﬁﬂw,(f)hij—l

t=1 ueN(v)

m\We got T head and each head t has its own weights.
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A t-SNE plot of the computed feature representations of a pre-trained GAT

model’s first hidden layer on the Cora dataset. Node colors denote classes.
Edge thickness attention coefficient.
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Image source: Velickovi¢, Petar, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio. "Graph attention networks." arXiv preprint arXiv:1710.10903 (2017).



APPLICATION TO RECOMMENDER SYSTEM




Pinterest (,)

®Pinterest is an American image sharing and
social media service.

mUsers can save and discover images, GIFs and
videos in the form of pinboards.

®300M users, 4+B pins, 2+B pinboards.



https://en.wikipedia.org/wiki/Pinterest

00000000 2700000
-

mGraph: 2B pins, 1B boards, 20B edges.

®Graph is dynamic: Need to apply to new pins and new boards
without model retraining.

®Rich node features: images, text with pins.
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Graph convolutional neural networks for web-scale recommender systems
RYing, R He, K Chen, P Eksombatchai... - Proceedings of the 24th ..., 2018 - dl.acm.org

... Recent advancements in deep neural networks for graph-structured data ... Graph Convolutional
Network (GCN) algorithm PinSage, which combines efficient random walks and graph ...

¥¢ Save U9 Cite Cited by 3121 Related articles All 8 versions

BGoal: Generate pin embeddings in a web-scale Pinterest
graph containing billions of objects.

5Pin embeddings are essential to various tasks like pin
recommendation, classification, clustering, ranking.

mServices like “Related Pins”, “Search”, “Shopping”, “Ads”.
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PinSage: Result

L of Bty Do

PinSage

(3
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Swiss Chard
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Image source: Ying, Rex, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, and Jure Leskovec. "Graph convolutional neural networks for web-scale recommender systems." In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 974-983. 2018.
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PinSage: Result

y

PinSage
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Image source: Ying, Rex, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, and Jure Leskovec. "Graph convolutional neural networks for web-scale recommender systems." In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 974-983. 2018.
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ADVANCES




I S S @I
Hyperbolic graph convolutional neural networks

| Chami, Z Ying, C Ré... - Advances in neural ..., 2019 - proceedings.neurips.cc

... and scale-free graphs in inductive settings: (1) We ... hyperbolic space to transform input

features which lie in Euclidean space into hyperbolic embeddings; (2) We introduce a hyperbolic ...
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(b) HGCN layers. (c) GCN (left), HGCN (right).
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Image source: Chami, Ines, Zhitao Ying, Christopher Ré, and Jure Leskovec. "Hyperbolic graph convolutional neural networks." In Advances in neural information processing systems, pp. 4868-4879. 2019.
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Graph transformer networks
S Yun, M Jeong, R Kim, J Kang... - Advances in neural ..., 2019 - proceedings.neurips.cc

... Graph Transformer Network (GTN) that learns to transform a heterogeneous input graph
into useful meta-path graphs for each task and learn node representation on the graphs in an ...
Y% Save Y Cite Cited by 733 Related articles All 11 versions 99
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Image source: Yun, Seongjun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J. Kim. "Graph transformer networks." In Advancesin Neural Information Processing Systems, pp. 11983-11993. 2019.




Graph structure of neural networks
J You, J Leskovec, K He, S Xie - International Conference on ..., 2020 - proceedings.mir.press

... graphs. Here we systematically study the relationship between the graph structure of a neural
network ... of representing a neural network as a graph, which we call relational graph. Our ...
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Image source: You, Jiaxuan, Jure Leskovec, Kaiming He, and Saining Xie. "Graph structure of neural networks." In International Conference on Machine Learning, pp. 10881-10891. PMLR, 2020.



Conclusion

After this lecture, you should know:

m\What is a graph representation?

®How does random walk help generate graph representation?
®\What kind of role do BFS and DFS play in node2vec?
m\What is the basic architecture of GNN?

"How is attention applied to GNN?
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Suggested Reading

" R S A 2 Graph Embedding 75 1%
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https://zhuanlan.zhihu.com/p/64200072
https://zhuanlan.zhihu.com/p/64756917
https://zhuanlan.zhihu.com/p/64756917

Reference

mTutorial at WWW 2019 on Representation Learning on Networks
m(CS224W Machine Learning with Graphs
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https://www.aminer.cn/nrl_www2019
http://web.stanford.edu/class/cs224w/

Thank you!

" Any question?

mDon’t hesitate to send email to me for asking questions and
discussion. ©
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