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UNDERFITTING AND OVERFITTING




Generalization

" The central challenge in machine learning is that we must perform well

on new, previously unseen inputs—not just those on which our model
was trained.

" The ability to perform well on previously unobserved inputs is called
generalization.

® During training, we can compute some error measure on the training set
called the training error.

® This is a typical optimization problem.

® \What separates machine learning from optimization is that we want the
generalization error, also called the test error, to be low as well.
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Is a model the more complex the better?

®= No. It will only perform well on the training data but poorly on the test data.
Our goal is to make both the training error and the generalization error small.
Underfitting occurs when the model is not able to obtain a sufficiently low error value on the training set.

Overfitting occurs when the gap between the training error and test error is too large.

Under-fitting Appropirate-fitting Over-fitting
(too simple to (forcefitting--too
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Underfitting and Overfitting

= We can control whether a model is more likely to overfit or underfit by altering its
capacity or complexity.

= For neural networks, increasing capacity can be done by adding more hidden layers or more neurons
per layer.

— - 'Training error

Underfitting zone | Overfitting zone ..
—— (Generalization error

Error
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Underfitting and Overfitting

" One extreme example is 1-Nearest
Neighbor (1NN) classifier.

= Simply calculate the distance between ‘?d"a;‘n% ‘)c%g"

’;Zf input and all samples in the training ’E Qﬂ’ang‘ ¥

' R RO R
-,sanr:p’izen use the label of the nearest K’p’aﬁ{t‘;&"o ‘

. - <% %/ ®

=[t achieves 0 training error but Q}?%O‘\\é

probably very high test error.

= Very large generalization gap. Voronoi diagram for INN
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REGULARIZATION FOR DEEP LEARNING




Regularization

mRegularization is any modification we make to a learning
algorithm that is intended to reduce its generalization error but
not its training error.

"t is one of the central concerns of the field of machine learning.
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Parameter Norm Penalties

® Many regularization approaches are based on limiting the capacity of
models by adding a parameter norm penalty ((0) to the objective
function J.

® E.g. neural networks, linear regression, logistic regression.

= We denote the regularized objective function by J:
J(0; X;y) =J(6; X;y) + A0(6).

where A € |0,) is a hyperparameter called regularization parameter,
and Q(0) is called the regularization term or penalty term.

= Now during training, we aim at minimizing J(0; X;y) and Q(0) at the
same time with the tradeoff controlled by A.

() APIA 5 18R 5B (5 B AL IR PRS2 BR) %*"‘*9 & M AT HENRSERAR 3
m,:,;: School of Informatics Xiamen University (National Characteristic Demonstration Software School)




L? Regularization

®0One of the simplest and most common kinds of parameter
norm penalty is the L? regularization, aka L* norm.

1 1 1
Q(w) = E”W“% = 52 wi = EWTW.
;

®|n machine learning, it is commonly known as weight decay.

m|n statistics, it is commonly known as ridge regression or
Tikhonov regularization.
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L? Regularization

= \With L? regularization, the objective function becomes:
. A
Jw; X;y) =]w; X;y) +5 Iwll5.
" [ts corresponding parameter gradient:
Vi W; X;y) =V, J(w; X; y) + Aw.
" A single step with gradient descent:

wew-—n,Jw;,X;y) +Aw)
we (1-n)w-—nV,J(w; X;y).

= Compared with the one without L? regularization, we multiply a weight
decay term (1 — nA) on each step.
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Parameter Norm Penalties

= Now assume that we have a fas bl
polynomial classification XX ;‘X
model for 2-dimensional X XXX X X% X X
XX X XX X

input (x; and x,):

o(Woo + WyoXq

. a(Woo 2 + W1 X7 X,
fx) =0 2 z Wijxixé : T Wi0Xq i xmi% T WaoXi + Wy X7 x5
i=0 j=0 —+ Wlez) n WOZXZ_X,' ) + szg.x']?.x:z3
B + Wit + )
. .. . . .
Logls.tlc regression Is Its ]("f X;y) = 10 ](uf X;y) =3 l(uf X;y)=0
special case when there are Slwllz =1 Sliwllz =3 5 lwllz =50
only wgo, Wg1 and wy, are
USEd. Best model Best model Best model
when A = 5. when A = 1. when A = 0.
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L' Regularization

= While L? regularization is the most common form of weight decay, there are other
ways to penalize the size of the model parameters.

= Another option is to use L' regularization, aka L* norm:

aw) = Iwlly = ) Iwil.
l
= With L! regularization, the objective function becomes:
Jw; X;y) = J(w; X; ) + Allwll;.
" |ts corresponding parameter gradient:
Vw (W; X;y) = V,,J(w; X; y) + A - sign(w),

where sign(w) is simply the sign of w applied element-wise.
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Difference between L' and L? Regularization

= |n comparison to L? regularization, L' regularization results in a solution

that is more sparse. Sparsity in this context refers to that most of
parameters have an optimal value of zero.

= Dense parameters: w! = [0.2, 0.1, 0.3, 0.5, 0.1, 0.2, 0.5, 0.3]"
= Sparse parameters: w! = [0, 0, o0 21, 0, 0, 12, 0]"

= From numerical point of view, L? regularization heavily penalizes large
terms and tolerates small term, but L! regularization equally treats them.

= The sparsity property induced by L' regularization has been used
extensively as a feature selection or model interpretation.
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Difference between L' and L? Regularization

® Equivalently, the regularized optimization can be written as the form of
constrained optimization:

min J(w; X; y)
s.t.Q(w) <k

Fig 8(a) : L1 and L2 Norms Fig 8(b): L1 and L2 g'iih different cost functions

" From geometric point of view, the s
contour of the objective function 3
has higher probability to hit the

B1
. : >
constraint corner of L1
regularization.
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Sparse Representations

®Another strategy is to place a penalty on the activations of the
units in a neural network, encouraging their activations to be
sparse.

J(0; X;y) =J(6; X;y) + AU (h).

=To achieve it, we can also use L! penalty to limit the activations:

Q(h) = llhll, = ) [k
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Data Augmentation

®The best way to make a machine learning model generalize
better is to train it on more data.

= Of course, in practice, the amount of data we have is limited.

®One way to get around this problem is to create fake data and
add it to the training set.

" For some machine learning tasks, it is reasonably straightforward to
create new fake data.
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Data Augmentation

A few of the simple and popular data
augmentation techniques for images are:

= Flipping  (both  vertically and
horizontally)

= Rotating
" Zooming and scaling
= Cropping

= Translating (moving along the x or vy
axis)

= Adding Gaussian noise (distortion of
high frequency features)
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Noise Robustness

mUse the same idea as norm penalties: make the model not learn
that well on the training set.

1. Inject noise to the network weights.

" Push the model into regions where the model is relatively insensitive to small
variations in the weights.

® Find weights that are not merely minima, but minima surrounded by flat regions.

2. Inject noise at the output targets.
= Make the model not too sensitive to the mistake label in the training set.

= For example, label smoothing regularizes a model based on a softmax with k

output values by replacing the hard 0 and 1 classification targets with targets of
i and 1 — €, respectively.
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Multi-Task Learning

= Multi-task learning aims to learn several tasks  |1oq1k Al [Task Bl [Task C Task-
at the same time. ‘ specific
= Thus, each task cannot be learned too well, so that layers

regularization is achieved.

" Multi-task learning model can generally be
divided into two kinds of parts and associated f
parameters:

Shared
. layers

= Task-specific layers: only benefit from the examples of
their task to achieve good generalization.

= Generic layers or shared layers: benefit from the

pooled data of all the tasks Multi-task learning model with

deep neural networks
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Early Stopping

= Recall that, while training, we are not allowed to use test set to select the best model.

= |t leads to data leakage.

e—e Training set loss

= I[nstead we can refer to the validation
set.

0.15 —— Validation set loss |-

0.10

= We can obtain a model with better
validation set error by returning to the
parameter setting at the point in time - 50 T00 T50 200 250
with the lowest validation set error. ime (epoch)

0.05

Loss (negative log-likelihood)

The training set loss decreases consistently
over time, but the validation set average loss
eventually begins to increase again.

= Every time the error on the validation set
improves, we store a copy of the model
parameters.
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Algorithm 7.1 The early stopping meta-algorithm for determining the best
amount of time to train. This meta-algorithm is a general strategy that works
well with a variety of training algorithms and ways of quantifying error on the
validation set.
Let n be the number of steps between evaluations.
Let p be the “patience,” the number of times to observe worsening validation set
error before giving up.
Let 6, be the initial parameters.
086,
10
7+<0
v ¢ 00
0" 06 ] ]
i e Current validation error

while j < p do
Update 8 by running the training-lgorithm for n steps.
11+n

v’ < ValidationSetError(0)
if v/ < v then

7«0
G0 . .
;i Recorded smallest validation error

v
else
j+J+1
end if
end while
Best parameters are 8%, best number of training steps is ¢

Image source: Algorithm 7.1, Goodfellow, Bengio, and Courville, Deep Learning, Cambridge: MIT press, 2016.
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Advantages of Early Stopping

mEarly stopping is a very special form of regularization, in that it
requires almost no change in the underlying training procedure,
the objective function, or the set of allowable parameter values.

" |t is easy to use early stopping without damaging the learning dynamics.

= |t can be shown that early stopping is equivalent to L? regularization, in
the case of a simple linear model with a quadratic error function and

simple gradient descent.

mEarly stopping may be used either alone or in conjunction with
other regularization strategies.

(i) APIX 5 15 2 5p (45 BT SE L AR TR 2R BR )
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Early Stopping

= Early stopping requires a validation set, which means some training data is not
fed to the model.

" To best exploit the whole training data, one can perform extra training after
the initial training with early stopping has completed.

® There are two basic strategies one can use for this second training procedure:

= Retrain on all of the data for the same number of steps as the early stopping procedure
determined.

= Continue to train on the whole training data and monitor the average loss function on the
validation set.

® Both strategies are not guaranteed to be the best, because there is no
validation set any more.
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" Dropout provides a computationally inexpensive but
powerful method of regularizing a broad family of
models.

" The term “dropout” refers to temporarily removing units
(hidden and visible) from the neural network.

mEach unit is retained with a fixed probability p
independent of other units

= p can be chosen using a validation set or can simply be set at 0.5.

® For the input units, however, the optimal probability of retention
is usually closer to 1 than to 0.5.

(b) After applying dropout.
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Dropout

= At training time, the unit is present with probability p and is
connected to units in the next layer with weights w.

= At test time, the unit is always present and the weights w are
multiplied by p. The output at test time is same as the expected
output at training time.

PW
Present with Always
probability p present
(a) At training time (b) At test time
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Image source: Figure 1&2, Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava, et al. , 2014.



Adversarial Training

m Adversarial examples are the
samples x' that can be so similar
to x that a human observer cannot
tell the difference, but the

. . T sign(VoJ (0, x,y)) . ]
network can make highly different esign(VzJ (6, z,y))
.. y =“panda” “nematode” “gibbon”
predictions. w/ 57.7% w/ 8.2% w/ 99.3 %
confidence confidence confidence

® Adversarial training makes the
model insensitive to small changes

by encouraging the network to be .\ ents of the gradient of the cost

locally constant in the  fynction with respect to the input, we can
neighborhood of the training data.  change the classification of the image.

By adding an imperceptibly small vector
whose elements are equal to the sign of
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OPTIMIZATION FOR TRAINING DEEP MODELS




Batch vs. Minibatch vs. Stochastic Algorithms

® Optimization algorithms that use the entire training set are called batch
or deterministic gradient methods.

1 N . .
Wew— nﬁvwz L(f (x9;w),y®)
i=1
" The data is usually stored as a form of matrix. Feeding all data into the

memory for gradient calculation is infeasible.

" Can we calculate a small bunch of m samples for one update, and
conduct N /m times to iterate over all samples?

Will the gradients averaged over m samples deviate from the gradients
over N samples?
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Batch vs. Minibatch vs. Stochastic Algorithms

mRecall that the standard error of the mean estimated from n

samples is given by o/+/n, where ¢ is the true standard
deviation of the value of the samples.

=The denominator of 4/n shows that there are less than linear
returns to using more examples to estimate the gradient.

® Compare two estimates of the gradient, one based on 100 samples and
another based on 10,000 samples.

" The latter requires 100 times more memory than the former, but
reduces the standard error of the mean only by a factor of 10.
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Batch vs. Minibatch vs. Stochastic Algorithms

= Typically the term “batch gradient descent” implies the use of the
full training set.

® Optimization algorithms that use only a single sample at a time are
sometimes called stochastic or sometimes online methods, e.g.,
“stochastic gradient descent”.

" Most algorithms used for deep learning fall somewhere in between,
using more than one but less than all of the training examples.

" These were traditionally called minibatch or minibatch stochastic
methods and it is now common to simply call them stochastic
methods.
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Batch vs. Minibatch vs. Stochastic Algorithms

®|t can be somewhat confusing because the word “batch” often means
minibatch used by minibatch stochastic gradient descent.

® For example, it is very common to use the term “batch size” to describe the
size of a minibatch.

= Conventionally:

=" When we refer to stochastic gradient descent (SGD), it actually means
minibatch SGD.

= When we refer to batch size, it actually means minibatch size.
® After we train through all of batches, we call it one epoch.

= Training deep models usually requires a number of epochs.
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Batch vs. Minibatch vs. Stochastic Algorithms

Minibatch sizes (batch sizes) are generally driven by the following factors:

® Larger batches provide a more accurate estimate of the gradient, but
with less than linear returns.

" The amount of memory scales with the batch size. For many hardware
setups this is the limiting factor in batch size.

" When using GPUs, it is common for power of 2 batch sizes to offer better
runtime. Typical power of 2 batch sizes range from 32 to 256.

" Small batches can offer a regularizing effect, perhaps due to the noise
they add to the learning process.
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How Learning Differs from Pure Optimization

®|n pure optimization, minimizing J/(8) is the final goal.
® Pure optimization doesn’t care overfitting.

J(0) = Exy)~p 0, L (X;0),¥)

®In machine learning, we minimize J(8) on the training data but
we hope to find the minimized J(0) on the test data.

J7(0) = E(xy)~pyo L (%;0),y)

where D44t 1S the empirical distribution and p,4,:, is the data
generating distribution.
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Empirical Risk Minimization

f we knew the true distribution pg4¢4 (X, y), risk minimization would
e an optimization task solvable by an optimization algorithm.

®However, piq:q(X, V) is just the population distribution in statistics,
which can never be known.

® |nstead, we have to minimize the empirical risk
m
1 . .
E(x,y)fvﬁdatal'(f(x; 0); y) — az L(f(x(l)) 0)) y(l))
i=1

with some regularization methods.

B AF 1A (B RSO ERTFS2PT)
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Challenges in Neural Network Optimization

Local Minima

®For many years, most practitioners believed that local minima
were a common problem plaguing neural network optimization.
Today, that does not appear to be the case.

mExperts now suspect that, for sufficiently large neural networks,
most local minima have a low cost function value, and that it is
not important to find a true global minimum rather than to find
a point in parameter space that has low but not minimal cost.

c.,; XS % TEELZR (%&1& STIEIR TR SBR)
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Challenges in Neural Network Optimization

Saddle Points

® For many high-dimensional non-convex functions, local minima (and maxima) are in
fact rare compared to another kind of point with zero gradient: saddle point.

® Some points around a saddle point have greater cost than the saddle point, while

others have a lower cost.

Saddle point
Local maxima

-~
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Challenges in Neural Network Optimization

Total
Loss Very slow at the

plateau

Stuck at saddle point

Stuck at local minima

aL/ow i OL/dw

The value of a network parameter w

() AP RS 1 2200 (5 B IR STR AR PRS2 BR) ‘9 &M AT MRS SRR 37

Ss2%/  School of Informatics Xiamen University (National Characteristic Demonstration Software School)

Image source: Hung-yi Lee, Understanding Deep Learning in One Day



Challenges in Neural Network Optimization

Cliffs and Exploding Gradients

" The objective function for highly
nonlinear deep neural networks often
contains sharp nonlinearities in
parameter space.

® These nonlinearities give rise to very high
derivatives in some places.

J(w,b)

" A gradient descent update can catapult w
the parameters very far, possibly losing
most of the optimization work that had
been done.
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Challenges in Neural Network Optimization

Without clipping

Cliffs and Exploding Gradients

J(w,b)

#The gradient does not specify the optimal step
size, but only the optimal direction within an

infinitesimal region.

A very heuristic solution: gradient clipping, just
cut the gradient if it exceeds a threshold.

J(w,b)
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Stochastic Gradient Descent (SGD)

Algorithm 8.1 Stochastic gradient descent (SGD) update at training iteration &

Require: Learning rate €.
Require: Initial parameter 6
while stopping criterion not met do
Sample a minibatch of m examples from the training set {:1:(1), e w(m)} with
corresponding targets y(¥).
Compute gradient estimate: § « += Vg, L(f(x¥; ), y®)
Apply update: 8 <+ 0 — €g
end while ,,‘1

8
2
O

stochastic vs. batch

N\ = A e 12, e —_ 2, pra N\ 7 .
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Learning Rate of SGD

® Batch gradient descent uses fixed learning rate, because the true
gradient of the total cost function becomes small when reach a
minimum.

mSGD gradient estimator introduces a source of noise that does not
vanish even when we arrive at a minimum.

" |n practice, it is necessary to gradually decrease the learning rate of
SGD over time, so we now denote the learning rate at iteration k as
i -

&, =1 —a)ey + ag;

with @ = min(1, k/t). After iteration T, it is common to leave ¢
constant.

B AF 1A (B RSO ERTFS2PT)
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Learning Rate of SGD

®Learning rate is usually chosen by trial and error.

mT is usually set to the number of iterations needed for a few
hundred passes through the training data.

= ¢ should roughly be set to 1% of g,.

mHow to set &,?

() AR5 152 5B (B IRSLIE IR R 5PR)
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Momentum

®The momentum method is a
method to accelerate learning
using SGD.

1.000 L

®|n particular SGD suffers in the
following scenarios:

500

® Error surface has high curvature.

® Small but consistent gradients.

" The gradients are very noisy.
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Momentum

" |[n physical world:

* Momentum

How about put this phenomenon
in gradient descent?

¥

(G AP XS 15 5 (5 B IR SE ML AR PR 52 PR)
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Momentum

= Each step of SGD has nothing to do with the previous gradient.
" Momentum introduces a new variable v, the velocity.

" The velocity is an exponentially decaying moving average of the negative gradients:

m
1 : .
v« av — &V, n_zz L(f(x®;8),y®)
,
0—0+v |

" The velocity accumulates the previous gradients.

" The role of a:
= |f a is larger than € the current update is more affected by the previous gradients.

= Usually values for a are set high = 0.8, 0.9.

c.’,; JEPIA S 18 R BR (45 B AL R AR PR32 BR)
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Momentum

Algorithm 8.2 Stochastic gradient descent (SGD) with momentum

Require: Learning rate ¢, momentum parameter c.
Require: Initial parameter @, initial velocity v.
while stopping criterion not met do
Sample a minibatch of m examples from the training set {1, ... 2™} with
corresponding targets y(i).
Compute gradient estimate: g < ~Vg > L(f(z¥;0),4®)

Compute velocity update: v < av — eg 20
Apply update: 6 <+ 60 + v ,
end while

0

® The arrows indicate the steps that gradient descent would _j,

take at that point. o
= The red path indicates the path followed by momentum. % -3 “10 0 10 20
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Momentum

cost
Movement =

Negative of dL /0w + Momentum

- Negative of dL / dw
===sp MOomentum

- Real Movement

dL/dw =0
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Adaptive Learning Methods

mLearning rate is one of the hyperparameters that is the most
difficult to set because it has a significant impact on model
performance.

=Till now we assign the same learning rate to all parameters.

®Can we automatically adapt these learning rates for each single
parameter?

, P AS 15 A5 (IR U RSEIERH5ER) ‘@) & DR T wEnnesEAR 48
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mAdapts the learning rates of all parameters by scaling them
inversely proportional to the square root of the sum of all of

their historical squared values.

" Parameters that have large partial derivative: their learning rates are
rapidly declined.

" Parameters that have small partial derivative: their learning rates are
slowly declined.

mAdaGrad performs well for some but not all deep learning
models.

(i) APIX 5 15 2 5p (45 BT SE L AR TR 2R BR )
School of Informatics Xiamen University (National Characteristic Demonstration Software School)
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Algorithm 8.4 The AdaGrad algorithm

Require: Global learning rate €
Require: Initial parameter 6
Require: Small constant &, perhaps 10~7, for numerical stability
Initialize gradient accumulation variable » = 0
while stopping criterion not met do
Sample a minibatch of m examples from the training set {z(!), ... (™} with
corresponding targets y®.
Compute gradient: g < +Vg >, L(f(x (). 9), y®)
Accumulate squared gradient: r < r+g® g
Compute update: Af « — +€ v ® g. (Division and square root applied

element-wise)
Apply update: @ <+ 6@ + A@
end while

() AR5 152 5B (B IRSLIE IR R 5PR) ‘@0 2 M 7T HENRESERR 50
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RMSProp

®AdaGrad is good when the objective is convex.

® AdaGrad shrinks the learning rate according to the entire history
of the squared gradient and may have made the learning rate
too small before arriving at such a convex structure.

ERMSProp uses an exponentially decaying average to discard
history from the extreme past.

® Converge rapidly after finding a convex region.
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RMSProp

Algorithm 8.5 The RMSProp algorithm

Require: Global learning rate ¢, decay rate p.
Require: Initial parameter 6
Require: Small constant 6, usually 107°, used to stabilize division by small
numbers.
Initialize accumulation variables r = 0
while stopping criterion not met do
Sample a minibatch of m examples from the training set {1, ..., 2™} with
corresponding targets y(i).
Compute gradient: g <+ +=Vg >, L(f(x (). 9), y¥)
Accumulate squared gradient: r < jpr + (1 —p)g© g
Compute parameter update: AQ = —ﬁ ®g. (ﬁ applied element-wise)
Apply update: 6@ < 6 + A@O
end while
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mAdam is like RMSProp with Momentum but with bias correction
terms for the first and second moments.

mAdam includes bias corrections to the estimates of both the
first-order moments (the momentum term) and the

(uncentered) second-order moments to account for their
initialization at the origin.

(i) APIA S 15 250 (IS B ACTRSLILIR 278
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Algorithm 8.7 The Adam algorithm

Require: Step size € (Suggested default: 0.001)
Require: Exponential decay rates for moment estimates, p; and p2 in [0,1).
(Suggested defaults: 0.9 and 0.999 respectively)
Require: Small constant § used for numerical stabilization. (Suggested default:
10-9)
Require: Initial parameters @
Initialize 1st and 2nd moment variables s =0, r =0
Initialize time step ¢ = 0
while stopping criterion not met do
Sample a minibatch of m examples from the training set {z(1), ... 2(™} with
corresponding targets y®),
Compute gradient: g < ~Vg 3, L(f(z¥;0), y?)

t—t+1

Update biased first moment estimate: s <— p1s+ (1 — p1)g <— — Momentum
Update biased second moment estimate: r < por + (1 — p2)g © g v\

Correct bias in first moment: 8 - —sptl RMSPI’Op

Correct bias in second moment: 7 < ﬁ
N ]

Compute update: AO = —e¢ \/1—;1 3 (operations applied element-wise)
Apply update: @ < 6 + A8
end while

T HENHSSRAR

Image source: Algorithm 8.7, Goodfellow, Bengio, and Courville, Deep Learning, Cambridge: MIT press, 2016.
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Summary of Optimization Methods

= SGD: 0 —0—c¢g

" Momentum:v « av—¢g, 0 <0 +v

mAdaGrad: r<r+gQ©g, AO « —

"RMSProp: r<pr+(1—-p)g(®g, AH%—\&@g, 0 — 0+ A0
= Adam: sepis+(1—p)g rep,r+(1-p)g0Og
A(_ S A(_ r
1t T 10
8
A9<——eﬁ+5, 0 — 60+ A6

T ANKRS 15 a5 (BRI RS R FRSRER)
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Summary of Optimization Methods

= Gradient Descent
w— Momentum

w— Nesterov

wewe AdaGrad
w—— AdaDelta
RMS Prop

-1.5-1.00
AP A S 5 A 5 (A5 R RSE LR THFS52ER) %*"‘*9 M * T HENHESRAR 56
School of Informatics Xiamen University (National Characteristic Demonstration Software School)

Image source: https://mlfromscratch.com/optimizers-explained/#/



Summary of Optimization Methods

mAt this point, a natural question is:
which optimization algorithm should one choose?
= Unfortunately, there is currently no consensus on this point.

" |t depends on:

= the complexity of the optimization problem,
® user’s familiarity with the algorithm,

® trail and error.

(i) APIA S 15 250 (IS B ACTRSLILIR 278
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Batch Normalization

" The distribution of each layer’s input changes
during training.

" Small changes to the network parameters
amplify as the network becomes deeper.

" This phenomenon is called internal covariate k’ x % ‘ﬂ
shift.

= One solution is called batch normalization
(BatchNorm).

= |t is one of the most exciting innovations in optimizing
deep neural networks.

() APIAS 152500 (B RARSCELRFSIR) (o)) & M4 T stanpessis 58
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Batch Normalization

——— sigmoid
sigmoid derivative /
08
The sweet spot.
06
g
3
04
near zero near zero
derivative
02

derivative

g \
110 D -

-5.0 25 00 25 50 75 100
input
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Image source: https://towardsdatascience.com/backpropagation-and-batch-normalization-in-feedforward-neural-networks-explained-901fd6e5393e



https://towardsdatascience.com/backpropagation-and-batch-normalization-in-feedforward-neural-networks-explained-901fd6e5393e

Batch Normalization

Standard Network

Input: Values of x over a mini-batch: B = {z1._ . };
Parameters to be learned: ~, (3
Output: {y; = BN, g(z;)}
Wl¢ W2¢ ... WL¢
1 — »
UB — — Z T; // mini-batch mean
mi4
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEESR 1 m
Adding a BatchNorm layer (between weights and activation function) 0?3 — — Z(xi — ,uB)2 // mini-batch variance
m
=1
A x T .
T, — 22—“3 // normalize
Wl ¢ W2 BN, N ooo Wqu Vg te
Yi < 7x; + B = BN, g(x;) // scale and shift
G0 AP AL 158 5288 (45 B 1L RSE AR TR 23R B “o0) B D AT EnEss
/;%103 (ﬁfjrr-natics Xiamen-f:vef:t'y (<National Characte:izti-c D(Sn’onstratiojn\Softwa:?S—choJ:I;> /? ,’) } TI.Equ_ s*i*'% 60
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Batch Normalization

®Allow us to use much higher learning rates and be less careful
about initialization.

®|mprove training efficiency.

mAct as a regularizer, in some cases eliminating the need for
Dropout.

() AR5 152 5B (B IRSLIE IR R 5PR)

' School of Informatics Xiamen University (National Characteristic Demonstration Software School)

Vs

@) &N AT HENEESEAR 61




Batch Normalization

Learning Rate=0.1 Learning Rate=0.5
100 100

> >

O O

© (©

- | -

O —— Standard 5 —— Standard

<L() 20 —— Standard + BatchNorm éf 20 —— Standard + BatchNorm
) o

£ c

= <

© ©

: - -

— —

0 5k 10k 15k 0 5k 10k 15k
Steps Steps
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Parameter Initialization Strategies

®"|ln convex problems, no matter what the initialization,
convergence is guaranteed.

®|n the non-convex regime initialization is much more important.
® Some parameter initialization can be unstable, not converge.

mNeural networks are not well understood to have principled,
mathematically nice initialization strategies.

m\We are only sure about one thing: the initial parameters need
to “break symmetry” between different units.

, AP A S 5 A 5 (A5 R RSE LR THFS52ER) ‘@) & DR T wEnnesEAR 63
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Parameter Initialization Strategies

a = torch.randn(512,512)

for i in range(100):
X = torch.randn(512,512)
a=a@x
print('%f, %f' % (a.mean(), a.std()))

®|nitialize weights by:

0.972861, 513.349121

-23.475885, 11657.522461
W, . NN O 1 614.533630, 264361.500000
l ] ) -10944.580078, 5980599.000000
) 403068.750000, 135890432.000000
4653418.500000, 3079230208.000000
. 8265648.000000, 70283116544.000000
B Th e n SI m p |y Ca |CU Iate -3497382912.000000, 1589032255488.000000
-42197626880.000000, 36095647547392.000000
-1344494501888.000000, 822297392840704.000000
. . . . -70882663858176.000000, 18623482854113280.000000
m at rIX m u Itl pl |Cat I O n 318655971721216.000000, 419432178116460544.000000
873795795550208.000000, 9463642815314526208.000000
339649174863609856.000000, 214711663101864837120.000000
. . -3300531596444041216.000000, 4855511465203179978752.000000
Ite ratlve y. -61508685966998503424.000000, 110060075579188514390016.000000
3522178011323684618240.000000, 2481152794439697282629632.000000
8500368656276343750656.000000, 55994814934584238287093760.000000
-1277139285125821731176448.000000, 1278462370926979521125023744.000000
B It exploc eS -50842196592939391491506176.000000, 28969496498975083217951916032.000000
cee 1735177486028467056735682560.000000, 659707570775562926321253220352.000000
26210229568950556693702377472.000000, 15129775541248802155310750892032.000000
85128202195364980669921886208.000000, 340152459728935566606723469803520.000000
761594554369000532621991608320.000000, 7693676026034788441231116937986048.000000
-131213897367598218595555650568192.000000, 172737102286521679207902205790126080.000000

nan, 3889063939783491941848481413220794368.000000
nan, nan

VB AR 1E AR (A B RS R R T 52PR)
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Parameter Initialization Strategies

a = torch.randn(512,512)

for i in range(100):
X = torch.randn(512,512) * 0.01
a=a@zx
print('%f, %f' % (a.mean(), a.std()))

-0.000299, 0.226504
-0.000016, 0.051263

sShrink it by a constant: .000014, 0.011506

0.000005, 0.002609
W_ ""N(O 1) % O 01 0.000001, 0.000589
L] ) . ~0.000000, 0.000133
-0.000000, 0.000030

] 0.000000, 0.000007
~0.000000, 0.000002

= Quickly decrease to zero... -0.000000, 0.00000
~0.000000, 0.000000
0.000000, 0.000000
0.000000, 0.000000
~0.000000, 0.000000
~0.000000, 0.000000
0.000000, 0.000000
0.000000, 0.000000

0.000000, 0.000000
-0.000000, 0.000000
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Parameter Initialization Strategies

a = torch.randn(512)

for i in range(100):
x = torch.Tensor(512,512).uniform (-1,1)
a=a6@x
print('%f, %f' % (a.mean(), a.std()))

0.121980, 11.693220
-5.479475, 147.562729
-94.518661, 1966.933838
-182.254974, 25307.449219

N HOW about unifOrm -1885.514404, 334509.031250
287245.718750, 4592224.500000
. . . 309323.875000, 58372768.000000
dlStI’IbUtIOﬂ? 73032720.000060, 716834624.000000

171219568.000000, 9747257344.000000

1818309376.000000, 126828232704.000000
-95395078144.000000, 1722050281472.000000
-357741264896.000000, 22965557133312.000000
-2329748701184.000000, 291735116709888.000000
-86849859092480.000000, 3888929946206208.000000
-3343493795676160.000000, 52792372202831872.000000
-17913223038631936.000000, 692597286462554112.000000
186778438256820224.000000, 9736132583002996736.000000
2833003309395083264.000000, 126832536544891371520.000000
-69580587854595096576.000000, 1692300462003431931904.000000

D AR A S 15 AR (IF R RSLIERHSER)
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poF] Understanding the difficulty of training deep feedforward neural networks
X Glorot, Y Bengio - Proceedings of the thirteenth international conference ..., 2010 - jmir.org

L] L] L] L] L]
Xa VI e r I n It I a I I Za t I O n Whereas before 2006 it appears that deep multilayer neural networks were not successfully
trained, since then several algorithms have been shown to successfully train them, with
experimental results showing the superiority of deeper vs less deep architectures. All these
experimental results were obtained with new initialization or training mechanisms. Our
objective here is to understand better why standard gradient descent from random
initialization is doing so poorly with deep neural networks, to better understand these recent ...

Y% Y9 Cited by 10252 Related articles All 28 versions 99

m Xavier Initialization (uniform and normal).

mFor a fully connected layer with m inputs and n outputs:

6 6 2
Wi,jNU - n ) n ) Wi,'NN 0, n
Vm n Vm n \lm n
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a = torch.randn(512)

for i in range(100):

X = xavier_normal(512, 512)

a=a@xzx
print('%f, %f' %

(a.mean(),

a.std()))

a = torch.randn(512)

for i in range(100):

x = xavier_uniform(512, 512)

a = a

@ x

print('%f, %f' % (a.mean(), a.std()))

-0.039527, 0.951901
0.026649, 0.937428
0.053593, 0.943604
0.071451, 0.920780
0.083647, 0.908854
0.045337, 0.932110
-0.012870, 0.888059
-0.034812, 0.847900
-0.026757, 0.840376
-0.005876, 0.847287
-0.019380, 0.834319
0.002397, 0.831697
0.031956, 0.859929
0.035886, 0.867666
-0.029999, 0.867135
-0.051370, 0.857189
-0.019923, 0.892984
-0.026655, 0.874553
0.010227, 0.882660

0.009699,
-0.021033,
-0.026654,
-0.052989,
-0.050167,
0.085755,
0.115132,
-0.017309,
0.059859,
-0.018874,
-0.016589,
0.018877,
0.028700,
-0.019360,
-0.054136,
0.057060,
-0.011004,
-0.065596,
-0.016916,

0.944218
0.908482
0.942439
0.985109
1.018810

1.004558

0.980435
1.015622

1.025966
1.030944
0.960220

0.933157

0.943034
0.933792
0.946840

0.938334
0.905628
0.906991
0.972662

) AR5 1 A spR (5 B RST IR AR T3 R)
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Xavier Initialization

mDoesn’t work well
with RelLU.

) AP RS 15 A5k (S B U TS LR 52 BR)
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a = torch.randn(512)

for i in range(100):
X = xXavier normal(512, 512)
a = torch.relu(a @ x)

print('%$f, %f'

0.410933,
0.287246,
0.200243,
0.135488,
0.094718,
0.071311,
0.044254,
0.030385,
0.023454,
0.016251,
0.011271,
0.008599,
0.006887,
0.004709,
0.003469,
0.002383,
0.001668,
0.001104,
0.000883,
0.000560,

0.603390
0.445417
0.297311
0.204042
0.149000
0.099714
0.066188
0.046460
0.035115
0.024214
0.016929
0.012620
0.009180
0.006766
0.005087
0.003504
0.002403
0.001693
0.001245
0.000838

(a.mean(), a.std()))

= d

M AT dEnisEsRAR

0.000414,
0.000327,
0.000217,
0.000159,
0.000107,
0.000071,
0.000053,
0.000038,
0.000028,
0.000017,
0.000012,
0.000009,
0.000006,
0.000004,
0.000003,
0.000002,
0.000002,
0.000001,
0.000001,
0.000001,
0.000000,
0.000000,
0.000000,
0.000000,

0.000604
0.000457
0.000325
0.000229
0.000155
0.000109
0.000080
0.000056
0.000040
0.000028
0.000019
0.000014
0.000009
0.000006
0.000004
0.000003
0.000002
0.000002
0.000001
0.000001
0.000001
0.000000
0.000000
0.000000
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Delving deep into rectifiers: Surpassing human-level performance on imagenet
classification

L] L] L] L] L] L]

Ka I m I n g I n It I a | I Zat I O n K He, X Zhang, S Ren, J Sun - Proceedings of the IEEE ..., 2015 - cv-foundation.org
Rectified activation units (rectifiers) are essential for state-of-the-art neural networks. In this

work, we study rectifier neural networks for image classification from two aspects. First, we

propose a Parametric Rectified Linear Unit (PReLU) that generalizes the traditional rectified

unit. PReLU improves model fitting with nearly zero extra computational cost and little

overfitting risk. Second, we derive a robust initialization method that particularly considers

the rectifier nonlinearities. This method enables us to train extremely deep rectified models ...

Y% DY Cited by 9473 Related articles All 19 versions 99

mKaiming Initialization (uniform and normal):

W; i~U =1, wii~n|o0, |=
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Kaiming Initialization

D AR RS 15 A5 (R RSEIERH52ER)
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a = torch.randn(512) a = torch.randn(512)
for i in range(100): for i in range(100):

x = kaiming uniform(512, 512) x = kaiming normal(512, 512)

a = torch.relu(a @ x) a = torch.relu(a @ x)

print('%f, %f' % (a.mean(), a.std())) print('%f, %$f' % (a.mean(), a.std()))
0.576333, 0.858193 0.545396, 0.807100
0.640293, 0.889948 0.569797, 0.810401
0.565620, 0.874289 0.510818, 0.773794
0.560004, 0.848926 0.565306, 0.797155
0.548159, 0.842151 0.582825, 0.855162
0.565630, 0.815531 0.568474, 0.810487
0.562917, 0.839875 0.622880, 0.838034
0.540523, 0.865198 0.563755, 0.851520
0.607034, 0.831829 0.557285, 0.795947
0.626769, 0.877963 0.577513, 0.805401
0.579771, 0.895445 0.567155, 0.822655
0.644600, 0.907378 0.599573, 0.872639
0.594084, 0.903061 0.676445, 0.967217
0.603525, 0.893723 0.667498, 0.968437
0.555563, 0.862459 0.676520, 1.022497
0.560590, 0.836926 0.724300, 1.049971
0.548914, 0.808846 0.711676, 1.031747
0.500459, 0.767299 0.724443, 1.056719
0.538836, 0.774003 0.704969, 1.030282
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Conclusion

After this lecture, you should know:
® What is underfitting and overfitting?

" What is regularization?

® \What are the commonly used regularization methods?
" How do optimization methods work?
= What is batch normalization?

" How to initialize parameters?

() A A S 15588 (A5 BRSSP IR TE 2P
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Suggested Reading

" Deep learning textbook chapter 7-8.
®m Dropout: A Simple Way to Prevent Neural Networks from Overfitting

m Sparsity and the LASSO

® Training with Noise is Equivalent to Tikhonov Regularization

= \Why Momentum Really Works

m | arge Scale Machine Learning with Stochastic Gradient Descent

® On the Importance of Initialization and Momentum in Deep Learning

m Batch Normalization: Accelerating Deep Network Training b y Reducing Internal
Covariate Shift
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https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf
http://www.stat.cmu.edu/~larry/=sml/sparsity.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.38.3008&rep=rep1&type=pdf
http://distill.pub/2017/momentum/
http://leon.bottou.org/publications/pdf/compstat-2010.pdf
http://www.cs.toronto.edu/~fritz/absps/momentum.pdf
https://arxiv.org/pdf/1502.03167.pdf
https://arxiv.org/pdf/1502.03167.pdf

Thank youl!

=" Any question?

®Don’t hesitate to send email to me for asking questions and
discussion. ©
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