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CNN Applications
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Image classification
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Image retrieval
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Image source: Krizhevsky, Alex, llya Sutskever ‘and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." In Advances in neural information processing systems, pp. 1097-1105. 2012.



CNN Applications
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Semantic Segmentation
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Image source: https://towardsdatascience.com/how-to-handle-neural-network-output-a-practical-application-on-wildlife-drone-images-4670788d770d


https://towardsdatascience.com/how-to-handle-neural-network-output-a-practical-application-on-wildlife-drone-images-4670788d770d

CNN Applications
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Pose estimation Real-time Atari game play
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Image source: Toshev, Alexander and Christian Szegedy. "Deeppose: Human pose estimation via deep neural networks." In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1653-1660. 2014.
Guo, Xiaoxiao, Satinder Singh, Honglak Lee, Richard L. Lewis, and Xiaoshi Wang. "Deep learning for real-time Atari game play using offline Monte-Carlo tree search planning." In Advances in neural information processing systems, pp. 3338-3346. 2014.




CNN Applications

A person riding a Two dogs play in the grass. A skateboarder does a trick A dog is jumping to catch a
motorcycle on a dirt road. X frisbee

Two hockey players are A little girl in a pink hat is A refrigerator filled with lots of
fighting over the puck. food and drinks.

(s ol

A herd of elephants walking A close up of a cat laying

across a dry grass field. h A red motorcycle parked on the A yellow school bus parked
w . S side of the road:—‘g ~==ssmin a parking lot.

Somewhat related to the image
Image captioning
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Image source: Vinyals, Oriol, Alexander Toshev, Samy Bengio, and Dumitru Erhan. "Show and tell: Lessons learned from the 2015 mscoco image captioning challenge." IEEE transactions on pattern analysis and machine intelligence 39, no. 4 (2016): 652-663.



CNN Applications
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in neural style transfer." In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3985-3993. 2017.




CNN Applications

VSRnet [30]
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ProSR with our correction RCAN with our correction DBPN with our correction

Image super-resolution Video super-resolution
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Image source: Hussein, Shady Abu, Tom Tirer, and Raja Giryes. "Correction Filter for Single Image Super-Resolution: Robustifying Off-the-Shelf Deep Super-Resolvers." In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1428-1437. 2020.
Tian, Yapeng, Yulun Zhang, Yun Fu, and Chenliang Xu. "TDAN: Temporally-Deformable Alignment Network for Video Super-Resolution." In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3360-3369. 2020.




Rain and fog
removal

AP A S 5 A 5 (A5 R RSE LR THFS52ER) ‘ [{ M%7 HENRSEERER 7
School of Informatics Xiamen University (National Characteristic Demonstration Software School)

Image source: Li, Ruoteng, Robby T. Tan, and Loong-Fah Cheong. "All in One Bad Weather Removal Using Architectural Search." In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3175-3185. 2020.
Lin, Jiaying, Guodong Wang, and Rynson WH Lau. "Progressive Mirror Detection." In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3697-3705. 2020.




CNN Applications

Video frame interpolation
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ideo source: https://www.youtube.com/watch?v=5gAiff
Paper source: https://arxiv.org/abs/2103.16206



https://www.youtube.com/watch?v=5qAiffYFJh8
https://arxiv.org/abs/2103.16206

Convolutional Neural Networks

mRecall in Lecture 2, we vectorize an
image as the input of a neural
network. ’
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Convolutional Neural Networks

mConvolutional neural networks (CNNs) are simply neural
networks that use convolution in place of general matrix
multiplication in at least one of their layers.

mUse the non-vectorized image as input with a 2D weight, which
are called a filter or a kernel.

m\We call the hidden outputs in CNNs feature map.
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Convolutional Neural Networks

" The operation * between the input image I and filter K to produce a new image S is
called convolution, which is defined as:

- — pixel position
S[i, /] = (I * K)[i, j] = 2 2 I[i +m,j +n]K[m,n].

= MLP: input x, weight W, output h. N

= CNN:input I, weight K, output S.

offset

’7[%'];/1[1',]’ +1] K[/0,0] k(o) 5[:1’]
4 [ & .
| _ * A _
i+ L] K101 Fijter
Input Output (feature map)
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Convolution

Input: 3x3

Filter: 2x2 Output: 2x2
2 3
20 1 370
—
6 x —
7 8 9

1x10 + 2x20 + 4%x30 + 5x40 =370
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Convolution

Input: 3x3

Filter: 2x2 Output: 2x2
1
20 370 | 470 [
—
4 x —
7 8 9

2x10 + 3x20+5%x30+6%x40=470

q)j VSRS oy LR (45 B IR SE MR AR TR 22BR) ‘g & M AT HEnnesEAR 13

\ "z: School of Informatics Xiamen University (National Characteristic Demonstration Software School)




Convolution
Input: 3x3
Filter: 2x2 Output: 2x2
1 2 3
20 370 | 470
—
6 x —
670
9

4x10 + 5%20 + 7x30 + 8x40 =670
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Convolution
Input: 3x3
Filter: 2x2 Output: 2x2
1 2 3
20 370 | 470
—
4 x —
670 | 770
7

Now the problem: the size of the new image after convolution is shrunk.
5x10 + 6x20 + 8x30 + 9x40 =770

ch BHAXS1E %%Fx (45 BT R SE IR IR 52 BR) ‘g & M AT HEnHeEERT 15
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Padding

" In order to keep the dimension of input and output matrix the same, we add padding.
Input: 3x3 + 1x1 padding

OO0 Filter: 3%x3 Output: 3x3
3 | o 300
6| 0| XK 60
Ol 718 9|0 10
OlO0OlO}| OO 0x10 + 0x20 + 0x30 +
0x40 + 1x50 + 2x60 +
0x30 + 4x20 + 5x10 =
300
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Padding

" In order to keep the dimension of input and output matrix the same, we add padding.
Input: 3x3 + 1x1 padding

Filter: 3x3 Output: 3x3
300 | 600 |

X 60
0 7 8 9 0 10

0 0 0 0 0 0x10 + 0x20 + Ox30 +

1x40 + 2x50 + 3x60 +

4x30 + 5x20 + 6x10 =

600
() AMAS 15 PR (B R RRILRFHFIR) () & IAT #unseseis 17
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Padding

" In order to keep the dimension of input and output matrix the same, we add padding.
Input: 3x3 + 1x1 padding

Output: 3x3

OO Filter: 3x3

300 | 600 | 500 [

0|1

60

X

0 7 8 9 0 10
0 0 0 0 0 0x10 + 0x20 + Ox30 +
2x40 + 3x50 + 0x60 +
5x30 + 6x20 + 0x10 =
500

TE

(€p) APIA 5 15 R 50BR (45 BT TRSE IR IR 52 BR)

\ School of Informatics Xiamen University (National Characteristic Demonstration Software School)

@) & N AT HENRESEAR 18




Stride

= Stride: skip a location of image.
Input: 3x3 + 1x1 padding

0| 0 Filter: 3x3
Output: 2x2
T
{ 300
6 | 0| AR 60
o|7|8|9]|o0 10
_ 0x10 + 0x20 + 0x30 +
oo [0 f0}0 Stride: 2x2 0x40 + 1x50 + 2x60 +
0x30 + 4x20 + 5x10 =
| 300
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Stride

= Stride: skip a location of image.
Input: 3x3 + 1x1 padding

0| o Filter: 3x3
Output: 2x2
-
300 | 500 -

0| 4 X 60
ol 7|89 ]o0 10

. 0x10 + 0x20 + 0x30 +
olo0jo0]o0|oO Stride: 2x2 2x40 + 3x50 + 0x60 +

5x30 + 6x20 + Ox10 =
500
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® |Input size: n, Xn,,; filter size: k; Xk,,; padding size: p; Xp,,, stride size:
ShXSW.

= Qutput size:

rlh + th o kh n 1‘ v r’lw + ZSpW o kw

4 1‘
Sh

w

" For example:

" |nput size 3 X 3, filter size 3 X 3, padding size 1 X 1, stride size 2 X 2.

= Qutput size {3+§_3 + 1‘ X {3+§—3 + 1‘ = 2X2.

() AP RS 15 508 (45 B RSO L SR TR 52 BR)
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Channel and Depth

#The depth of the filter is same as the channel of the input image.

" For an RGB image, we have three channels: red, green and blue.

|
|

X

Sum of convolution

in each channel
) & D AT HENRESEAR 22
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Channel and Depth

® The depth of the feature map is a hyperparameter.

® |t corresponds to the number of filters we would like to use, each
learning to look for something different in the input.

| | Channel 1
1 Channel 2
j_l Channel 3

() AP A5 158 5B (5 BTN SE R AR TR 52 B
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Output Size with Depth

" lnput size: nyXn,, Xc;,; filter size: k; Xk, Xc;,; filter number: ¢ ¢,
padding size: p, Xp,,, stride size: s, Xs,,,.

= Qutput size:

{nh_l'zph_kh_l_l‘xrlw_l'zpw_kw
Sh

+ 1‘ XCoyt

SW
" For example:

® |[nput size 5X5 X 3, filters size 3 X3 X3, filter number 5, padding size
1X 1, stride size 2 X 2.

= Output size ff* + 1‘ x f*j‘?’ + 1‘ X5 = 3X3X5.

T B AR 1E AR (B RS E R TS52ER)
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Channel and Depth

® Every layer of a CNN transforms the 3D input volume to a 3D output

volume of neuron activations.
depth
A?é?é?é?é?‘i height

&
‘ output layer Sl Bl # ¢ 9 € & ’ = ﬁ
input layer 7 width

hidden layer 1 hidden layer 2 2

QN
«
e

Y
o@\\
Ny
b
®

A CNN arranges its neurons in three
A regular 3-layer Neural Network. dimensions (width, height, depth), as
visualized in one of the layers

() AP RS 1ER 3R (B BRKREERESFIR) (@) ZNAT tanussEss
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Sparse Connectivity
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Fully connected network: hs is Kernel of size 3, moved with
computed by full matrix multiplication stride of 1. h3 only depends on
with no sparse connectivity. X, X3, X4.
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Image source: Lecture 7, CMSC 35246 Deep Learning Spring 2017, University of Chicago




Sparse Connectivity

®|nput: 55X55X3, output: 55X55%96.

u|f we adopt a fully connected layer, the number of parameters

for one single layer is:

(55X55%3 +

®Now, if we use 96 11

stride.

1)x55%x55%96 = 2,635,670,400

X 11 filters with 5X5 padding and 1Xx1

®m\We can reduce the number of parameters to
(11X11X%3 + 1)><55><5§><96 = 105,705,600

" |t is still unacceptable.

@ GRS (%&1&% ST AR TSR PR

tttttttttttttttttttttttttttttttttttttttttttttttttt )

NG/ School of Informatics Xiamen Universi

We use different filters for each pixel
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Parameter Sharing

®We can dramatically reduce the number of parameters by
making one reasonable assumption:

If one filter is useful to compute at some spatial position
(x1,v71), it should also be useful to compute at a different

position (x5, V,).
=" We are going to constrain the neurons in each channel to use
the same weights and bias.

() AR5 152 5B (B IRSLIE IR R 5PR)
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Parameter Sharing

60

6 | 0| K

10

A filter is fixed for all pixel positions in a channel
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&2
School of Informatics Xiamen University (National Characteristic Demonstration Software School)




Parameter Sharing

mRather than learning a separate set of filter parameters for
every location during convolution, we learn only one set.

®This does not affect the runtime of forward propagation, but it
does further reduce the storage requirements.

®|n the previous example, the number of parameters are reduced
to

96X (3X11%x11 + 1) = 34,944

® 3000 times smaller than the non-sharing one.

® 75,400 times smaller than the fully connected one.

DAL EASIR (BRI RS R TS5 ER)
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Input Volume (+pad 1) (7x7x3) Filter WO (3x3x3) Filter W1 (3x3x3) Output Volume (3x3x2)
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toggle movement

What are the learnable
parameters in CNNs?

31

Image source: cs231n.github.io/convolutional-networks



Parameter Sharing

®m Each of the 96 learned filters is
of size 11x11X%3.

= |f detecting a horizontal edge is
important at some location in
the image, it should intuitively
be useful at some other

IOcat lon. X — Direction Kernel Y — Direction Kernel
Compare with the ] Al 5|
® No need to relearn to detect a il B s e
i famous Sobel filter 2 o 2 o o o
horizontal edge at every one of oo o |
- . . . or edge detection: 1 0 1 12 1
the 55X%55 distinct locations in

the Conv layer output volume.
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Image source: cs231n.github.io/convolutional-networks



Parameter Sharing

®Parameter sharing is not only for reducing the number of
parameters.

®|t can also be treated as a regularized method for preventing
overfitting.

u|t forces the filters to learn some common patterns over the
whole image, rather than some patterns specific at some

positions.

DA XL E RSP (BRI RS EIR R 5RBR)
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SIFT K-means

[ — Pooling 4 Classifier —
HoG Sparse Coding Q0N Assuer
fixed unsupervised supervised
Low-level Mid-level
Features Features

State of the art object recognition using CNNs

Low-Level B Mid-Level
Feature Feature

High-Level_’

Feature
AN

Trainable
Classifier

High-level feature contains
semantic information,

indicating if this image has
certain components or not.

A

iz Bl 2~ 2, gy R 2, gy
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Image source: https://rsipvision.com/exploring-deep-learning/

Is metal?

Has window?

Has steering wheel?
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SIFT
HoG

K-means

Sparse Coding

—* Pooling

—* Classifier —>

fixed

Low-level
Features

unsupervised

Mid-level
Features

supervised

State of the art object recognition using CNNs

Low-Level
—_—
Feature

Mid-Level
J—

Feature

High-Level
—_
Feature
AN

Trainable
Classifier

High-level feature contains
semantic information,

indicating if this image has
certain components or not.

/TN

fe) O\
{* *)
W\ )
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Is furry?

Image source: https://rsipvision.com/exploring-deep-learning/

High-level features
are also called
representations.

Has leg?

Has eye?

Has mouth?

‘g M * T HENEESHAR
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Receptive Field

" The receptive field is defined
as the size of the region in the
input that produces the feature.

= |t is @ measure of association of an
output feature to the input region.

" Increasing model depth is a
straightforward way to increase
receptive field.

N N N N N

" |s there any other way to increase
the receptive field?

ch BHAXS1E %%Fx (45 BT R SE IR IR 52 BR) ‘g & M AT HEnHeEERT 36
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Image source: cs231n.github.io/convolutional-networks



Dilated Convolution

® As an alternative, dilated convolution allows to merge spatial information
across the inputs much more aggressively with fewer layers.

Standard Convolution (d = 1) Dilated Convolution (d = 2)
(t) APIR 5 15 5 BR (45 B R ST LR PRS2 BR) ‘9 &M RT AENRNEEEAR 37
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Image source: https://towardsdatascience.com/review-dilated-convolution-semantic-segmentation-9d5a5bd768f5




Output Size with Dilated Convolution

® [nput size: nyXn,, Xc;y; filter size: ky Xk,,Xc;,; filter number: c,,+; padding
size: pp Xp,y, stride size: s, Xs,,; dilation size: d;, Xd,,.

= Qutput size:

ny + 2py, — (dpxk, —1) — 1 n, + 2p, — (d, %Xk, —1) — 1

+ 1| X

+ 1]
Sh Sw

XCout
" For example:

" |nput size 11X11X%3, filter size 3X3X3, padding size 1X1, stride size 2X2,
dilation size 2X?2.

11+2—(2x3-1)-1 n 1‘ y {11+2—(2><3—1)—1

= Qutput size { + 1‘ X3 = 4X%x4X%3.

B AF 1A (B RSO ERTFS2PT)
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1D and 3D CNNs

kernel

="For image data, we are k
actually using 2D CNN. iage
height
"t means the input data
and the filter are both 2-
dimentional.
image image
depth K\\::>\\\ width
XS 155K (SR RSEEIRHESER) ‘ & M AT HEnHeEERT 39
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Image source: https://towardsdatascience.com/understanding-1d-and-3d-convolution-neural-network-keras-9d8f76e29610



https://towardsdatascience.com/understanding-1d-and-3d-convolution-neural-network-keras-9d8f76e29610

1D and 3D CNNs

xxxxxx

=For 1D data like signal or WM”W
time-series data, we can

adopt 1D CNN with 1D ﬂMWM/\/WV/W\/W\/\
filter.

®[t is just a sparse and WWWW

parameter-shared version of .

MLP. oris
acel y-axis
Z-axis
seconds >
G AP AL 158528 (3 B RS EAR RS2 PR) ‘ & M AT HEnHeEERT 40
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Image source: https://towardsdatascience.com/understanding-1d-and-3d-convolution-neural-network-keras-9d8f76e29610
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1D and 3D CNNs

kernel

L—— 3D data

mFor 3D data like
hyperspectral

images, medical
Images, or videos,

we can generalize
2D CNNs to 3D.

() AP R G 1525 (B RSEIE R FR52BR)
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Image source: https://towardsdatascience.com/understanding-1d-and-3d-convolution-neural-network-keras-9d8f76e29610
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Deformable Convolutional Networks

= One problem of CNNs: the shape of filters is fixed (e.g. square-like), but the shape of
objects is variant.

(a) (b) (c) (d)

= (a) regular sampling grid (green points) of standard convolution.

= (b) deformed sampling locations (dark blue points) with augmented offsets (light blue
arrows) in deformable convolution.

= (c)(d) are special cases of (b).
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Source: W. H. Qj, Y. Xiong, Y. Li, G. Zhang, H. Hu, and Y. Wei, “Deformable Convolutional Networks,” in ICCV, 2017, p. 6003.




Deformable Convolutional Networks

input feature map output feature map . 5
(a) standard convolution (b) deformable convolution

y(Po) = D W(Pn) - X(Po + Pn + Apn).

Basis \/

Filter weights and position offsets are learnable parameters
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Source: W. H. Qj, Y. Xiong, Y. Li, G. Zhang, H. Hu, and Y. Wei, “Deformable Convolutional Networks,” in ICCV, 2017, p. 6003.




Convolutional Layer in PyTorch

Parameters

Docs > torch.nn > Conv2d * in_channels (int) - Number of channels in the input image

e out_channels (int) - Number of channels produced by the

C O N V 2 D S convolution

* kernel_size (int ortuple) - Size of the convolving kernel

CLASS torxch.nn.Conv2d(in_channels: int, out_channels: int, kernel_size: Union[T,

e stride (int or tuple, optional) - Stride of the convolution.
Tuple[T, T]], stride: Union[T, Tuple[T, T]] = 1, padding: Union[T, Tuple[T,

o . . ) [SOURCE]
T]] = 0, dilation: Union[T, Tuple[T, T]] = 1, groups: int = 1, bias: bool = Default: 1
Eatiey (PEBLERIELIREDS GEr & St e padding (intor tuple, optional) - Zero-padding added to
Applies a 2D convolution over an input signal composed of several input planes. both sides of the input. Default: 0
¢ padding_mode (string, optional) - ' ', 'reflect’

In the simplest case, the output value of the layer with input size (N, Cu, H, W) and output P & ( 8 °P N S B
(N, Cout s Hout, Wout) can be precisely described as: 'replicate' or 'circular'.Default: 'zeros'

Cyp—1 e dilation (int or tuple, optional) — Spacing between kernel

out(N;, COUtj) = biaS(COUtj) + Z Weight(COUtj , k) x input(Nj, k) elements. Default: 1

k=0
* groups (int, optional) - Number of blocked connections

where % is the valid 2D cross-correlation operator, N is a batch size, C denotes a number of channels, H is a from input channels to output channels Default: 1

height of input planes in pixels, and W is width in pixels.

* bias (bool, optional) - If True,adds alearnable bias to the

output. Default: True

EFI RS 15850 (5 R U TS AR T 50 BR) ‘@) & DR T wEnnesEAR 44
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Source: https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html




import torch
rand input = torch.randn(20, 16, 50, 100)

# With square kernels and equal stride \ |nput Shape in PyTorCh iS:

m = torch.nn.Conv2d(16, 33, 3, stride=2)
output = m(rand input) [ﬁJ,C}n,ff,VV]
print (output.shape)

torch.Size([20, 33, 24, 49])

# non-square kernels and unequal stride and with padding

m = torch.nn.Conv2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2))
output = m(rand input)

print (output.shape)

torch.Size([20, 33, 28, 100])

# non-square kernels and unequal stride and with padding and dilation

m = torch.nn.Conv2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2), dilation=(3,
output = m(rand input)

print (output.shape)

torch.Size([20, 33, 26, 100])

1))




Convolutio

nal Layer in TensorFlow

tf.keras.layers.Conv2D(
filters, kernel_size, strides=(1, 1), padding='valid', data_format=None,
dilation_rate=(1, 1), groups=1, activation=None, use_bias=True,
kernel_initializer="'glorot_uniform', bias_initializer='zeros',
kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None,
kernel_constraint=None, bias_constraint=None, **kwargs

Arguments

filters

kernel_size

strides

padding

Integer, the dimensionality of the output space (i.e. the number of output filters in the convolution).

An integer or tuple/list of 2 integers, specifying the height and width of the 2D convolution window.

Can be a single integer to specify the same value for all spatial dimensions.

An integer or tuple/list of 2 integers, specifying the strides of the convolution along the height and
width. Can be a single integer to specify the same value for all spatial dimensions. Specifying any
stride value != 1 is incompatible with specifying any dilation_rate value != 1.

one of "valid" or "same" (case-insensitive).
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import tensorflow as tf
rand input = tf.random.normal([20, 50, 100, 16])

# With square kernels and equal stride
m = tf.keras.layers.Conv2D(33, 3, strides=2) |nput Shape inT
output = m(rand input)

print (output.shape) [N, H! W' Cin]]

(20, 24, 49, 33)

# non-square kernels and unequal stride and with padding . .
p = tf.keras.layers.ZeroPadding2D( (4, 2)) SpeCIaI paddl
m = tf.keras.layers.Conv2D(33, (3, 5), strides=(2, 1)) — be assigned |
output = m(p(rand input))

print (output.shape) ) ..
stride>1 is incompa;

(20, 28, 100, 33) . . .
with dilation_rate >

# non-square kernels and equal stride and with padding and dilation l
p = tf.keras.layers.ZeroPadding2D( (4, 2))

m = tf.keras.layers.Conv2D(33, (3, 5), strides=(1, 1), dilation_rate=(3, 1))
output = m(p(rand input))

print (output.shape)

- iS:

ng size can’t
N conv2d

Fible
1

47

(20, 52, 100, 33)




224x224x64 : .
212064 | Single depth slice
i 11124
~ max pool with 2x2 filters
oaEnN 7 | 8 and stride 2 6|8
l I 3 | 2 . 3| 4
1 | 2 .
e downsampling i i
112 >
224 y

" Pooling layer downsamples the volume spatially, independently
in each channel of the input volume.
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Large response Large response

in pooling unit in pooling unit

Large

®"0On one hand,  repome
pooling increases unit 1

the receptive field. (9 E |8 (g S ||S

®On the one hand, \ T / \ T /
<

pooling introduces
Invariance. {9

Large
response
in detector
unit 3

The max pooling unit then has a large activation
regardless of which detector unit was activated.
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Image source: Figure 9.9, Goodfellow, Bengio, and Courville, Deep Learning, Cambridge: MIT press, 2016.




Pooling Layer in PyTorch

Parameters
s > torchn > MaPoolad * kernel_size - the size of the window to take a
max over
MAXPOOL2D e stride - the stride of the window. Default value
) ) , is kernel_size
CLASS torch.nn.MaxPool2d(kernel_size: Union[T, Tuple[T, ...]], stride:
0pt1'o'na1[.Un1'on[7.', Tuple[T, ...J]J]] = None, padding:. UrTion[T, Tuple[T, ...]] = [SOURCE] ° padding _ impIicit zero padding to be added on
0, dilation: Union[T, Tuple[T, ...]] = 1, return_indices: bool = False,
ceil_mode: bool = False) both sides
Applies a 2D max pooling over an input signal composed of several input planes. e dilation - a parameter that controls the stride
In the simplest case, the output value of the layer with input size (N, C, H, W) , output (N, C, Hyyt, Wout) of elements in the window
and kernel_size (kH,kW ) can be precisely described as: . ge . .
nd [RSKTREERERRR (IHL, kW ) can be precisely descri e return_indices - if True, will return the max
out(N;, C;,h,w) = max max . .
(Ni, Gy, b, w) m=0,....kH—1 n=0,...kW -1 indices along with the outputs. Useful for
input(N;, C;j, stride[0] x h + m, stride[1] X w + n) torch.nn.MaxUnpool2d later
e ceil_mode - when True, will use ceil instead of
floor to compute the output shape
EFI RS 15850 (5 R U TS AR T 50 BR) @D & D AT HENREESEAR 50
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Pooling Layer in PyTorch

# pool of square window of size=3, stride=2
m = torch.nn.MaxPool2d(3, stride=2)

output = m(rand input)

print (output.shape)

torch.Size([20, 16, 24, 49])

# pool of non-square window

m = torch.nn.MaxPool2d((3, 2), stride=(2, 1))
output = m(rand input)

print (output.shape)

torch.Size([20, 16, 24, 99])
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Pooling Layer in TensorFlow

tf.keras.layers.MaxPool2D(
pool_size=(2, 2), strides=None, padding='valid', data_format=None, **kwargs

Arguments

pool_size integer or tuple of 2 integers, window size over which to take the maximum. (2, 2) will take the
max value over a 2x2 pooling window. If only one integer is specified, the same window length will be
used for both dimensions.

strides Integer, tuple of 2 integers, or None. Strides values. Specifies how far the pooling window moves for
each pooling step. If None, it will default to pool_size.

padding One of "valid" or "same" (case-insensitive). "valid" adds no zero padding. "same" adds padding
such that if the stride is 1, the output shape is the same as input shape.

data_format A string, one of channels_last (default) or channels_first. The ordering of the dimensions in

the inputs. channels_last corresponds to inputs with shape (batch, height, width,
channels) while channels_first corresponds to inputs with shape (batch, channels,
height, width). It defaults to the image_data_format value found in your Keras config file at
~/ .keras/keras. json. If you never set it, then it will be "channels_last".
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Pooling Layer in TensorFlow

# pool of square window of size=3, strides=2
m = tf.keras.layers.MaxPooling2D(3, strides=2)
output = m(rand input)

print (output.shape)

(20, 24, 49, 16)

# pool of non-square window

m = tf.keras.layers.MaxPooling2D((3, 2), strides=(2, 1))
output = m(rand input)

print (output.shape)

(20, 24, 99, 16)
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CNN Architecture

A typical CNN consists of four basic modules:

- CONV |ayer Wi” CompUte the OUtpUt RELU RELU RELU RELU RELU RELU
of neurons that are connected to CONVleNVl CONVlCONVl Coi“vﬁ’wl
local regions in the input.

truck

m RELU  layer will apply an
elementwise activation function.

= car
= -

! airplane
—

= ship

horse

v
=
=
=

=
=
=
=

DT TR ST T ST VIRN <

m FC (i.e. fully-connected) layer will
compute the class scores.

® POOL layer will perform a downsampling operation along the spatial
dimensions (width, height).

=)
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CNN Architecture

fc_3 fc_4
Fully-Connected Fully-Connected
Neural Network Neural Network

Conv_1 Conv_2 RelLU activation
Convolution Convolution | /—M

(5 x 5) kernel (5 x 5) kernel

) ) Max-Pooling ) : Max-Pooling (with
valid padding (2x2) valid padding (2x2) s 4
f \ f \ . /.;“'/”J7”‘(/,,‘;;,.4 ] 0
‘ 1
______ ) 2
INPUT nl channels nl channels n2 channels n2 channels E ‘ 9
(28 x 28 x 1) (24 x 24 x n1) (12x12 xnl) (8 x 8 xn2) (4x4xn2) | [ OUTPUT
n3 units
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CNN Architecture

= We can also use global average pooling (GAP) to replace flattening.

<200
<Z0O0O
<Z00
<8206

S—

% Ol [0
/ < Australian
Ol

7

terrier

Class Activation Mapping

—|—W2* —|—+Wn*

g A

Class
Activation
Map

. (Australian terrier)
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Image source: B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Learning Deep Features for Discriminative Localization,” in CVPR, 2016, vol. 2016-Decem, pp. 2921-2929.
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CNN Architecture

® The most common form of a CNN architecture:
m stacks a few CONV-RELU layers;
= follows them with POOL layers;
® repeats this pattern until the image has been merged spatially to a small size;
= transits to fully-connected layers to produce output (e.g. class scores).
® The most common CNN architecture follows the pattern:
INPUT -> [[CONV -> RELU]*N -> POOL?]*M -> [FC -> RELU]*K -> FC
® The * indicates repetition, and the indicates an optional pooling layer.

#N>=0(and usually N<=3),, K>=0 (and usually K< 3).
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CNN Architecture

= INPUT -> FC.

= A simple linear classifier. Here N=M=K=0.

= INPUT -> CONV -> RELU -> FC.
= Only CONV layer and RELU layer are used.

= INPUT -> [CONV -> RELU -> POOL]*2 -> FC -> RELU -> FC.
® There is a single CONV layer between every POOL layer.

= INPUT -> [CONV -> RELU -> CONV -> RELU -> POOL]*3 -> [FC -> RELU]*2 -> FC.
= Two CONV layers stacked before every POOL layer.

= This is generally a good idea for larger and deeper networks, because multiple stacked
CONV layers can develop more complex features of the input volume before the
destructive pooling operation.

B AF 1A (B RSO ERTFS2PT)
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Is a stack of three 3X3 CONV layers equivalent to a single 7X7 CONV layer?
" No. There are several disadvantages for using filters with large size:

® Less powerful: the neurons would be computing a linear function over the input,
while the three stacks of CONV layers contain non-linearities that make their

features more expressive.

" More parameters: if both the input and output of a layer have depth C, 7X7 CONV
layer would contain CX(7x7XC) = 49C?, while the three 3x3 CONV layers only
contains 3XCX(3x3xC) = 27C>.

" Intuitively, stacking CONV layers with tiny filters as opposed to having one CONV layer
with big filters allows us to express more powerful features of the input, and with
fewer parameters.
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Layer Sizing Patterns

The common rules of thumb for sizing the architectures:

® The INPUT layer (that contains the image) should be divisible by 2 many
times.

mE.g. 32 (e.g. CIFAR-10), 64, 96 (e.g. STL-10), or 224 (e.g. common
ImageNet ConvNets), 384, and 512.

® The CONV layers should be
® using small filters (e.g. 3x3 or at most 5x5),
® using a stride of 1x1,

" padding the input volume with zeros in such way that the conv layer
does not alter the spatial dimensions of the input.
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Layer Sizing Patterns

" The pool layers are in charge of downsampling the spatial dimensions of the
input.

® The most common setting is to use max-pooling with 2X2 receptive fields,
and with a stride of 2Xx2.

= Note that this discards exactly 75% of the activations in an input volume (due
to downsampling by 2 in both width and height).

= Another slightly less common setting is to use 3X3 receptive fields with a
stride of 2.

" |t is very uncommon to see receptive field sizes for max pooling that are
larger than 3 because the pooling is then too lossy and aggressive. This
usually leads to worse performance.
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Gradient-based learning applied to document recognition

Y LeCun, L Bottou, Y Bengio... - Proceedings of the ..., 1998 - ieeexplore.ieee.org
Multilayer neural networks trained with the back-propagation algorithm constitute the best
example of a successful gradient based learning technique. Given an appropriate network
architecture, gradient-based learning algorithms can be used to synthesize a complex
decision surface that can classify high-dimensional patterns, such as handwritten
characters, with minimal preprocessing. This paper reviews various methods applied to
handwritten character recognition and compares them on a standard handwritten digit ...

Y¢ DY [Cited by 30256 | Related articles All 38 versions

Classical CNN Architectures

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5

INPUT
6@28x28
32x32 @28x S2: f. maps r r
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|
‘ ‘ Full conAection ’ Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection

C5: layer
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F6: layer OUTPUT
84 10
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—

Architecture of LeNet-5
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Image source eCun Yann, Léon Bottou, Yoshua Bengio, and Patrick Haffner. "Gradient-based learning applied to document recognition." Proceedings of the IEEE 86, no. 11 (1998): 2278-2324.



Imagenet classification with deep convolutional neural networks
A Krizhevsky, | Sutskever, GE Hinton - Advances in neural ..., 2012 - papers.nips.cc

We trained a large, deep convolutional neural network to classify the 1.3 million high-
resolution images in the LSVRC-2010 ImageNet training set into the 1000 different classes.
On the test data, we achieved top-1 and top-5 error rates of 39.7\% and 18.9\% which is ...

¢ 99 ICited by 70691 I Related articles All 133 versions 99

Classical CNN Architectures
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Architecture of AlexNet
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Image source: Krizhevsky, Alex, llya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." In Advances in neural information processing systems, pp. 1097-1105. 2012.



Conclusion

After this lecture, you should know:

=\What is convolution and filter.

#\What are the commonly used layers in CNN.

®"How to calculate the output size of after a convolutional layer.

®\Why do we need pooling.
®"\What are the typical CNN architectures.
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Suggested Reading

mcs231n CNN tutoria

mConv Nets: A Modular Perspective

m Understanding Convolutions
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http://cs231n.github.io/convolutional-networks
http://colah.github.io/posts/2014-07-Conv-Nets-Modular/
http://colah.github.io/posts/2014-07-Understanding-Convolutions/

Thank youl!

= Any question?

®Don’t hesitate to send email to me for asking questions and
discussion. ©
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