
!"#$%&'()*+,-#$.
School of Informatics Xiamen University (National Characteristic Demonstration Software School)

DEEP LEARNING
Lecture 5: Basics of Convolutional Neural Networks

Dr. Yang Lu

Department of Computer Science and Technology

luyang@xmu.edu.cn

!"#$%&'()*+,-#$.
School of Informatics Xiamen University (National Characteristic Demonstration Software School)

CNN Applications

1

Image classification Image retrieval

Image source: Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." In Advances in neural information processing systems, pp. 1097-1105. 2012.

!"#$%&'()*+,-#$.
School of Informatics Xiamen University (National Characteristic Demonstration Software School)

CNN Applications

2
Image source: https://towardsdatascience.com/how-to-handle-neural-network-output-a-practical-application-on-wildlife-drone-images-4670788d770d

https://towardsdatascience.com/how-to-handle-neural-network-output-a-practical-application-on-wildlife-drone-images-4670788d770d

!"#$%&'()*+,-#$.
School of Informatics Xiamen University (National Characteristic Demonstration Software School)

CNN Applications

3

Pose estimation

Image source: Toshev, Alexander, and Christian Szegedy. "Deeppose: Human pose estimation via deep neural networks." In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1653-1660. 2014.
 Guo, Xiaoxiao, Satinder Singh, Honglak Lee, Richard L. Lewis, and Xiaoshi Wang. "Deep learning for real-time Atari game play using offline Monte-Carlo tree search planning." In Advances in neural information processing systems, pp. 3338-3346. 2014.

Real-time Atari game play

!"#$%&'()*+,-#$.
School of Informatics Xiamen University (National Characteristic Demonstration Software School)

CNN Applications

4

Image captioning

Image source: Vinyals, Oriol, Alexander Toshev, Samy Bengio, and Dumitru Erhan. "Show and tell: Lessons learned from the 2015 mscoco image captioning challenge." IEEE transactions on pattern analysis and machine intelligence 39, no. 4 (2016): 652-663.

!"#$%&'()*+,-#$.
School of Informatics Xiamen University (National Characteristic Demonstration Software School)

CNN Applications

5

Style transfer
Image source: Gatys, Leon A., Alexander S. Ecker, Matthias Bethge, Aaron Hertzmann, and Eli Shechtman. "Controlling perceptual factors
in neural style transfer." In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3985-3993. 2017.

!"#$%&'()*+,-#$.
School of Informatics Xiamen University (National Characteristic Demonstration Software School)

CNN Applications

6

Image super-resolution Video super-resolution

Image source: Hussein, Shady Abu, Tom Tirer, and Raja Giryes. "Correction Filter for Single Image Super-Resolution: Robustifying Off-the-Shelf Deep Super-Resolvers." In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1428-1437. 2020.
 Tian, Yapeng, Yulun Zhang, Yun Fu, and Chenliang Xu. "TDAN: Temporally-Deformable Alignment Network for Video Super-Resolution." In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3360-3369. 2020.

!"#$%&'()*+,-#$.
School of Informatics Xiamen University (National Characteristic Demonstration Software School)

CNN Applications

7

Rain and fog
removal

Image source: Li, Ruoteng, Robby T. Tan, and Loong-Fah Cheong. "All in One Bad Weather Removal Using Architectural Search." In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3175-3185. 2020.
 Lin, Jiaying, Guodong Wang, and Rynson WH Lau. "Progressive Mirror Detection." In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3697-3705. 2020.

Mirror
detection

!"#$%&'()*+,-#$.
School of Informatics Xiamen University (National Characteristic Demonstration Software School)

CNN Applications

8
Video source: https://www.youtube.com/watch?v=5qAiffYFJh8
Paper source: https://arxiv.org/abs/2103.16206

Video frame interpolation

https://www.youtube.com/watch?v=5qAiffYFJh8
https://arxiv.org/abs/2103.16206

!"#$%&'()*+,-#$.
School of Informatics Xiamen University (National Characteristic Demonstration Software School)

Convolutional Neural Networks

9
Image source: https://royalsocietypublishing.org/doi/10.1098/rsta.2019.0163

Can maintain 2D structure
through the whole network?

¡Recall in Lecture 2, we vectorize an
image as the input of a neural
network.

¡What is the problem here?

!"#$%&'()*+,-#$.
School of Informatics Xiamen University (National Characteristic Demonstration Software School)

Convolutional Neural Networks

¡Convolutional neural networks (CNNs) are simply neural
networks that use convolution in place of general matrix
multiplication in at least one of their layers.

¡Use the non-vectorized image as input with a 2D weight, which
are called a filter or a kernel.

¡We call the hidden outputs in CNNs feature map.

10

!"#$%&'()*+,-#$.
School of Informatics Xiamen University (National Characteristic Demonstration Software School)

¡ The operation ∗ between the input image 𝐼 and filter 𝐾 to produce a new image 𝑆 is
called convolution, which is defined as:

𝑆[𝑖, 𝑗] = 𝐼 ∗ 𝐾 [𝑖, 𝑗] =+
!

+
"

𝐼[𝑖 + 𝑚, 𝑗 + 𝑛]𝐾[𝑚, 𝑛] .

¡ MLP: input 𝒙, weight 𝑊, output 𝒉.

¡ CNN: input 𝐼, weight 𝐾, output 𝑆.

Convolutional Neural Networks

11

pixel position

offset

𝐼[𝑖, 𝑗] 𝐾[0,0]

∗

Input

Filter

𝑆[𝑖, 𝑗]

Output (feature map)

=
𝐼[𝑖, 𝑗 + 1]

𝐼[𝑖 + 1, 𝑗]

𝐾[0,1]

𝐾[1,0]

!"#$%&'()*+,-#$.
School of Informatics Xiamen University (National Characteristic Demonstration Software School)

Convolution

12

1 2 3

4 5 6

7 8 9

10 20

30 40

370

1×10 + 2×20 + 4×30 + 5×40 = 370

Input: 3×3
Filter: 2×2 Output: 2×2

!"#$%&'()*+,-#$.
School of Informatics Xiamen University (National Characteristic Demonstration Software School)

Convolution

13

1 2 3

4 5 6

7 8 9

10 20

30 40

370 470

2×10 + 3×20 + 5×30 + 6×40 = 470

Input: 3×3
Filter: 2×2 Output: 2×2

!"#$%&'()*+,-#$.
School of Informatics Xiamen University (National Characteristic Demonstration Software School)

Convolution

14

1 2 3

4 5 6

7 8 9

10 20

30 40

370 470

670

4×10 + 5×20 + 7×30 + 8×40 = 670

Input: 3×3
Filter: 2×2 Output: 2×2

!"#$%&'()*+,-#$.
School of Informatics Xiamen University (National Characteristic Demonstration Software School)

Convolution

15

1 2 3

4 5 6

7 8 9

10 20

30 40

370 470

670 770

5×10 + 6×20 + 8×30 + 9×40 = 770

Input: 3×3
Filter: 2×2 Output: 2×2

Now the problem: the size of the new image after convolution is shrunk.

!"#$%&'()*+,-#$.
School of Informatics Xiamen University (National Characteristic Demonstration Software School)

Padding

16

Input: 3×3 + 1×1 padding

Filter: 3×3

00 1

00 4

7 8 9

2

5

0

0 0 0 0

3

6

0

0

00 0 0 0

40 50

30 20

60

10

10 20 30

0×10 + 0×20 + 0×30 +
0×40 + 1×50 + 2×60 +
0×30 + 4×20 + 5×10 =

300

300

Output: 3×3

¡ In order to keep the dimension of input and output matrix the same, we add padding.

!"#$%&'()*+,-#$.
School of Informatics Xiamen University (National Characteristic Demonstration Software School)

Padding

17

Input: 3×3 + 1×1 padding

Filter: 3×3

01 2

04 5

7 8 9

3

6

0

0 0 0 0

0

0

0

0

00 0 00

40 50

30 20

60

10

10 20 30

0×10 + 0×20 + 0×30 +
1×40 + 2×50 + 3×60 +
4×30 + 5×20 + 6×10 =

600

300 600

Output: 3×3

¡ In order to keep the dimension of input and output matrix the same, we add padding.

!"#$%&'()*+,-#$.
School of Informatics Xiamen University (National Characteristic Demonstration Software School)

Padding

18

Input: 3×3 + 1×1 padding

Filter: 3×3

1 2 3

4 5 6

7 8 9

0

0

0

0 0 0 0

0

0

0

0

0 0 0 00

40 50

30 20

60

10

10 20 30

0×10 + 0×20 + 0×30 +
2×40 + 3×50 + 0×60 +
5×30 + 6×20 + 0×10 =

500

300 600 500

Output: 3×3

¡ In order to keep the dimension of input and output matrix the same, we add padding.

!"#$%&'()*+,-#$.
School of Informatics Xiamen University (National Characteristic Demonstration Software School)

Stride

19

Input: 3×3 + 1×1 padding

Filter: 3×3

40 50

30 20

60

10

10 20 30

0×10 + 0×20 + 0×30 +
0×40 + 1×50 + 2×60 +
0×30 + 4×20 + 5×10 =

300

300

Stride: 2×2

00 1

00 4

7 8 9

2

5

0

0 0 0 0

3

6

0

0

00 0 0 0
Output: 2×2

¡ Stride: skip a location of image.

!"#$%&'()*+,-#$.
School of Informatics Xiamen University (National Characteristic Demonstration Software School)

Stride

20

Input: 3×3 + 1×1 padding

Filter: 3×3

40 50

30 20

60

10

10 20 30
300 500

Output: 2×2

Stride: 2×2

1 2 3

4 5 6

7 8 9

0

0

0

0 0 0 0

0

0

0

0

0 0 0 00

0×10 + 0×20 + 0×30 +
2×40 + 3×50 + 0×60 +
5×30 + 6×20 + 0×10 =

500

¡ Stride: skip a location of image.

!"#$%&'()*+,-#$.
School of Informatics Xiamen University (National Characteristic Demonstration Software School)

Output Size

¡ Input size: 𝑛'×𝑛(; filter size: 𝑘'×𝑘(; padding size: 𝑝'×𝑝(, stride size:
𝑠'×𝑠(.

¡Output size:
𝑛' + 2𝑝' − 𝑘'

𝑠'
+ 1 ×

𝑛(+ 2𝑝(− 𝑘(
𝑠(

+ 1

¡For example:

¡ Input size 3×3, filter size 3×3, padding size 1×1, stride size 2×2.

¡Output size)*+,)
+

+ 1 ×)*+,)
+

+ 1 = 2×2.

21

!"#$%&'()*+,-#$.
School of Informatics Xiamen University (National Characteristic Demonstration Software School)

Channel and Depth

22

Sum of convolution
in each channel

¡The depth of the filter is same as the channel of the input image.
¡For an RGB image, we have three channels: red, green and blue.

!"#$%&'()*+,-#$.
School of Informatics Xiamen University (National Characteristic Demonstration Software School)

Channel and Depth

23

¡The depth of the feature map is a hyperparameter.
¡ It corresponds to the number of filters we would like to use, each
learning to look for something different in the input.

!"#$%&'()*+,-#$.
School of Informatics Xiamen University (National Characteristic Demonstration Software School)

Output Size with Depth

¡ Input size: 𝑛'×𝑛(×𝑐-. ; filter size: 𝑘'×𝑘(×𝑐-. ; filter number: 𝑐/01 ,
padding size: 𝑝'×𝑝(, stride size: 𝑠'×𝑠(.

¡Output size:
𝑛' + 2𝑝' − 𝑘'

𝑠'
+ 1 ×

𝑛(+ 2𝑝(− 𝑘(
𝑠(

+ 1 ×𝑐/01

¡For example:

¡ Input size 5×5×3, filters size 3×3×3, filter number 5, padding size
1×1, stride size 2×2.

¡Output size 2*+,)
+

+ 1 × 2*+,)
+

+ 1 ×5 = 3×3×5.

24

!"#$%&'()*+,-#$.
School of Informatics Xiamen University (National Characteristic Demonstration Software School)

Channel and Depth

25

A regular 3-layer Neural Network.
A CNN arranges its neurons in three

dimensions (width, height, depth), as
visualized in one of the layers

Image source: cs231n.github.io/convolutional-networks

¡Every layer of a CNN transforms the 3D input volume to a 3D output
volume of neuron activations.

!"#$%&'()*+,-#$.
School of Informatics Xiamen University (National Characteristic Demonstration Software School)

Sparse Connectivity

26

Kernel of size 3, moved with
stride of 1. ℎ. only depends on

𝑥/, 𝑥., 𝑥0.

Fully connected network: ℎ. is
computed by full matrix multiplication

with no sparse connectivity.

Image source: Lecture 7, CMSC 35246 Deep Learning Spring 2017, University of Chicago

!"#$%&'()*+,-#$.
School of Informatics Xiamen University (National Characteristic Demonstration Software School)

Sparse Connectivity

¡Input: 55×55×3, output: 55×55×96.

¡If we adopt a fully connected layer, the number of parameters
for one single layer is:

(55×55×3 + 1)×55×55×96 = 2,635,670,400
¡Now, if we use 96 11×11 filters with 5×5 padding and 1×1

stride.

¡We can reduce the number of parameters to
(11×11×3 + 1)×55×55×96 = 105,705,600

¡ It is still unacceptable.
27

We use different filters for each pixel

!"#$%&'()*+,-#$.
School of Informatics Xiamen University (National Characteristic Demonstration Software School)

Parameter Sharing

¡We can dramatically reduce the number of parameters by
making one reasonable assumption:

If one filter is useful to compute at some spatial position
(𝑥!, 𝑦!), it should also be useful to compute at a different
position (𝑥", 𝑦").

¡We are going to constrain the neurons in each channel to use
the same weights and bias.

28

!"#$%&'()*+,-#$.
School of Informatics Xiamen University (National Characteristic Demonstration Software School)

Parameter Sharing

29

40 50

30 20

60

10

10 20 3000 1

00 4

7 8 9

2

5

0

0 0 0 0

3

6

0

0

00 0 0 0

A filter is fixed for all pixel positions in a channel

!"#$%&'()*+,-#$.
School of Informatics Xiamen University (National Characteristic Demonstration Software School)

Parameter Sharing

30

¡Rather than learning a separate set of filter parameters for
every location during convolution, we learn only one set.

¡This does not affect the runtime of forward propagation, but it
does further reduce the storage requirements.

¡In the previous example, the number of parameters are reduced
to

96×(3×11×11 + 1) = 34,944
¡3000 times smaller than the non-sharing one.
¡75,400 times smaller than the fully connected one.

31

Image source: cs231n.github.io/convolutional-networks

What are the learnable
parameters in CNNs?

!"#$%&'()*+,-#$.
School of Informatics Xiamen University (National Characteristic Demonstration Software School)

Parameter Sharing

32

¡ Each of the 96 learned filters is
of size 11×11×3.

¡ If detecting a horizontal edge is
important at some location in
the image, it should intuitively
be useful at some other
location.

¡ No need to relearn to detect a
horizontal edge at every one of
the 55×55 distinct locations in
the Conv layer output volume.

Compare with the

famous Sobel filter

for edge detection:

Image source: cs231n.github.io/convolutional-networks

!"#$%&'()*+,-#$.
School of Informatics Xiamen University (National Characteristic Demonstration Software School)

Parameter Sharing

¡Parameter sharing is not only for reducing the number of
parameters.

¡It can also be treated as a regularized method for preventing
overfitting.

¡It forces the filters to learn some common patterns over the
whole image, rather than some patterns specific at some
positions.

33

!"#$%&'()*+,-#$.
School of Informatics Xiamen University (National Characteristic Demonstration Software School)

CNNs vs. Traditional Methods

34

High-level feature contains
semantic information,
indicating if this image has
certain components or not.

Image source: https://rsipvision.com/exploring-deep-learning/

Has tyre?

Has steering wheel?

Has window?

Is metal?

https://rsipvision.com/exploring-deep-learning/

!"#$%&'()*+,-#$.
School of Informatics Xiamen University (National Characteristic Demonstration Software School)

CNNs vs. Traditional Methods

35
Image source: https://rsipvision.com/exploring-deep-learning/

Is furry?
Has mouth?

Has eye?

Has leg?

High-level feature contains
semantic information,
indicating if this image has
certain components or not.

High-level features
are also called
representations.

https://rsipvision.com/exploring-deep-learning/

!"#$%&'()*+,-#$.
School of Informatics Xiamen University (National Characteristic Demonstration Software School)

Receptive Field

36
Image source: cs231n.github.io/convolutional-networks

¡ The receptive field is defined
as the size of the region in the
input that produces the feature.

¡ It is a measure of association of an
output feature to the input region.

¡ Increasing model depth is a
straightforward way to increase
receptive field.

¡ Is there any other way to increase
the receptive field?

!"#$%&'()*+,-#$.
School of Informatics Xiamen University (National Characteristic Demonstration Software School)

Dilated Convolution

37
Image source: https://towardsdatascience.com/review-dilated-convolution-semantic-segmentation-9d5a5bd768f5

Standard Convolution (𝑑 = 1) Dilated Convolution (𝑑 = 2)

¡As an alternative, dilated convolution allows to merge spatial information
across the inputs much more aggressively with fewer layers.

!"#$%&'()*+,-#$.
School of Informatics Xiamen University (National Characteristic Demonstration Software School)

Output Size with Dilated Convolution

¡ Input size: 𝑛!×𝑛"×𝑐#$; filter size: 𝑘!×𝑘"×𝑐#$; filter number: 𝑐%&'; padding
size: 𝑝!×𝑝", stride size: 𝑠!×𝑠"; dilation size: 𝑑!×𝑑".

¡ Output size:
𝑛! + 2𝑝! − 𝑑!×𝑘! − 1 − 1

𝑠!
+ 1 ×

𝑛" + 2𝑝" − 𝑑"×𝑘" − 1 − 1
𝑠"

+ 1

×𝑐%&'
¡ For example:

¡ Input size 11×11×3, filter size 3×3×3, padding size 1×1, stride size 2×2,
dilation size 2×2.

¡ Output size (()*+ *×-+(+(
*

+ 1 × (()*+ *×-+(+(
*

+ 1 ×3 = 4×4×3.

38

!"#$%&'()*+,-#$.
School of Informatics Xiamen University (National Characteristic Demonstration Software School)

1D and 3D CNNs

39
Image source: https://towardsdatascience.com/understanding-1d-and-3d-convolution-neural-network-keras-9d8f76e29610

¡For image data, we are
actually using 2D CNN.
¡ It means the input data

and the filter are both 2-
dimentional.

https://towardsdatascience.com/understanding-1d-and-3d-convolution-neural-network-keras-9d8f76e29610

!"#$%&'()*+,-#$.
School of Informatics Xiamen University (National Characteristic Demonstration Software School)

1D and 3D CNNs

40
Image source: https://towardsdatascience.com/understanding-1d-and-3d-convolution-neural-network-keras-9d8f76e29610

¡For 1D data like signal or
time-series data, we can
adopt 1D CNN with 1D
filter.
¡ It is just a sparse and

parameter-shared version of
MLP.

https://towardsdatascience.com/understanding-1d-and-3d-convolution-neural-network-keras-9d8f76e29610

!"#$%&'()*+,-#$.
School of Informatics Xiamen University (National Characteristic Demonstration Software School)

1D and 3D CNNs

41
Image source: https://towardsdatascience.com/understanding-1d-and-3d-convolution-neural-network-keras-9d8f76e29610

This is only for one channel!

¡For 3D data like
hyperspectral
images, medical
images, or videos,
we can generalize
2D CNNs to 3D.

https://towardsdatascience.com/understanding-1d-and-3d-convolution-neural-network-keras-9d8f76e29610

!"#$%&'()*+,-#$.
School of Informatics Xiamen University (National Characteristic Demonstration Software School)

Deformable Convolutional Networks

42

¡ (a) regular sampling grid (green points) of standard convolution.

¡ (b) deformed sampling locations (dark blue points) with augmented offsets (light blue
arrows) in deformable convolution.

¡ (c)(d) are special cases of (b).

Source: W. H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, and Y. Wei, “Deformable Convolutional Networks,” in ICCV, 2017, p. 6003.

¡ One problem of CNNs: the shape of filters is fixed (e.g. square-like), but the shape of
objects is variant.

!"#$%&'()*+,-#$.
School of Informatics Xiamen University (National Characteristic Demonstration Software School)

Deformable Convolutional Networks

43
Source: W. H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, and Y. Wei, “Deformable Convolutional Networks,” in ICCV, 2017, p. 6003.

Filter weights and position offsets are learnable parameters

!"#$%&'()*+,-#$.
School of Informatics Xiamen University (National Characteristic Demonstration Software School)

Convolutional Layer in PyTorch

44
Source: https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html

Input shape in PyTorch is:
[𝑁, 𝐶1", 𝐻,𝑊]

!"#$%&'()*+,-#$.
School of Informatics Xiamen University (National Characteristic Demonstration Software School)

Convolutional Layer in TensorFlow

46

47

Input shape in TF is:
[𝑁,𝐻,𝑊, 𝐶1"]

Special padding size can’t
be assigned in conv2d

stride>1 is incompatible
with dilation_rate >1

!"#$%&'()*+,-#$.
School of Informatics Xiamen University (National Characteristic Demonstration Software School)

Pooling

¡Pooling layer downsamples the volume spatially, independently
in each channel of the input volume.

48
Image source: cs231n.github.io/convolutional-networks

!"#$%&'()*+,-#$.
School of Informatics Xiamen University (National Characteristic Demonstration Software School)

Pooling

49
Image source: Figure 9.9, Goodfellow, Bengio, and Courville, Deep Learning, Cambridge: MIT press, 2016.

The max pooling unit then has a large activation
regardless of which detector unit was activated.

¡On one hand,
pooling increases
the receptive field.

¡On the one hand,
pooling introduces
invariance.

!"#$%&'()*+,-#$.
School of Informatics Xiamen University (National Characteristic Demonstration Software School)

Pooling Layer in PyTorch

50
Source: https://pytorch.org/docs/stable/generated/torch.nn.MaxPool2d.html

!"#$%&'()*+,-#$.
School of Informatics Xiamen University (National Characteristic Demonstration Software School)

Pooling Layer in PyTorch

51

!"#$%&'()*+,-#$.
School of Informatics Xiamen University (National Characteristic Demonstration Software School)

Pooling Layer in TensorFlow

52
Source: https://www.tensorflow.org/api_docs/python/tf/keras/layers/MaxPool2D

!"#$%&'()*+,-#$.
School of Informatics Xiamen University (National Characteristic Demonstration Software School)

Pooling Layer in TensorFlow

53

!"#$%&'()*+,-#$.
School of Informatics Xiamen University (National Characteristic Demonstration Software School)

A typical CNN consists of four basic modules:

CNN Architecture

¡ CONV layer will compute the output
of neurons that are connected to
local regions in the input.

¡ RELU layer will apply an
elementwise activation function.

¡ FC (i.e. fully-connected) layer will
compute the class scores.

54
Image source: cs231n.github.io/convolutional-networks

¡ POOL layer will perform a downsampling operation along the spatial
dimensions (width, height).

!"#$%&'()*+,-#$.
School of Informatics Xiamen University (National Characteristic Demonstration Software School)

CNN Architecture

55
Image source: https://guandi1995.github.io/Classical-CNN-architecture/

https://guandi1995.github.io/Classical-CNN-architecture/

!"#$%&'()*+,-#$.
School of Informatics Xiamen University (National Characteristic Demonstration Software School)

CNN Architecture

¡We can also use global average pooling (GAP) to replace flattening.

56
Image source: B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Learning Deep Features for Discriminative Localization,” in CVPR, 2016, vol. 2016-Decem, pp. 2921–2929.

!"#$%&'()*+,-#$.
School of Informatics Xiamen University (National Characteristic Demonstration Software School)

CNN Architecture

¡ The most common form of a CNN architecture:

¡ stacks a few CONV-RELU layers;

¡ follows them with POOL layers;

¡ repeats this pattern until the image has been merged spatially to a small size;

¡ transits to fully-connected layers to produce output (e.g. class scores).

¡ The most common CNN architecture follows the pattern:

INPUT -> [[CONV -> RELU]*N -> POOL?]*M -> [FC -> RELU]*K -> FC

¡ The * indicates repetition, and the indicates an optional pooling layer.

¡ N >= 0 (and usually N <= 3), , K >= 0 (and usually K < 3).

57

!"#$%&'()*+,-#$.
School of Informatics Xiamen University (National Characteristic Demonstration Software School)

CNN Architecture

¡ INPUT -> FC.
¡ A simple linear classifier. Here N = M = K = 0 .

¡ INPUT -> CONV -> RELU -> FC.
¡ Only CONV layer and RELU layer are used.

¡ INPUT -> [CONV -> RELU -> POOL]*2 -> FC -> RELU -> FC.
¡ There is a single CONV layer between every POOL layer.

¡ INPUT -> [CONV -> RELU -> CONV -> RELU -> POOL]*3 -> [FC -> RELU]*2 -> FC.
¡ Two CONV layers stacked before every POOL layer.
¡ This is generally a good idea for larger and deeper networks, because multiple stacked

CONV layers can develop more complex features of the input volume before the
destructive pooling operation.

58

!"#$%&'()*+,-#$.
School of Informatics Xiamen University (National Characteristic Demonstration Software School)

Filter Size

Is a stack of three 3×3 CONV layers equivalent to a single 7×7 CONV layer?

¡ No. There are several disadvantages for using filters with large size:

¡ Less powerful: the neurons would be computing a linear function over the input,
while the three stacks of CONV layers contain non-linearities that make their
features more expressive.

¡ More parameters: if both the input and output of a layer have depth 𝐶, 7×7 CONV
layer would contain 𝐶× 7×7×𝐶 = 49𝐶/, while the three 3×3 CONV layers only
contains 3×𝐶× 3×3×𝐶 = 27𝐶/.

¡ Intuitively, stacking CONV layers with tiny filters as opposed to having one CONV layer
with big filters allows us to express more powerful features of the input, and with
fewer parameters.

59

!"#$%&'()*+,-#$.
School of Informatics Xiamen University (National Characteristic Demonstration Software School)

Layer Sizing Patterns

The common rules of thumb for sizing the architectures:
¡The INPUT layer (that contains the image) should be divisible by 2 many

times.
¡E.g. 32 (e.g. CIFAR-10), 64, 96 (e.g. STL-10), or 224 (e.g. common

ImageNet ConvNets), 384, and 512.
¡The CONV layers should be
¡using small filters (e.g. 3x3 or at most 5x5),
¡using a stride of 1x1,
¡padding the input volume with zeros in such way that the conv layer

does not alter the spatial dimensions of the input.

60

!"#$%&'()*+,-#$.
School of Informatics Xiamen University (National Characteristic Demonstration Software School)

Layer Sizing Patterns

¡ The pool layers are in charge of downsampling the spatial dimensions of the
input.

¡ The most common setting is to use max-pooling with 2×2 receptive fields,
and with a stride of 2×2.

¡ Note that this discards exactly 75% of the activations in an input volume (due
to downsampling by 2 in both width and height).

¡ Another slightly less common setting is to use 3×3 receptive fields with a
stride of 2.

¡ It is very uncommon to see receptive field sizes for max pooling that are
larger than 3 because the pooling is then too lossy and aggressive. This
usually leads to worse performance.

61

!"#$%&'()*+,-#$.
School of Informatics Xiamen University (National Characteristic Demonstration Software School)

Classical CNN Architectures

62
Image source: LeCun, Yann, Léon Bottou, Yoshua Bengio, and Patrick Haffner. "Gradient-based learning applied to document recognition." Proceedings of the IEEE 86, no. 11 (1998): 2278-2324.

Architecture of LeNet-5

!"#$%&'()*+,-#$.
School of Informatics Xiamen University (National Characteristic Demonstration Software School)

Classical CNN Architectures

63

Architecture of AlexNet

Image source: Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." In Advances in neural information processing systems, pp. 1097-1105. 2012.

!"#$%&'()*+,-#$.
School of Informatics Xiamen University (National Characteristic Demonstration Software School)

Conclusion

After this lecture, you should know:

¡What is convolution and filter.

¡What are the commonly used layers in CNN.

¡How to calculate the output size of after a convolutional layer.

¡Why do we need pooling.

¡What are the typical CNN architectures.

64

!"#$%&'()*+,-#$.
School of Informatics Xiamen University (National Characteristic Demonstration Software School)

Suggested Reading

¡cs231n CNN tutorial

¡Conv Nets: A Modular Perspective

¡Understanding Convolutions

65

http://cs231n.github.io/convolutional-networks
http://colah.github.io/posts/2014-07-Conv-Nets-Modular/
http://colah.github.io/posts/2014-07-Understanding-Convolutions/

!"#$%&'()*+,-#$.
School of Informatics Xiamen University (National Characteristic Demonstration Software School)

Thank you!

66

¡Any question?

¡Don’t hesitate to send email to me for asking questions and
discussion. J

