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Abstract
This paper presents UniVST, a unified framework for local-
ized video style transfer based on diffusion model. It op-
erates without the need for training, offering a distinct ad-
vantage over existing diffusion methods that transfer style
across entire videos. The endeavors of this paper comprise:
(1) A point-matching mask propagation strategy that lever-
ages the feature maps from the DDIM inversion. This stream-
lines the model’s architecture by obviating the need for track-
ing models. (2) A training-free AdaIN-guided video style
transfer mechanism that operates at both the latent and atten-
tion levels. This balances content fidelity and style richness,
mitigating the loss of localized details commonly associated
with direct video stylization. (3) A sliding-window consistent
smoothing scheme that harnesses optical flow within the pixel
representation and refines predicted noise to update the latent
space. This significantly enhances temporal consistency and
diminishes artifacts in stylized video. Our proposed UniVST
has been validated to be superior to existing methods in quan-
titative and qualitative metrics. It adeptly addresses the chal-
lenges of preserving the primary object’s style while ensuring
temporal consistency and detail preservation.

Introduction
Video editing has greatly improved thanks to the use of
diffusion methods (Cong et al. 2023; Jeong and Ye 2023;
Yang et al. 2023). T2V-Zero (Khachatryan et al. 2023)
changes self-attention mechanisms to cross-frame attention.
Tune-A-Video customizes video editing by adjusting atten-
tion weights (Wu et al. 2023a). Fate-Zero (Qi et al. 2023)
keeps the video content intact via information from the in-
version process. Animate-Zero (Yu et al. 2023) and Video-
Booth (Jiang et al. 2024) add layers that stress time.

Video stylization, a sub-area of video editing, is gain-
ing popularity. It is about adding artistic styles to video
content. Our review identifies two main video stylization
methods. The first method uses image or text to direct
the style. StyleCrafter (Liu et al. 2023) personalizes video
style with extra training adapter; VideoBooth (Jiang et al.
2024) uses image for custom video creation prompts; while
Diffutoon (Duan et al. 2024) focuses on cartoon coloring
from text descriptions. The second method includes all-
encompassing video editing frameworks like AnyV2V (Ku
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Figure 1: Existing methods suffer from (a) lack of fine-
grained control, (b) balance between content fidelity and
style richness, and (c) temporal inconsistency. The last row
shows the visualization of temporal consistency using Mim-
icMotion’s Y-T slices (Zhang et al. 2024a) for both the ex-
isting method (Shi et al. 2024) and our proposed UniVST.

et al. 2024) and BIVDiff (Shi et al. 2024) that can perform
various tasks, including style transfer. These usually apply
a consistent style across the whole video, good for thematic
expression but sometimes lacking in precision for specific
uses. For example, as shown in Fig. 1, in film, scenes might
be shot normally and later stylized to match different envi-
ronments. This enables aried scene changes from one video
take, which is also useful in advertising for efficiently ap-
plying local style changes to existing videos. Therefore, se-
lectively styling parts of a video while keeping others un-
changed is an important academic and commercial task.

We illustrate Fig. 1 and pinpoint three major limitations
of current methods: 1. Lack of Fine-grained Control. While
some existing approaches (Qi et al. 2023; Wu et al. 2023a)
leverage localized text descriptions to preserve the overall
style transfer and maintain the primary object’s style, the
control is usually too coarse. This lack of precision can lead
to the model failing to understand the nuances, potentially
causing unintended style transfer effects on objects not ex-



plicitly mentioned in the text. 2. Content Fidelity vs. Style
Richness. In the realm of video stylization, there is a deli-
cate balance to be struck between content fidelity and style
richness. An overemphasis on style richness can result in a
blurring and alter the original layout of the video, whereas an
excessive focus on content fidelity might yield a stylized out-
come that is indistinguishable from the original. 3. Temporal
Inconsistency. Unlike image stylization, video stylization re-
quires careful consideration of temporal coherence between
frames. As seen in (Shi et al. 2024; Ku et al. 2024), merely
extending image stylization techniques to video can lead to
inconsistencies across frames, manifesting as flickering and
artifacts.

In this paper, we propose UniVST, solving the above is-
sues in a unified framework for localized1 video style trans-
fer in a training-free manner. We inject the latent information
from the content branch into the editing branch using mask,
enabling the model to preserve the primary object’s style.
Unlike in the image domain, where masks can be readily
obtained using additional models such as those in (Lugmayr
et al. 2022; Mao et al. 2023), the video domain presents a
more labor-intensive challenge due to the need for frame-
by-frame mask generation. To address this, we introduce a
point-matching mask propagation strategy leveraging fea-
ture maps from the DDIM inversion process (Song, Meng,
and Ermon 2020) to capture correlations. Inspired by the
image stylization model (Chung, Hyun, and Heo 2024), re-
placing the key and value in the editing branch with those
from style branch can facilitate style transfer. However, we
found that directly applying this method in video style trans-
fer can lead to the loss and blurring of local details. Based
on this foundation, we develop a training-free AdaIN-guided
style transfer mechanism, which functions at both the latent
and attention levels. It adeptly balances content fidelity with
style richness. Detailed comparison of results is presented in
Fig. 4.

Our survey shows that existing methods often utilize op-
tical flow information to achieve temporal consistency. For
instance, Ground-A-Video (Jeong and Ye 2023) uses optical
flow to smooth initial noise, ensuring its temporal coherence,
while Flatten (Cong et al. 2023) integrates optical flow into
the attention process to maintain frame consistency. Build-
ing on these insights, we present a sliding-window consis-
tent smoothing scheme that employs optical flow within the
pixel representation and refines predicted noise to update the
latent space. As illustrated in Fig. 1, our method reduce flick-
ering and artifacts while enhances the temporal consistency
of the edited video. Overall, our major contributions in this
paper are as follows:

• We introduce, to the best of our knowledge, the first lo-
calized video style transfer framework, featuring a novel
point-matching mask propagation strategy.

• We develop a training-free AdaIN-guided video style
transfer mechanism that operates at both the latent and
attention levels. It effectively harmonizes content fidelity
and style richness throughout the transfer process.

1Here, “localized” indicates a particular part of the video.

• We present a sliding-window consistent smoothing
scheme based on optical flow, which adeptly upholds
temporal consistency during the video transfer process.

• Extensive experiments demonstrate that our framework
outperforms several state-of-the-art methods in both
qualitative and quantitative metrics.

Related Work
Image Style Transfer. RSCT (Ding et al. 2024) calls
for the separate foreground and background style trans-
fer, and combines them to ensure a consistent style. Diff-
Style (Li 2024) employs LoRA (Hu et al. 2021) to refine
image prompts for stylization, while ArtBank (Zhang et al.
2024c) enhances text embeddings through fine-tuning im-
age prompts. StyleID (Chung, Hyun, and Heo 2024) lever-
ages key-value replacement coupled with an initial latent
AdaIN (Huang and Belongie 2017) to preserve content fi-
delity. Z* (Deng et al. 2023) rearranges attention to integrate
content with style. InstanceStylePlus (Wang et al. 2024b)
utilizes adapters to safeguard content retention and enhance
stylistic expression.

Video Style Transfer. OCD (Kahatapitiya et al. 2024)
integrates object-centric sampling and merging, expediting
the editing process. StyleCrafter (Liu et al. 2023) refines
adapters using image prompts based on the T2V model.
Style-A-Video (Huang, Zhang, and Dong 2024) enhances
the stylistic alignment through strategic style guidance. Dif-
futoon (Duan et al. 2024) pioneers primary and editing
branches for multi-segment editing in video colorization,
employing FastBlend (Duan et al. 2023) to uphold tempo-
ral continuity. BIVDiff (Shi et al. 2024) combines frame-
by-frame image editing with temporal consistency model-
ing. AnyV2V (Ku et al. 2024) follows a similar initial edit-
ing strategy, subsequently leveraging an I2V model (Zhang
et al. 2023) to propagate changes across the video sequence.

Preliminary
Latent Diffusion Model. LDM (Rombach et al. 2022) adds
and removes noise in a low-dim space by using the encoder
E and decoder D. Given a Gaussian noise ZT , DDIM de-
noising can be formulated as (Yang et al. 2023):

Zt−1 =
√
αt−1 Zt→0︸ ︷︷ ︸

predicted Z0

+
√
1− αt−1ϵθ (Zt, t, C)︸ ︷︷ ︸
direction pointing to Zt−1

, (1)

where Zt→0 is an estimation of Z0 at time step t:

Zt→0 =
(
Zt −

√
1− αtϵθ (Zt, t, C)

)
/
√
αt, (2)

where αt is a parameter and C = ϕ for editing integrity.
DDIM Inversion. DDIM (Song, Meng, and Ermon 2020)

transforms noise ZT into Z0. Given reversible ODE (Gear
and Petzold 1984), its reverse process can be described by:

Zt+1 = AtZt +Btϵθ (Zt, t, ϕ) , (3)

where At and Bt are functions of time t. During editing, the
initial noise ZT that aligns with the original video distribu-
tion Z0 can be obtained using this equation.
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Figure 2: Overall framework. It is structured around three main components: (1) Point-Matching Mask Propagation, (2) AdaIN-
Guided Video Style Transfer(Attention-shift and latent-shift) and (3) Sliding-Window Consistent Smoothing.

3D UNet Extension. For video tasks, LDM requires a
3D UNet extension. Following (Ho et al. 2022; Cong et al.
2023), the 3 × 3 convolutional kernel in the convolutional
blocks is expanded to 1×3×3. To achieve frame paralleliza-
tion, the feature shape Zt is transformed from Rb×c×f×h×w

to R(bf)×c×h×w before self-attention and cross-attention
operations. To facilitate frame interaction, we follow T2V-
Zero (Khachatryan et al. 2023) to modify the self-attention
to cross-frame attention :

Qi = W queryZi, Ki = W key
[
Z1, Zi−1] ,

V i = W value
[
Z1, Zi−1] , (4)

where Zi denotes the feature of the i-th frame, and W query,
W key , W value represent the respective mapping matrices,
with [·, ·] indicating concatenation.

Localized Video Style Transfer
Given an original video comprising N frames {Ii}Ni=1 and
a reference style image Is, our objective is to transform the
original video into a new sequence {Ii}Ni=1. To achieve this,
we propose UniVST, which integrates the style of the ref-
erence image into the original video while preserving the
style of the primary objects within the video unchanged.
As shown in Fig. 2, it mainly includes Point-Matching
Mask Propagation, AdaIN-Guided Video Style Transfer, and
Sliding-Window Consistent Smoothing three components.

Point-Matching Mask Propagation
To preserve the primary style during the style transfer pro-
cess, a potent technique is to apply a mask to blend the latent
variables at several steps. This can be expressed as:

Zt = M · Zt + (1−M) · Zt, (5)
where Zt and Zt denote the latent variables in the editing
and content branch, respectively. However, in contrast to im-
ages, generating masks M for each video frame is laborious.

Algorithm 1: Point-Matching Mask Propagation
1: Input: M1 Mask for the first frame.
2: Input: Ft0

Feature map from upsampling block-2.
3: Input: r The sampling rates.
4: Input: k The k-nearest points.
5: Input: n The number of reference frames.
6: Output: {Mi}Ni=1 Masks for all frames.
7: Initialize: previous features← [ ] Initialize empty list for previous features.
8: Initialize: previous masks← [ ] Initialize empty list for previous masks.
9: Initialize: first feature← [ ] Initialize empty list for first feature.
10: for i = 1, . . . , N do
11: fore index← where(Mi−1 = 1)

12: back index← where(Mi−1 = 0)

13: fore index← random sample(fore index, r · |fore|
|fore|+|back| )

14: back index← random sample(back index, r · |back|
|fore|+|back| )

15: current index← concat(fore index, back index)

16: current feature← F i
t0

[current index]

17: if i = 1 then
18: first feature.append(current feature) Store first frame.
19: Mi ←M1

20: else
21: if |previous features| ≥ n then
22: previous features.pop(0) Remove the oldest frame feature.
23: previous masks.pop(0) Remove the oldest frame mask.
24: end if
25: f ← concat(previous features, first feature)
26: Mi ← KNN(f, F i

t0
, concat(previous masks,M1), k)

27: previous features.append(current feature) Store current frame.
28: previous masks.append(Mi) Store current mask.
29: end if
30: end for
31: Return: {Mi}Ni=1

Users typically prefer to control the video’s main style by
supplying a mask for only the initial frame. Extending the
user-provided mask across all frames efficiently is neces-



Figure 3: Comparison of accuracy and inference time un-
der different mask propagation strategies. The introduction
of anchor frames with the downsampling strategy signif-
icantly mitigates the accuracy degradation in subsequent
frame propagation and also reduces inference time.

sary. Thus, we introduce point-matching mask propagation
below and details are provided in Algorithm 1.

Point Matching. Inspired from DIFT (Tang et al. 2023),
the three upsampling blocks in the UNet are replete with
rich semantic information. Therefore, we can retain the fea-
ture map {F i

t0}
N
i=1 from upsampling block-2 at a given step

t0 during DDIM inversion in the source video, and use
them to calculate the pixel correspondences between frames.
Specifically, to pinpoint the pixel in the j-th frame that most
closely resembles a given point pi in the i-th frame, we cal-
culate the cosine similarity between the corresponding point
in the feature map F i

t0 and all points in the feature map F j
t0

as:
pj = argmin

pj∈F j
t0

CosSim
(
pi, pj

)
, pi ∈ F i

t0 . (6)

Utilizing this principle, we can propagate the mask from the
first frame to all subsequent frames using the mask propaga-
tion strategy formally introduced in the following.

Mask Propagation. Given an initial object mask for the
first frame from the user, we use k-NN (Cover and Hart
1967) to propagate this mask to subsequent frames. For each
point in the i-th frame, we find the k most similar points in
the (i− 1)-th frame using point matching. If the majority of
these k points are in the foreground, the corresponding point
in the i-th frame is also classified as foreground; otherwise,
it is background.

However, as shown in Fig. 3, using a naive autoregres-
sive approach for mask propagation can lead to error accu-
mulation, significantly decreasing accuracy for subsequent
frames. To address this, we design the anchor frames mech-
anism that incorporates information from the first frame and
the previous n frames.

Although introducing such a mechanism can improve the
propagation accuracy of subsequent frames, it requires more
similarity calculations, potentially reducing efficiency. To
address this issue, we apply random downsampling at a
rate of r to both foreground and background regions of the
anchor frames to minimize costs. The sampling rates are
then adjusted to reflect the proportions in the foreground
and background. As illustrated in Fig. 3, the combination

(a) Origin (d) Ours(b) K-V replacement (c) K-V AdaIN

(a) Origin
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Style Image

Figure 4: (a) Original video frame; (b) Key-value replace-
ment (Chung, Hyun, and Heo 2024); (c) Key-value AdaIN;
(d) Key-value AdaIN with gradual attention shift.

of anchor frames and random downsampling maintains fi-
nal mask propagation accuracy while improving efficiency.
More comprehensive information and in-depth analysis can
be available in the experimental section.

AdaIN-Guided Video Style Transfer
By using DDIM inversion (Zhang et al. 2024b) to the origi-
nal video {Ii}Ni=1 and the reference style image Is, we ob-
tain their respective noise latents Zt and Zs

t (t = 1 → T ).
Then, we establish the edited latents Zt = Zt, and integrate
a three-branch architecture with latent-shift and attention-
shift mechanisms to accomplish video style transfer.

AdaIN-Guided Latent Shift. We have discovered that
applying the AdaIN (Chung, Hyun, and Heo 2024) to the ini-
tial noise significantly enhances the transferred color style.
Therefore, we extend the application of AdaIN to several
steps during the denoising process. Within the interval t ∈
[τ0, τ1], We consider applying it to the latent Zt of the edit-
ing branch, shifting its mean and variance to the latent Zs

t of
the style branch:

Zt = AdaIN(Zt, Z
s
t ), (7)

AdaIN(Zt, Z
s
t ) = σ (Zs

t )

(
Zt − µ (Zt)

σ (Zt)

)
+ µ (Zs

t ) , (8)

where µ(·) and σ(·) denoting mean and standard deviation.
AdaIN-Guided Attention Shift. To prevent the direct re-

placement of self-attention from causing content damage,
(Chung, Hyun, and Heo 2024) blended the original video’s
query Qt with the edited query Qt as:

Q̃t = γ · Qt + (1− γ) ·Qt,

K̃t = Ks
t , Ṽt = V s

t ,
(9)

where γ controls the balance between content and style.
However, as observed in Fig. 4(b), this approach still lead
to a loss of localized details in video stylization. To mitigate
the loss of details caused by direct replacement, we propose



to shift the mean and variance of the distributions of Kt and
Vt using AdaIN:

K̃t = AdaIN(Kt,K
s
t ), Ṽt = AdaIN(Vt, V s

t ). (10)

Though this shift preserves localized details, as indicated
in Fig. 4(c), it causes content blurring and artifacts. Upon
analysis, we find that the early denoising stages contain less
information, making key and value replacements inappro-
priate. Thus, within the interval t ∈ [τ2, τ3], we gradually
decrease the impact of the attention shift by combining the
key and value replacements with the query blending:

K̃t = βt · AdaIN(Kt,K
s
t ) + (1− βt) ·Ks

t ,

Ṽt = βt · AdaIN(Vt, V s
t ) + (1− βt) · V s

t ,

βt =
βτ3 − βτ2

τ3 − τ2
· (t− τ2) + βτ2 .

(11)

By combing key-value AdaIN with gradual attention shift
in Eq. (11) and query blending in Eq. (9), the stylization re-
sults achieve an effective balance between content fidelity
and style richness, as shown in Fig. 4(d) and Table 7.

Sliding-Window Consistent Smoothing
We address the common issues of flicker and artifacts in
video stylization by focusing on temporal inconsistency.
Following (Cong et al. 2023; Jeong and Ye 2023), we utilize
optical flow with specialized sliding window smoothing.

Optical Flow Warping. Optical flow estimation is a piv-
otal technique, often used for object tracking (Kale, Pawar,
and Dhulekar 2015; Shin et al. 2005). It predicts the motion
direction and velocity of pixels by analyzing changes be-
tween consecutive frames. Using models like RAFT (Teed
and Deng 2020), optical flow information can be predicted
from one frame to the next, allowing for the reconstruction
of the initial frame. In cases where occlusion occurs, bidi-
rectional optical flow can estimate the mask and fill in oc-
cluded regions with the original image. This process, termed
“Warp,” is key to our following discussions.

Sliding Window Smoothing. We apply the warp opera-
tion during denoising process to achieve local smoothing. At
time step t, we calculate the latent representationZt→0 from
the predicted noise εt according to Eq. (2). Zt→0 is then de-
coded by the decoderD into a pixel representation {P i

t }Ni=1.
For each decoded frame P i

t , we apply a sliding window of
size 2m to warp its neighboring frames and smooth them to
update the original pixel:

P̄ i
t ←

1

2m+ 1
·

i+m∑
j=i−m

Warp(P i
t , P

j
t ). (12)

The updated values from the current window will be in-
corporated into the calculations for the next window, as
shown in Fig. 2. Subsequently, the VAE’s encoder E re-
encodes the smoothed {P̄ i

t }Ni=1 into latent representations
Z̄t→0, which is an updated version of Zt→0. Next, the pre-
dicted noise εt is adjusted using the inversion of Eq. (2):

ε̄t ←
Zt −

√
αtZ̄t→0√

1− αt
. (13)

Finally, the latent representation is updated in accordance
with the DDIM schedule in Eq. (1):

Zt−1 ←
√
αt−1Z̄t→0 +

√
1− αt−1ε̄t. (14)

It is important to note that we do not adopt a global
smoothing strategy because extensive optical flow predic-
tions would introduce significant computational overhead.
Instead, by employing a sliding local window scheme, we
achieved a balance between temporal consistency and effi-
ciency. And this scheme is only performed within the inter-
val t ∈ [τ4, τ5].

Experimentation
Experimental Settings
Our method is based on the Stable Diffusion V1.5 model,
as referenced in the literature (Rombach et al. 2022). The
hyperparameters are configured as follows: τ0 = 0.1T , τ1 =
0.2T , τ2 = 0.4T , τ3 = 1.0T , τ4 = 0.5T , τ5 = 0.6T , t0 =
0.4T , with the total time period T set to 50. Additionally,
we have γ = 0.35, βτ2 = 0.1, βτ3 = 0.9, r = 0.3, k = 15,
m = 2, and n = 9. Videos are resized to a resolution of
512 by 512 pixels and are processed in batches consisting
of 16 frames each. For optical flow estimation, we employ
the RAFT model (Teed and Deng 2020). Our approach does
not require training or fine-tuning and can be executed on a
single RTX 3090 GPU, making it both efficient and practical
for deployment.

Datasets. Building upon the foundational work referenced
in (Chung, Hyun, and Heo 2024; Huang, Zhang, and Dong
2024), we have meticulously selected style images from
two renowned databases: WikiArt (Phillips and Mackintosh
2011) and Laion-Aesthetics-6.5+ (Schuhmann et al. 2022),
each contributing a collection of 20 distinct images. For
the content videos, we have procured a dataset comprising
50 videos from the DAVIS2016 (Perazzi et al. 2016) and
TGVE (Wu et al. 2023b) datasets, which we have amalga-
mated and designated as DAVTG. Through the integration
of these datasets, we have successfully established two com-
prehensive subsets: DAVTG-WikiArt, which contains 1,000
curated pairs, and DAVTG-Laion, which also features 1,000
paired entries.

Metrics. (1) Overall Transfer Performance: Drawing
inspiration from the methodologies outlined in (Chung,
Hyun, and Heo 2024; Huang, Zhang, and Dong 2024), we
assess the overall transfer performance by employing Art-
FID (Wright and Ommer 2022), a metric that amalgamates
LPIPS (Zhang et al. 2018) for gauging content fidelity and
FID (Heusel et al. 2017) for evaluating the richness of style.
(2) Foreground Style Preservation: To evaluate the preser-
vation of texture, we utilize the SSIM (Wang et al. 2004)
metric, while the CLIP-I score (Radford et al. 2021) is em-
ployed to assess the preservation of semantic content. Dur-
ing this evaluation, the background is neutralized to ensure
accuracy. (3) Temporal Consistency: In line with the ap-
proaches detailed in (Huang, Zhang, and Dong 2024; Liu
et al. 2023), we measure the similarity between consecutive
frames using the CLIP-F score (Radford et al. 2021), which
serves as a metric for evaluating the temporal coherence of



Table 1: Quantitative comparison of existing methods across various metrics, superscript * indicates non-diffusion methods.
The bold values represent the best performance and the underscore stresses the second best.

Datasets Methods Overall Transfer Performance Style Preservation Consistency Efficiency
ArtFID↓ FID↓ LPIPS↓ SSIM↑ CLIP-I↑ CLIP-F↑ Inference Time(s)↓

DAVTG-WikiArt

Diffutoon (Duan et al. 2024) 43.150 26.268 0.582 0.961 0.954 0.980 44.263
StyleCrafter (Liu et al. 2023) 39.119 21.008 0.777 0.928 0.895 0.978 111.225

AnyV2V (Ku et al. 2024) 33.774 19.104 0.680 0.938 0.914 0.978 78.474
BIVDiff (Shi et al. 2024) 46.071 25.468 0.740 0.921 0.894 0.955 158.367

EFDM∗ (Zhang et al. 2022a) 37.407 22.350 0.602 0.936 0.935 0.963 5.969
CAST∗ (Zhang et al. 2022b) 45.198 26.174 0.663 0.948 0.936 0.975 7.348

UniVST (Ours) 37.152 26.134 0.369 0.986 0.991 0.980 162.745

DAVTG-Laion

Diffutoon (Duan et al. 2024) 38.610 23.700 0.563 0.959 0.953 0.979 44.263
StyleCrafter (Liu et al. 2023) 43.161 23.246 0.780 0.926 0.897 0.978 111.225

AnyV2V (Ku et al. 2024) 35.648 20.019 0.696 0.936 0.918 0.975 78.474
BIVDiff (Shi et al. 2024) 36.676 20.156 0.733 0.921 0.897 0.956 158.367

EFDM∗ (Zhang et al. 2022a) 35.673 21.549 0.582 0.933 0.931 0.964 5.969
CAST∗ (Zhang et al. 2022b) 34.828 19.974 0.661 0.947 0.936 0.968 7.348

UniVST (Ours) 30.636 21.146 0.383 0.986 0.990 0.981 162.745

the video. (4) Inference Efficiency: To gauge the time effi-
ciency, we calculate the total inference time, thereby assess-
ing their performance in terms of computational speed.

Quantitative Comparison
We have chosen a selection of video stylization techniques,
including Diffutoon (Duan et al. 2024) and StyleCrafter (Liu
et al. 2023), as well as two video editing frameworks:
AnyV2V (Ku et al. 2024) and BIVDiff (Shi et al. 2024). Ad-
ditionally, we have considered two traditional non-diffusion
methods: EFDM (Zhang et al. 2022a) and CAST (Zhang
et al. 2022b). Given that our specific task does not per-
fectly correspond with some of the existing methods, we
have made necessary modifications to ensure a fair compari-
son. In the case of Diffutoon (Duan et al. 2024), which is de-
signed to process text inputs for coloring tasks and does not
natively support style images, we have overcome this limita-
tion by leveraging Chat-GPT4 (Achiam et al. 2023) to gen-
erate descriptive captions for the style images. For the style
generation task with StyleCrafter (Liu et al. 2023), which
does not inherently support video editing, we employ inver-
sion to obtain the initial noise of the original video, which is
then utilized in the generation process. For the unified video
editing frameworks, AnyV2V (Ku et al. 2024) and BIVD-
iff (Shi et al. 2024), we have integrated InstantStyle (Wang
et al. 2024a) as the image editing model to enhance their
capabilities. As for the traditional non-diffusion methods,
EFDM (Zhang et al. 2022a) and CAST (Zhang et al. 2022b),
which are well-aligned with our task, we have retained them
in their original form without making any alterations.

We employ these six established methods as benchmarks
to evaluate our proposed UniVST, with the quantitative com-
parisons presented in Table 1. The results demonstrate that
our UniVST outperforms the others across all three perfor-
mance metrics. On both the DAVTG-WikiArt and DAVTG-
Laion datasets, UniVST consistently surpasses the compe-
tition in terms of foreground style preservation and tempo-
ral consistency, showcasing its robust capability for local-
ized video style transfer. Regarding overall transfer perfor-
mance, UniVST claims the top position on the DAVTG-

Laion dataset and secures the second spot on DAVTG-
WikiArt. Although localized transfer tasks might marginally
affect overall performance, leading to a slightly higher FID
score compared to other methods, these findings underscore
UniVST’s proficiency in effectively reconciling content fi-
delity with style richness.

Our inference efficiency does not stand out. This is be-
cause we opt not to adopt the temporal attention mechanisms
in existing T2V frameworks (Liu et al. 2023; Huang, Zhang,
and Dong 2024). Instead, we utilize the Sliding-Window
Consistent Smoothing strategy, which requires dynamic op-
tical flow estimation during the denoising process. While
this approach improves temporal consistency, it also leads
to increased computational overhead. In Fig 13, enlarging
the sliding window size results in a proportional increase
in the number of frames needed for optical flow estimation,
thereby raising the time cost. This trade-off between tempo-
ral consistency and computational efficiency highlights the
potential optimization in future work.

Qualitative Comparison
For a qualitative assessment, we have juxtaposed the edit-
ing results with those of six other baseline methods, as il-
lustrated in Fig. 5. Diffutoon (Duan et al. 2024), which is
renowned for its expertise in cartoon coloring, exhibits a
limited responsiveness to a variety of image styles. This
results in a final edited video that is notably monotonous,
heavily inclined towards a cartoonish anime aesthetic. Style-
Crafter (Liu et al. 2023), tailored for style-based video gen-
eration, demonstrates a high sensitivity to stylistic cues.
However, it encounters difficulties in preserving content fi-
delity, leading to substantial distortion of background details
and character features during the transfer process. BIVD-
iff (Shi et al. 2024) falls short in both content fidelity and
temporal consistency, similarly altering background infor-
mation and character traits during the transfer. AnyV2V (Ku
et al. 2024) excels in maintaining temporal consistency but
faces challenges with transfer tasks involving a central ob-
ject. It often over-transfers the subject’s style, resulting in a
loss of its distinctive attributes. The traditional non-diffusion
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Figure 5: Qualitative comparison of our proposed UniVST with existing methods. superscript * indicates non-diffusion meth-
ods.

Table 2: Ablation study for proposed components. The bold values represent the best performance.

Datasets Methods Overall Transfer Performance Style Preservation Consistency
AIFID↓ FID↓ LPIPS↓ SSIM↑ CLIP-I↑ CLIP-F↑

DAVTG-WikiArt

UniVST 37.152 26.134 0.369 0.986 0.991 0.980
w/o mask-guidance 38.014 26.050 0.405 0.966 0.970 0.979

w/o latent-shift 37.649 26.909 0.349 0.985 0.990 0.980
w/o attention-shift 39.589 27.506 0.388 0.985 0.988 0.983

w/o window-smoothing 38.626 26.907 0.384 0.982 0.989 0.970

DAVTG-Laion

UniVST 30.636 21.146 0.383 0.986 0.990 0.981
w/o mask-guidance 30.848 20.974 0.404 0.961 0.967 0.979

w/o latent-shift 31.001 21.766 0.362 0.985 0.989 0.980
w/o attention-shift 32.534 22.623 0.377 0.985 0.989 0.981

w/o window-smoothing 30.834 21.249 0.386 0.981 0.988 0.971

methods, EFDM (Zhang et al. 2022a) and CAST (Zhang et al. 2022b), compromise detail information during the
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Figure 6: Qualitative comparisons of our proposed UniVST with some existing commercial models. The first row presents the
original video, reference image, and mask, followed by the results of Gen-1 (Esser et al. 2023) in the second row, Gen-3 in the
third row, and our proposed UniVST in the final row.

transfer process and introduce color artifacts. On the con-
trary, UniVST demonstrates a remarkable ability to balance
content fidelity with style richness, achieving a harmonious
integration of both. It ensures that the key structural and mo-
tion details of the original content are retained, while pre-
serving the primary style of the object with great precision.

We have also compared our method with existing com-
mercial models, namely Gen-1 (Esser et al. 2023) and Gen-
3, as illustrated in Fig. 6. Our approach demonstrates clear
superiority in two critical aspects: achieving a closer style
similarity to the reference image and maintaining higher
content fidelity to the original video. Moreover, it uniquely
excels in preserving the style consistency of local objects,
ensuring a more cohesive and visually appealing result, even
in complex or dynamic scenes.

Ablation Studies
We have developed five distinct variants to assess the contri-
bution of its individual components: (1) The full UniVST
model, (2) UniVST without mask guidance, (3) UniVST
without latent-shift, (4) UniVST without attention-shift, and
(5) UniVST without window smoothing. The quantitative
outcomes are presented in Table 2, while the qualitative re-

sults are displayed in Fig. 8.

Our mask-guided strategy effectively maintains the fore-
ground style throughout the transfer process, showing its ef-
ficacy both quantitatively and qualitatively, without neces-
sitating additional model components. The latent-shift and
attention-shift strategies are both integral to the style transfer
process. It is noteworthy noteworthy that the absence of the
attention-shift strategy results in an incomplete transfer and
a blurring of local details, as exemplified in Fig. 8. Finally,
our optical flow smoothing strategy significantly enhances
the modeling of temporal consistency, effectively mitigat-
ing video artifacts. In addition, we conducted an in-depth
study of the three proposed modules on the DAVIS-Laion
dataset to further substantiate their individual contributions
and overall impact.

Mask Propagation. We first present the visualization of
the final mask propagation results, as shown in Fig. 7. Then,
we further discuss the impact of downsampling rates on
propagation accuracy and inference speed using the DAVIS
dataset (Perazzi et al. 2016). Detailed results can be found
in Fig. 9. As the sampling rate decreases, the efficiency of
our mask propagation is significantly improved, while ef-
fectively maintaining the accuracy of the final propagation
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Figure 7: Visual results of mask propagation on the DAVIS dataset (Perazzi et al. 2016). The mask is blended with the original
image to emphasize the subject, highlighting it while dimming the background.

UniVST

w/o window smoothing 

w/o latent-shiftw/o mask guidance

Origin

w/o attention-shift

Style Image

Figure 8: Visual results for ablations. Various components in
our framework have all played important roles.

Figure 9: Quantitative results of mask propagation with dif-
ferent sampling ratio r on the DAVIS (Perazzi et al. 2016)
dataset. Best view with zooming in.

results. We also examine the impact of anchor frames se-
lection on propagation accuracy and efficiency. As shown
in Table 3, introducing more anchor frames improves propa-
gation accuracy but also results in longer propagation times.
Furthermore, we find that as the number of frames increases,
the accuracy gains become less significant. After weighing
these trade-offs, we select the first frame and the previous
9 frames as the final hyperparameter configuration. In addi-
tion, we perform an ablation study on the hyperparameter k
of k-NN (Cover and Hart 1967). As shown in Table 4, the

Table 3: Performance and efficiency of mask propagation
with different anchor frames. The bold fonts represent our
final configuration.

Configuration Avg IoU↑ Avg Dice↑ Inference Time(s)↓
Previous-1(Naive) 0.5321 0.6505 2.365
Previous-1+First 0.7799 0.8714 2.423(↓2.5%)
Previous-3+First 0.7792 0.8711 2.477(↓4.7%)
Previous-5+First 0.7800 0.8716 2.577(↓9.0%)
Previous-7+First 0.7809 0.8721 2.673(↓13.0%)
Previous-9+First 0.7816 0.8726 2.742(↓15.9%)
Previous-11+First 0.7820 0.8728 2.868(↓21.3%)
Previous-13+First 0.7820 0.8728 2.873(↓21.5%)
Previous-15+First 0.7820 0.8729 2.878(↓21.7%)

Table 4: Performance and efficiency of mask propagation
with different values of k. The bold fonts represent our final
configuration.

The value of k Avg IoU↑ Avg Dice↑ Inference Time(s)↓
40 0.7806 0.8719 2.467
30 0.7836 0.8739 2.458
20 0.7836 0.8750 2.455
15 0.7885 0.8772 2.452
10 0.7875 0.8766 2.452

highest propagation accuracy is achieved at k = 15, without
affecting propagation efficiency.

AdaIN-Guided Style Transfer. We investigate the optimal
timestep interval for this method in Table 5. It means that
applying attention-shift in the early and middle stages of de-
noising can yield better results. Futhermore, we explore the
optimal timestep intervals for latent-shift, with quantitative
results provided in Table 6. Applying latent-shift in the late
stages yields better results. In addition, we present visual
results of these ablation experiments, as shown in Fig. 10
and Fig. 11. For latent-shift, applying it in the early stages
of denoising can cause issues such as content blurriness
and semantic loss during the transfer process. In contrast,
attention-shift produces better visual results when applied



Table 5: Quantitative results of attention-shift with different timestep intervals on the DAVIS-Laion dataset. The bold fonts
represent our final configuration.

Timesteps ≤ 0.6T ≤ 0.5T ≤ 0.4T ≤ 0.3T ≤ 0.2T ≥ 0.4T ≥ 0.5T ≥ 0.6T ≥ 0.7T ≥ 0.8T

ArtFID↓ 31.843 32.520 33.298 34.912 35.655 30.658 30.835 30.868 31.019 31.893
FID↓ 21.806 22.118 22.392 23.163 23.356 20.529 20.704 20.761 20.845 21.324

LPIPS↓ 0.396 0.407 0.424 0.445 0.464 0.424 0.421 0.419 0.420 0.429

Origin 0.8T～0.9T0.4T～0.5T0.2T～0.3T 0.5T～0.6T 0.7T～0.8T0.1T～0.2T

Figure 10: Visual results of latent-shift with different timestep intervals on the DAVIS-Laion.

Table 6: Quantitative results of latent-shift with different
timestep intervals on the DAVIS-Laion dataset. The bold
fonts show our final configuration.

Timesteps 0.1T ∼ 0.2T 0.2T ∼ 0.3T 0.4T ∼ 0.5T 0.5T ∼ 0.6T 0.7T ∼ 0.8T 0.8T ∼ 0.9T

ArtFID↓ 31.925 32.288 32.637 32.83 33.097 32.955
FID↓ 21.722 21.745 21.854 22.075 22.157 22.206

LPIPS↓ 0.405 0.419 0.428 0.423 0.429 0.42

Table 7: Comparison between attention-shift and some ex-
isting training-free stylization methods on the DAVIS-Laion
dataset. The bold fonts show our final configuration.

Configuration The key-value replacement The key-value AdaIN Ours with Increasing Ours with Decreasing

ArtFID↓ 32.561 32.581 32.158 30.658
FID↓ 21.389 21.829 21.620 20.529
LPIPS↓ 0.454 0.427 0.422 0.424

in the early stages of denoising than in the later stages. Fi-
nally, to further investigate the effectiveness of our proposed
attention-shift and the monotonicity of the time coefficient
βt, we compare the performance of four configurations: key-
value replacement, key-value AdaIN, ours with increasing
time coefficients, and ours with decreasing time coefficients.
As shown in Table 7, using a decreasing time coefficient en-
ables attention-shift to outperform other training-free meth-

Origin ≥ 0.4𝑇 ≤ 0.6𝑇 ≥ 0.8𝑇 ≤ 0.2𝑇

Figure 11: Visual results of attention-shift with different
timestep intervals on the DAVIS-Laion. Best view with
zooming in.

ods.
Sliding-Window Consistency Smoothing. To assess the

impact of sliding window size on editing results and compu-
tational costs, we present the visual effects and correspond-
ing inference times for different window sizes in Fig. 13.
While larger window sizes yield slight visual improvements,



Origin DDIM-Inv EasyInv Origin DDIM-Inv EasyInv

Figure 12: Qualitative comparisons of different inversion methods on transfer quality. EasyInv (Zhang et al. 2024b) demon-
strates better transfer quality compared to DDIM-Inv (Song, Meng, and Ermon 2020).

m=0 m=1 m=2 m=3 m=4
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Figure 13: Visual results of sliding-window consistent
smoothing with different window sizes. Best view with
zooming in.

they also result in significant inference costs. On the other
hand, we further explore how applying this strategy at dif-
ferent timestep intervals affects final temporal consistency.
As shown in Fig. 14, we find that the quality of smoothing
strategy varies across the early, middle, and late stages of the
denoising process, with the best results achieved when it is
applied during the middle stage.

Impact of Inversion on UniVST. As a training-free styliza-
tion method, we need to obtain the initial noise of the orig-
inal video, meaning that our method can not bypass inver-
sion technique. Therefore, the performance of this method
largely depends on the quality of the initial noise obtained

Figure 14: Quantitative results of sliding-window consistent
smoothing with varying timestep intervals on the DAVIS-
Laion.

through inversion. In Fig. 12, we find that naive inversion
can lead to a loss of semantic details during the transfer pro-
cess and adversely affect subsequent mask propagation. To
minimize the errors introduced by the inversion process, we
adopt EasyInv (Zhang et al. 2024b) and show better visual
effects.

Conclusion
This paper presents UniVST, a unified framework for lo-
calized video style transfer that features a training-free ap-
proach, marking a significant advancement over traditional
methods that require full video style transfer. Our contribu-
tions include: (1) A point-matching mask propagation strat-
egy that eliminates the need for tracking models, enabling
streamlined style transfer to specific video objects. (2) A



training-free AdaIN-guided video style transfer mechanism
that operates at both the latent and attention levels, ensuring
a balance between content fidelity and style richness. (3) A
sliding-window consistent smoothing scheme that uses opti-
cal flow to refine noise and update the latent space, improv-
ing temporal consistency and reducing artifacts. Extensive
experiments show that UniVST outperforms existing meth-
ods in both qualitative and quantitative assessments, pre-
serving the primary object’s style while ensuring temporal
consistency and detail preservation. Futhermore, it can be
extended to a wider range of customized models.
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