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Abstract

This paper aims to enhance the success rate of adversarial ex-
ample attacks. The reason for choosing this issue lies in the
challenges that deep neural networks (DNNs) face due to ad-
versarial example attacks. Such attacks generate models by
adding imperceptible noise to legitimate samples, thereby re-
sulting in inaccurate prediction results desired by attackers.
The research on adversarial samples is of great significance
in safety-critical fields such as autonomous driving.However,
although the attack success rates in white-box environments
are relatively high, they cannot accurately reflect real-world
conditions. Moreover, the attack success rates in black-box
scenarios remain unsatisfactory. The current state-of-the-art
methods include integrating iterative strategies based on the
Fast Gradient Sign Method (FGSM) and introducing the con-
cept of momentum to improve the ability to escape from poor
local optima, among others. Based on previous research, this
paper first replicates existing attack methods under the envi-
ronment with limited computing power. Subsequently, it in-
vestigates the effects of various attack algorithms in the envi-
ronment with limited computing power. Finally, we will adopt
simple ensemble learning to improve the attack success rate.

1.Introduction
1.1What is Adversarial examples?
Adversarial examples are a significant concept in the field
of machine learning. They are crafted by adding impercepti-
ble perturbations to legitimate input samples. The purpose of
creating adversarial examples is to mislead deep neural net-
works (DNNs) into making incorrect predictions. These ad-
versarial perturbations are designed in such a way that they
are barely noticeable to human observers but can cause sig-
nificant changes in the output of the neural network. Adver-
sarial examples play a crucial role in evaluating the robust-
ness and security of machine learning models. They help
identify vulnerabilities in the models and can be used for
adversarial training to enhance the resilience of the models
against malicious attacks. Moreover, they contribute to a bet-
ter understanding of the inner workings of DNNs and pro-
mote the development of more interpretable artificial intel-
ligence. In critical applications such as autonomous driving
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Figure 1: Introduction to adversarial examples

and healthcare, the study of adversarial examples is essen-
tial to ensure the safety and reliability of machine learning
systems.

1.2Why are adversarial examples important?
Adversarial examples are crucial in machine learning for as-
sessing model robustness and security. They serve as essen-
tial tools for identifying vulnerabilities, facilitating adver-
sarial training to enhance a model’s resilience against mali-
cious inputs. Additionally, they contribute to the diversifica-
tion of training data, improving generalization capabilities.
Research on adversarial examples also aids in understanding
the internal mechanisms of deep learning models, advancing
the field of interpretable artificial intelligence. Ultimately,
their implications extend to critical applications across vari-
ous industries, underscoring the necessity for robust and re-
liable systems.

1.3What challenges does the field of adversarial
examples face?
The field of adversarial example attacks faces many chal-
lenges. On the one hand, it is necessary to balance the ef-
fectiveness and concealment of attacks. Ensure high success
rate while maintaining similarity with the original sample



so as not to be detected. On the other hand, the diversity
and complexity of models increase the difficulty of attacks.
Different types and models with complex structures require
specific attack methods, and attackers find it difficult to un-
derstand their internal mechanisms. In black-box attacks, in-
formation acquisition is difficult and generalization ability
is limited. When extending attacks from the digital world to
the physical world, environmental factors affect the attack
effect, and practical physical limitations and feasibility also
need to be considered. In summary, the field of adversarial
examples is facing the following challenges:
• Although the attack success rate in white-box environ-

ments is high, it does not accurately reflect real-world
conditions.

• The attack success rate in black-box scenarios remains
insufficient.

• Effectively enhancing the transferability of adversarial
examples continues to be a significant challenge.

2.Related Work
By understanding the structure and parameters of a given
model, several methods can successfully generate adversar-
ial examples in a white-box setting, such as L-BFGS[1],
Fast Gradient Sign Method[2], and iterative variants based
on gradient methods[5]. However, in black-box scenarios, a
significant issue is their poor transferability[1, 3, 4]; that is,
adversarial examples designed for one model may not retain
their adversarial properties when applied to other models,
which undermines the practicality of black-box attacks and
raises genuine security concerns. The phenomenon of trans-
ferability arises from the fact that different machine learning
models learn similar decision boundaries around data points,
allowing adversarial examples crafted for one model to be
effective against others as well.

In the realm of black-box attacks, numerous scholars are
currently conducting research. For instance, ensemble ad-
versarial training[6] has significantly enhanced the robust-
ness of deep neural networks, rendering most existing meth-
ods unable to successfully attack them in a black-box man-
ner. This phenomenon can largely be attributed to the trade-
off between attack capability and transferability. Papernot
et al. [7] employed adaptive queries to train surrogate mod-
els that sufficiently capture the behavior of the target model,
thereby transforming black-box attacks into white-box at-
tacks. However, this approach necessitates complete predic-
tion confidence provided by the target model and a substan-
tial number of queries, particularly for large-scale datasets
such as ImageNet[8]. Such requirements are impractical in
real-world applications.

2.1FGSM
The Fast Gradient Sign Method (FGSM) is a well - known
adversarial attack technique. It quickly generates adversarial
examples by adding a small perturbation to the input data in
the direction of the gradient sign of the loss function. The
magnitude of the perturbation is controlled by a parameter.
It’s a simple yet effective way to expose the vulnerability of
machine - learning models.

2.2I-FGSM
Iterative Fast Gradient Sign Method (I-FGSM) is an ad-
vanced adversarial attack method. I-FGSM conducts itera-
tive attacks by repeatedly applying small perturbations in
the direction of the gradient sign. At each iteration, it takes
the previously perturbed sample as the starting point and
computes the gradient with respect to the current sample
to determine the direction of the perturbation. This iterative
process allows for more targeted and effective attacks com-
pared to FGSM. It can generate adversarial examples that
are more likely to mislead the target model. Moreover, by
controlling the step size and the number of iterations, one
can fine-tune the strength and effectiveness of the attack. I-
FGSM has shown significant effectiveness in attacking vari-
ous deep learning models and has raised concerns about the
robustness and security of these models.

2.3MI-FGSM
Momentum Iterative Fast Gradient Sign Method (MI -
FGSM) is an advanced adversarial attack method. It’s based
on I - FGSM and uses a momentum term. The momentum
helps accumulate gradient directions over iterations, allow-
ing for more stable and effective attacks. It overcomes some
limitations of I - FGSM, like getting stuck in local optima,
and can better deceive machine - learning models.

3.Proposed Solution
Based on previous research, this paper first replicates the
existing attack methods. Subsequently, it investigates the
effects of various attack algorithms in the environment
with limited computing power. Although white-box attacks
demonstrate a relatively high success rate, this is often not
the case in real-world environments. Black-box attacks are
more in line with practical scenarios, and many scholars
have already explored this field. Finally, we will adopt sim-
ple ensemble learning to improve the attack success rate.
The plan of this paper is as follows:

1. Verify whether the advanced attack methods can work
under the condition of low computing power.

2. Compare the replicated results with the advanced results
in the paper.

3. Employ simple ensemble learning to improve the accu-
racy rate of adversarial samples in black-box attacks.

4.Experiments
In this section, experiments were conducted on the Ima-
geNet dataset to verify the effectiveness of the proposed
method. Firstly, the experimental setup will be elaborated in
detail in Section 4.1. Subsequently, we will report the results
of attacks carried out by various algorithms against a single
model in Section 4.2, and present the results of attacks tar-
geting model ensembles in Section 4.3.

4.1.Setup
At present, the research on the security of deep learn-
ing models has attracted significant attention. We focus on
four typical models for in-depth exploration. Among them,



Table 1: Attacking a single model

the three conventionally trained models, namely VGG11,
ALEXNET, and SQUEEZENET,each have their own high-
lights. VGG11 is adept at precisely extracting image fea-
tures by relying on its regular convolutional layer stacking.
ALEXNET, as a pioneer, has revolutionized learning effi-
ciency with large convolutional kernels and the ReLU func-
tion. SQUEEZENET focuses on being lightweight and can
guarantee classification performance under limited comput-
ing power. There is also a model constructed through ensem-
ble technology, which integrates the advantages of multiple
sub-models and exhibits better stability and stronger anti-
interference ability in complex image environments. To en-
sure the effectiveness of experimental data, models must first
be able to correctly classify the original images. Otherwise,
it is meaningless to study the attack success rate. For this
purpose, we target the ILSVRC 2012 validation set and use
a random sampling procedure to accurately select 1,000 im-
ages from its vast collection covering 1,000 categories. After
strict verification, these images can all be correctly classified
by the above four models.

During the experimental stage, we mainly compare the
momentum-based method, the single-step gradient-based
method, and the iterative method. The momentum-based
method introduces the concept of physical momentum and
can reduce the interference of local gradients during opti-
mization, thus steadily seeking the optimal solution. The
single-step gradient method is simple and straightforward,
quickly adjusting parameters according to the current gradi-
ent, but it is prone to getting trapped in local optima. The it-
erative method refines the results through multiple iterations.
As for the optimization-based method, since it is difficult to
control the distance between adversarial examples and real
examples, it cannot be directly compared with our method.
Therefore, it is not included in this core comparison. We are
fully committed to digging deep into the differences and ad-
vantages among the former three methods to promote the
advancement of model attack and defense technologies.

4.2.Attacking a single model
We report in Table 1 the success rates of attacks against the
models under our study. Adversarial examples are generated
for VGG11, ALEXNET, and SQUEEZENET respectively
by employing the Fast Gradient Sign Method (FGSM), It-
erative Fast Gradient Sign Method (I-FGSM), and Momen-
tum Iterative Fast Gradient Sign Method (MI-FGSM). The

success rate refers to the misclassification rate of the corre-
sponding models when taking adversarial images as inputs.
In all experiments, the maximum perturbation is set to 16,
with the pixel value ranging within [0, 255]. The number of
iterations for both the Iterative Fast Gradient Sign Method
(I-FGSM) and the Momentum Iterative Fast Gradient Sign
Method (MI-FGSM) is 10. From the table, we can observe
that the Momentum Iterative Fast Gradient Sign Method
(MI-FGSM), like the Iterative Fast Gradient Sign Method
(I-FGSM), remains a powerful white-box adversary since
it can attack white-box models with a success rate close
to 100On the other hand, it can be seen that by integrating
momentum, our proposed Momentum Iterative Fast Gradi-
ent Sign Method (MI-FGSM) significantly outperforms both
the Fast Gradient Sign Method (FGSM) and the Iterative
Fast Gradient Sign Method (I-FGSM) in black-box attacks,
which demonstrates the effectiveness of the proposed algo-
rithm.

4.3. White-box attack
In the research field of adversarial examples, white-box at-
tacks are a crucial and thorny type of attack, attracting sig-
nificant attention both in academic discussions and practical
application scenarios. What distinguishes them from other
attack methods is that attackers possess all the detailed in-
formation about the target machine learning model, includ-
ing the overall architecture design, specific internal parame-
ter settings, the algorithm logic used in model training, and
how input data flows and output results are generated. With
such comprehensive information at their disposal, attackers
are empowered with extremely powerful attacking capabil-
ities, posing a huge threat to model security. When launch-
ing white-box attacks, attackers will fully utilize the known
model information and carry out attacking actions in an or-
derly manner. Due to their familiarity with the internal struc-
ture and parameters of the model, attackers can accurately
locate the weak links of the model. For example, in the task
of image classification, they know which combinations of
neurons are responsible for recognizing specific categories
and which layers play a key role in feature extraction, and
thus can skillfully target these critical parts. During the at-
tack process, gradient information plays a pivotal role. Al-
though specific formulas are not delved into here, the prin-
ciple is that, relying on their understanding of the model,
attackers can efficiently calculate the key gradient changes



Table 2: Attacking an ensemble of models

Table 3: Attacking an ensemble of models

when the model processes inputs. They know which dimen-
sions of the input to adjust and in which direction to make
slight modifications to interfere with the normal judgment
of the model. After obtaining the key information, attack-
ers set about carefully constructing adversarial examples.
Through a series of complex operations, they make subtle
changes to the originally normal samples to generate adver-
sarial examples. In the field of images, adversarial exam-
ples are almost indistinguishable from the original images
at first glance, perhaps with only extremely subtle adjust-
ments to a few pixels. However, it is precisely these slight
differences that are enough to mislead the model. For in-
stance, an image that was originally accurately identified as
a ”cat” will be firmly misclassified as a ”dog” by the model
after being processed into an adversarial example through
a white-box attack, completely deviating from the correct
result. White-box attacks have several advantages, making
their destructive power not to be underestimated. In terms
of efficiency, compared with black-box attacks that grope
in the dark, repeatedly probing and querying a large num-
ber of model characteristics to find attack breakthroughs,
white-box attacks are like explorers with a map, directly hit-
ting the vital parts. Relying on the known model informa-
tion, attackers can often quickly lock in an attack strategy
and achieve the goal of making the model make mistakes
with less time and computing power. In addition, accuracy
is also a major strength of white-box attacks. Attackers can
precisely identify the sensitive areas of the model and de-
termine which details of the input, once changed, will se-
riously interfere with the model’s output. Thus, they skill-

fully apply tiny perturbations to these critical dimensions,
just like placing a feather on a precision balance, yet enough
to disrupt the balance and greatly increase the probability of
a successful attack. However, white-box attacks also bring
unprecedented challenges to defense work. Traditional de-
fense methods, such as restricting external access to model
information and encrypting parts of the model structure, are
ineffective in the face of white-box attacks. After all, attack-
ers already have all the model information, and these sim-
ple protection measures simply cannot stop their offensive
steps. Currently, defenders have to explore other paths and
seek more sophisticated and elaborate defense technologies.
For example, adversarial training involves integrating adver-
sarial examples into the normal training process to expose
the model to various attack means in advance and enhance
its resistance. There is also the gradient masking technique,
which hides the real gradient information to prevent attack-
ers from taking advantage of it. However, the confronta-
tion between offense and defense is endless. While defense
technologies are constantly upgrading, new white-box attack
methods are also emerging continuously, constantly testing
and challenging the security line of models.As shown in Ta-
ble 3, under white-box attacks, the success rate of the attacks
is extremely high. For the MI-FGSM algorithm, it can even
approach 100

4.4. Black-box attack
Under the black-box condition, attacks become more diffi-
cult. In the realm of adversarial examples research, the ex-
treme difficulty of black-box attacks stems from multiple



factors. Firstly, attackers struggle to access crucial informa-
tion of the target model, including structural details like the
number of layers, neuron layouts per layer, and inter-layer
connections, as well as parameter settings such as weight
matrices and bias vectors. Even details about the training
dataset and algorithm remain unknown. For instance, in the
autonomous driving object recognition model, due to com-
mercial secrecy and security concerns, its internal struc-
ture and training data are withheld. Secondly, existing de-
fense mechanisms have upped the ante for black-box at-
tacks. Many practical models employ complex defenses.
Some preprocess inputs to filter out abnormal pixel patterns
via statistical principles, while adversarial training incorpo-
rates adversarial examples during model training, endow-
ing models with the ability to resist attacks. Without un-
derstanding these defenses, carefully crafted adversarial ex-
amples often get intercepted before reaching the model’s
core decision-making. Moreover, the limited information
obtained from the model in black-box attacks curtails at-
tack effectiveness. Unlike white-box attacks leveraging gra-
dient information for precise adversarial example genera-
tion, black-box attacks only yield basic outputs like classifi-
cation results and probability estimates. The process of cre-
ating adversarial examples demands a high level of precision
and finesse. It requires delicate modifications to the origi-
nal text, alterations that are meticulously calibrated to de-
ceive the model without being overly conspicuous. But due
to the attackers’ lack of insight into the model’s focus, they
struggle to identify the optimal points of intervention within
the text. They cannot ascertain which words or phrases, if
tweaked ever so slightly, would trigger the model to mis-
classify the sentiment, making it an arduous task to engineer
those subtly deceptive and misleading adversarial examples
that could potentially undermine the integrity and reliability
of the text sentiment classification model. Finally, significant
differences between models and their inherent uncertainties
impede black-box attacks. Varied model architectures and
training paradigms lead to diverse decision boundaries and
feature extraction logics. Even with prior attack experience,
attackers often find past strategies ineffective against new,
unknown models. Additionally, the influence of data noise
and random initialization parameters renders model behav-
ior unpredictable, further complicating black-box attacks.As
shown in Table 3, under black-box attacks, the success rate
of the attacks is extremely low, and there is a significant dif-
ference compared with the effect of white-box attacks.

4.5. Attacking an ensemble of models
In this section, a comprehensive comparison of the ensem-
ble methods for attacks has been meticulously conducted.
Our research scope encompasses three prominent models,
namely VGG11, ALEXNET, and SQUEEZENET, which
have been widely recognized and studied in the field of deep
learning. In the course of our experiments, we carried out
targeted attacks on the ensemble constructed by integrating
these three models. To be specific, we employed three dis-
tinct yet influential attack methods: the Fast Gradient Sign
Method (FGSM), the Iterative Fast Gradient Sign Method
(I-FGSM), and the advanced Momentum Iterative Fast Gra-

dient Sign Method (MI-FGSM), respectively. During the ex-
perimental setup, we meticulously calibrated the parame-
ters to ensure the reliability and comparability of the re-
sults. The maximum perturbation was deliberately set to 16,
which functions as a crucial constraint dictating the extent
of alterations permissible on the input data. Additionally, for
both the Iterative Fast Gradient Sign Method (I-FGSM) and
the Momentum Iterative Fast Gradient Sign Method (MI-
FGSM), the number of iterations was uniformly fixed at 10,
aiming to standardize the iterative process and maintain con-
sistency across different attack scenarios. Simultaneously,
we adopted an equal weighting strategy for the ensemble
models, granting each component model an equivalent influ-
ence within the integrated framework, thereby eliminating
potential biases caused by uneven weight distribution. The
outcomes of these elaborate experiments are methodically
presented in Table 2, which serves as a crucial repository of
our empirical findings. Upon close examination of Table 2,
a remarkable observation comes to the fore: the adversarial
examples generated by the Momentum Iterative Fast Gradi-
ent Sign Method (MI-FGSM) exhibit a strikingly high trans-
fer rate. This feature endows them with the remarkable abil-
ity to execute potent black-box attacks, effectively circum-
venting the target model’s defenses without prior knowledge
of its internal structure, thus posing a significant challenge to
the security and robustness of deep learning models. Overall,
these findings not only shed light on the performance dis-
parities among different attack methods but also underline
the potential threats that the MI-FGSM approach might pose
to real-world applications reliant on deep learning systems,
urging further investigations into enhanced defense mecha-
nisms.

Conclusion
In this paper, we reproduce the momentum - based iterative
methods to enhance adversarial attacks under the condition
of weak computing power. These methods can effectively
deceive white - box models and black - box models. Our
methods always outperform the one - step gradient - based
methods and vanilla iterative methods in the black - box at-
tack mode. We have carried out a large number of experi-
ments to verify the effectiveness of the proposed methods
and explain why they are effective in practical applications.
In order to further improve the transferability of the gen-
erated adversarial examples, we propose to attack a simple
ensemble model. Specifically, from the perspective of surro-
gate models, if only a single surrogate model is considered,
the adversarial examples generated with the VGG11 classi-
fier as the surrogate model usually have poor transferability
in attacks, while those generated with Alexnet have higher
transferability. It is hypothesized that the decision bound-
aries of Alexnet and the defense models in Kaggle are more
similar. If an ensemble learning model is used as the surro-
gate model, the transferability of the generated adversarial
examples will be improved. From the perspective of attack
algorithms, as the attack algorithms become more advanced,
the update capabilities of the algorithms become more sta-
ble, the abilities to escape from poor local optima become
stronger, and the attack success rates become higher.
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