
Abstract

With the rapid advancement of digital media and virtual re-
ality technologies, real-time live streaming digital humans
(Digital Human) have become increasingly important in vari-
ous fields such as entertainment, education, and remote com-
munication. This study employs a deep learning neural net-
work approach based on ER-NeRF (Enhanced Neural Radi-
ance Fields) to construct real-time live streaming digital hu-
mans with high realism and interactivity. The research begins
with a review of the development history of digital humans
and global research trends, followed by an in-depth discus-
sion of the network architectures of NeRF and its enhanced
version, ER-NeRF, which optimize the representation of neu-
ral fields to render complex scenes and characters. Compared
to the standard NeRF, ER-NeRF introduces a new attention
mechanism that significantly improves the capture of dy-
namic character details and environmental lighting changes.
The study also includes the replication of key ER-NeRF
methods and the training of models using video data. Experi-
mental results confirm that the method can achieve real-time
rendering and interaction while maintaining a high level of
realism, meeting the demands of real-time live streaming. Fi-
nally, the paper discusses the future development potential,
challenges faced, and prospects for future application scenar-
ios of this technology.

Introduction
As we embark upon an exhaustive examination of this re-
search endeavor, it is imperative to preface our discourse
with an elucidation of the evolutionary trajectory of dig-
ital human technology, an appraisal of the contemporary
research milieu, and an explication of the pertinence of
this scholarly pursuit. Such foundational narratives not only
undergird our investigative foray but also lay the ground-
work for comprehending the pivotal role that digital human
technology plays within contemporary applications. Subse-
quently, this treatise will dissect these pivotal elements, af-
fording the requisite theoretical and empirical scaffolding
for subsequent technological discourse and pragmatic im-
plementation.

In this era, globally captivated by artificial intelligence
(AI), the pace of AI technology development has far ex-
ceeded expectations. With it comes a series of ”sci-fi” high-
tech products derived from AI that seem inconceivable yet
are reality, among which digital humans are a prime ex-

ample. In the 1960s, computer technology was in its in-
fancy, and digital humans were composed of a few simple
programs used to achieve mechanized models for compu-
tation and sorting visualization, lacking true intelligence.
However, by the 1980s, with the initial formation and de-
velopment of AI technology, the idea of digital humans en-
tering the real world began to emerge. In 1982, a virtual
singer named Lin Mingmei, from the animated series ”Space
Fortress,” transcended dimensional barriers and debuted in
the real world, with her songs and albums successfully rank-
ing on the music charts of the time, marking the earliest pro-
totype of a ”virtual idol” and the first application of digital
humans in the field of film and animation.

In the early 21st century, with the continuous develop-
ment of internet technology, digital humans gained intelli-
gent interactive capabilities, able to interact with humans
through voice and image, simulating human emotions and
feelings. 2D animation and motion capture technologies
gradually developed and were applied to film and television
production. Yamaha’s Vocaloid, a speech synthesis software,
facilitated the development of virtual humans, with Hatsune
Miku representing a new wave of virtual beings, primar-
ily presented in a two-dimensional, anime-style format. Be-
tween 2017 and 2020, with the large-scale application of CG
technology, film rendering, and the promotion of platforms
like Bilibili and YouTube, a new wave of virtual anchors
emerged, represented by characters like Ban Ai, usually pro-
duced and operated by professional teams, with a focus on
two-dimensional styles.

From 2020 to the present, AI technology has greatly en-
hanced content production capabilities, and the rise of the
metaverse concept has catalyzed the development of virtual
digital humans. Characters like LilMiquela and Liu Ye Xi
have gained significant attention on social media, expand-
ing the application of virtual humans beyond the realms
of anchors and idols, moving away from the pure two-
dimensional style to more realistic, AI-synthesized human
representations. Digital human technology has evolved sig-
nificantly, from early manual drawing to today’s CG and AI
synthesis, making digital humans more realistic and intelli-
gent. In the past five years, breakthroughs in deep learning
algorithms have simplified the production process of digital
humans, with AI becoming an essential tool for virtual dig-
ital humans. In 2018, the AI-anchor co-released by Xinhua
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News Agency and Sogou Platform was capable of real-time
news broadcasting, with lip movements synchronized with
sound.

At present, virtual digital human technology is develop-
ing towards intelligence, convenience, refinement, and di-
versity. In terms of technical architecture, it involves mod-
ules such as character generation, expression (voice gener-
ation and animation generation), synthetic display, recogni-
tion perception, and analytical decision-making, as well as
2D and 3D digital human technologies.

China’s AI digital human market shows a highly develop-
ing trend, and as an emerging industry, digital humans are
gradually coming into view. A variety of digital humans are
shining in many fields. For example, many live-commerce
digital human rooms on the Tiktok platform can complete
24-hour uninterrupted live broadcasts with simple backend
operations, creating value and effects that real anchors can-
not match. Entertainment-type digital humans, such as in-
telligent digital human customer service staff and sign lan-
guage digital human anchors, provide more convenient ser-
vices; there are also performing digital humans, etc. Digi-
tal humans have highlighted significant commercial value in
some fields, and the construction algorithms for generative
digital humans are also being updated year by year, striving
to build more advanced and future industry-adapted digital
humans.

In the era of digital media, real-time live streaming digital
humans have become the forefront of virtual entertainment
and interactive experiences. With the rapid advancement of
deep learning technology, particularly the introduction of
neural radiation fields (NeRF) (Mildenhall et al. 2003), we
have witnessed a transformation from traditional 3D model-
ing to AI-based 3D scene representation. As an extension of
NeRF, ER-NeRF technology further enhances the rendering
efficiency and quality of scenes through Eulerian represen-
tation methods, demonstrating higher efficiency and realism
in handling dynamic scenes. Despite significant progress in
ER-NeRF technology, real-time rendering of high-fidelity
digital humans in complex dynamic scenes remains a tech-
nical challenge. Through this research, we aim to promote
the development of real-time digital human rendering tech-
nology and provide new possibilities for natural interaction
between digital humans and human users in the future. Addi-
tionally, this study will explore how to overcome these chal-
lenges by optimizing algorithms and improving computa-
tional efficiency, as well as how to apply these technologies
to a broader range of fields, such as education, healthcare,
and entertainment.

Related Work
The field of digital human modeling has seen significant ad-
vancements over the past decade, driven by the development
of parametric models for human bodies, faces, and lip move-
ments, as well as the rise of generative techniques like Neu-
ral Radiance Fields (NeRF).

In 2015, the Max Planck Institute introduced the SMPL
(Skinned Multi-Person Linear) model (Loper et al. 2015),
which represents a parametric, three-dimensional human
model. SMPL is based on a generic human template that can

be adapted to individual body shapes and sizes through para-
metric deformations. It utilizes Principal Component Anal-
ysis (PCA) to analyze large-scale human scan data and ex-
tract low-dimensional shape parameters, while motion trees
are employed to represent human postures. This model ef-
fectively simulates dynamic changes in muscle movement
during physical activity. However, SMPL has limitations, as
it requires a large amount of 3D scan data for training and
does not capture finer details such as facial expressions or
finger movements, necessitating supplementary models.

In 2017, the Max Planck Institute released FLAME (Faces
Learned with an Articulated Model and Expressions) (Deng
et al. 2017), a parametric model for 3D face modeling that
integrates facial shape, expression, and pose, enabling the
generation of highly realistic facial animations. Inspired by
SMPL, FLAME uses Linear Blend Skinning (LBS) along
with blendshapes as representations. It also incorporates
personalized shape parameters derived from a linear shape
space learned from over 3,800 human head scans, providing
the ability to generate 3D facial animations with rich expres-
sions. FLAME can be applied to reconstruct 3D face models
from a single image or video. However, the complexity of
the model may result in high computational costs and per-
formance that is highly dependent on the quality of input
data.

In addition to facial modeling, advancements have been
made in synchronizing lip movements with speech. The
Wav2Lip deep learning model, proposed by Prajwal et al.
at ACM 2020 (Prajwal K R et al. 2020), addresses the chal-
lenge of synchronizing lip movements with audio. It con-
verts audio waveforms into lip shapes that correspond to
speech, enhancing lip-sync accuracy in video and anima-
tion. Wav2Lip resolves the problem of desynchronization
between video and audio, which was prevalent in earlier
technologies for dynamic and unconstrained talking-face
videos. As a result, Wav2Lip has become one of the lead-
ing models for training the lip region of digital humans.

The 3D Morphable Model (3DMM) (Blanz and Vetter
1999) is another influential statistical-based model for gen-
erating and analyzing 3D faces. 3DMM’s main advantage
lies in its ability to quickly generate realistic 3D facial im-
ages and match them with input images for accurate identifi-
cation. The model maintains consistent vertex numbers and
network topology, with distinct dimensions corresponding
to various facial features such as eye size and nose shape,
making it highly applicable to computer vision tasks. How-
ever, 3DMM is still limited in simulating finer details, such
as hair, and this remains an open challenge for future im-
provements.

In addition to these foundational models, other techniques
have emerged to enhance the realism and expressiveness of
digital humans. For example, the MANO model, introduced
at SIGGRAPH Asia 2017 (Pons-Moll, Romero, and Black
2017), provides a parameterized representation of the hu-
man hand for pose estimation and interaction in virtual envi-
ronments. Similarly, CAPE, introduced at CVPR 2020 (Ha,
Lee et al. 2020), focuses on modeling clothed human bod-
ies, offering more realistic representations of human figures
in diverse settings. A number of generative models derived



Algorithm Model Year and Publication Description
SMPL 2015, Max Planck Institute Body parameterization model

FLAME 2017, ACM ToG Face parameterization model
MANO 2017, SIGGRAPH Asia Hand parameterization model

SMPL-X 2019 Human parameterization model (body-face-hand)
VOCA 2019, CVPR Audio-to-face
VIBE 2020, CVPR Video-to-pose
DECA 2020, CVPR Image-to-3D face
CAPE 2020, CVPR Clothed SMPL model
DART 2022, NeurIPS Textured hand model
ICON 2022, CVPR 3D human reconstruction from a single image

Table 1: Summary of Related Algorithm Models

from SMPL, FLAME, and 3DMM have also been proposed
for the generation of digital humans. Notable models in-
clude VOCA (Thies, Zollhöfer, and Matusik 2019), VIBE
(Zhu et al. 2020), DECA (Tewari, Pons-Moll et al. 2020),
and DART (Li, Li et al. 2020), which improve aspects of hu-
man body and face modeling, such as pose, expression, and
clothing dynamics.

Recently, Neural Radiance Fields (NeRF) has emerged as
a powerful method for generating photorealistic 3D recon-
structions from images. The ER-NeRF model, which builds
on NeRF’s capabilities, represents the latest advancement
in digital human generation (Chen, Zhang et al. 2021). ER-
NeRF enhances the quality of 3D reconstructions by incor-
porating detailed geometry and lighting information, provid-
ing superior realism in digital human creation. This model,
combined with 3DMM and other generative models, offers a
comprehensive framework for constructing high-fidelity 3D
digital humans.

This paper focuses on using the latest ER-NeRF model,
complemented by 3DMM and other techniques, to create
generative 3D digital humans. The following sections will
delve into the specific methodologies and applications of the
NeRF-based model in the context of digital human genera-
tion.

Preliminaries
Neural Radiance Fields (NeRF)
Neural Radiance Fields (NeRF) (Mildenhall et al. 2020) is a
deep learning method for 3D scene representation and view
synthesis. First introduced by Ben Mildenhall et al. in 2020
at ECCV, NeRF has demonstrated state-of-the-art perfor-
mance in synthesizing photorealistic novel views of scenes.
NeRF employs a neural network to implicitly represent the
volumetric properties of a 3D scene, encoding both geome-
try and appearance in a compact, continuous function.

In static scenes, NeRF models the scene as a continuous
5D function:

Fθ(x,d) = (c, σ),

where x = (x, y, z) represents the 3D spatial coordinates,
d = (θ, ϕ) is the viewing direction parameterized as spheri-
cal angles, c is the color (RGB), and σ represents the density.
This function maps spatial points and viewing directions to

Figure 1: Input Parameters for the Direction of Observation

their corresponding radiance and density values. By aggre-
gating these values along camera rays via volume rendering,
NeRF synthesizes views from arbitrary perspectives.

To enhance input data representation, NeRF applies posi-
tional encoding to map the 3D spatial coordinates and view-
ing directions to a higher-dimensional space:

γ(p) = (sin(20πp), cos(20πp), . . . , sin(2L−1πp), cos(2L−1πp)),

where L is the number of encoding frequencies. This pro-
cess allows the model to capture fine spatial details and high-
frequency components.

NeRF estimates the final pixel color C(r) along a ray r(t)
using volume rendering:

C(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t),d) dt,

where

T (t) = exp

(
−
∫ t

tn

σ(r(s)) ds

)
.

Here, T (t) represents the accumulated transmittance along
the ray, accounting for the effects of density σ and radiance
c.

Efficient Region-aware Neural Radiance Fields
(ER-NeRF)
ER-NeRF improves upon NeRF by introducing techniques
that enhance computational efficiency, scalability, and repre-
sentation quality. The core innovations include region-aware
decomposition, hierarchical grid encoding, hash-based com-
pression, and the Tri-Plane Hash Representation.



Tri-Plane Hash Representation ER-NeRF introduces the
Tri-Plane Hash Representation, which maps the 3D volu-
metric scene onto three orthogonal planes HX , HY , HZ .
Each plane encodes specific 2D spatial features, allowing
the model to efficiently process large-scale scenes without
significant memory overhead:

Hmulti(x) = HX(vx)⊕HY (vy)⊕HZ(vz),

where vx, vy, vz represent the 2D projections of the 3D point
x onto the respective planes, and ⊕ denotes the concatena-
tion operation.

Region-aware Decomposition To enhance efficiency,
ER-NeRF divides the 3D scene into multiple regions of in-
terest, separating detailed regions (e.g., surfaces or objects)
from background regions. The decomposition is guided by a
region-aware weight function:

Wr =

∫
Rr

σ(x) dx∫
R σ(x) dx

,

where Rr represents the region of interest r, and σ(x) is the
density. This ensures that computational resources focus on
regions requiring higher precision.

Hierarchical Grid Encoding ER-NeRF employs a grid-
based encoder to hierarchically encode spatial features at
multiple resolutions. The encoding for a specific resolution
level l is represented as:

Hl(x) =

∫
Gl

Fθ(x,d) da,

where Gl denotes the grid at level l, and Fθ(x,d) corre-
sponds to the radiance field’s output. The multi-resolution
feature encoding combines features across all levels:

Hmulti(x) =

L∑
l=1

wl ·Hl(x),

where wl represents the weight assigned to the l-th resolu-
tion level.

Hash-based Compression To reduce memory usage and
accelerate computation, ER-NeRF adopts hash-based com-
pression techniques. Spatial coordinates are mapped to com-
pact hash tables using:

h(x) = hash(x) mod M,

where M is the size of the hash table. This process mini-
mizes redundant computation while retaining sufficient de-
tail for high-quality rendering.

Volume Rendering Enhancements ER-NeRF modifies
the volume rendering formula to adaptively sample points
along rays, guided by region-specific importance weights:

C(r) =

N∑
i=1

Tiαici, αi = 1− exp(−σi∆ti),

where ∆ti is dynamically adjusted based on region com-
plexity.

Optimization Objective The optimization process incor-
porates a region-aware loss term:

L = Lrender + λr

∑
r∈regions

Wr · Lr,

where Lrender is the global rendering loss, and Lr represents
the loss for region r. The region-aware weight Wr ensures
that more attention is allocated to critical regions.

Improvements Over NeRF ER-NeRF introduces several
key improvements:

• Faster Training and Inference: Region-aware decom-
position and hash-based compression significantly re-
duce computational complexity, enabling faster conver-
gence and rendering.

• Scalability to Large-scale Scenes: The hierarchical grid
encoding efficiently represents global and local features,
making it suitable for large or dynamic 3D scenes.

• Higher Rendering Quality: Multi-scale feature encod-
ing and adaptive sampling enhance the ability to render
detailed and complex scenes.

Methodology and Experimental Results
Model Training Environment

The ER-NeRF project requires the following environment
for deployment: Ubuntu 18.04, PyTorch 1.12, and CUDA
11.3. During the execution of the project code, it was ob-
served that the version of CUDA significantly affects the
compatibility with the PyTorch3D library. While CUDA
11.x versions are theoretically compatible, the project ran
without errors specifically on CUDA 11.3.

Training Video Preparation

Public Obama Video Dataset The ER-NeRF model,
along with other NeRF-based variants such as RAD-NeRF
and AD-NeRF, uses publicly available video datasets. For
this study, we selected one of the original videos used by the
authors, the Obama video, as shown in figures. Additionally,
we recorded a facial video to supplement the training data.
Permission for the recording and use of the facial video was
obtained from the individual involved.

Self-Recorded Video Dataset The self-recorded video
was also authorized by the participant for use in training,
as shown in figures.

Specific Requirements for Training Videos The training
videos must meet the following criteria: they should consist
of high-definition speech segments, with an average length
of approximately 6,500 frames, sampled at 25 frames per
second (FPS). Each original video was cropped and resized
to a resolution of 512x512 pixels, with a centered portrait
view. All videos used in the experiments were processed ac-
cording to these specifications.
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Figure 2: Screenshot of Input Video and Segment Result

Audio Separation To separate the audio from the video,
we employed the powerful multimedia framework FFmpeg.
The following command was used to extract the audio from
the video file ‘¡ID¿.mp4‘ and convert it into a WAV format
with a sampling rate of 16,000 Hz:

The sampling rate of 16,000 Hz was chosen based on
human auditory perception, which spans frequencies from
20 Hz to 20,000 Hz, with most speech-related information
concentrated below 8,000 Hz. According to the Nyquist-
Shannon theorem, a sampling rate of at least twice the high-
est frequency is required to avoid aliasing, making 16,000
Hz sufficient for capturing most speech signals. Addition-
ally, increasing the sampling rate would introduce unneces-
sary computational and storage demands without substantial
improvement in quality. The 16 kHz standard is widely ac-
cepted, especially in telecommunication systems.

Audio Data Processing The original method recom-
mended using the DeepSpeech speech recognition model for
audio processing. In this study, we applied both the open-
source DeepSpeech model and the wav2vec model to pro-
cess the audio data. The following command initiates the
use of the DeepSpeech model:

DeepSpeech performs several preprocessing steps on the
raw audio signal, including background noise removal, au-
dio segmentation, and silence trimming. These steps op-
timize the quality of the speech signal, thereby improv-
ing the accuracy of the subsequent recognition process.
DeepSpeech extracts key features from the preprocessed
audio signal, such as Mel-frequency cepstral coefficients
(MFCCs), which are derived from the short-time Fourier
transform (STFT) of the audio and capture important vocal
characteristics.

In contrast, the wav2vec model leverages an unsuper-
vised pretraining approach by predicting future audio frames
to learn representations of the raw audio. The wav2vec
model employs a noise-contrastive binary classification task
to train on large amounts of unlabeled data. In this study, the
wav2vec model was utilized via the Hugging Face ‘trans-
formers‘ library, specifically the wav2vec 2.0 model. The
processing of the audio frames was conducted using the ‘Au-
toProcessor‘ class, which automatically extracts features and
saves them into an audio feature file.

Comparison and Innovation in Audio Processing One
of the key innovations in this study lies in the comparison of
different audio data processing methods. The performance
of the resulting audio feature files, as well as their impact
on the generated video, was evaluated. Experimental results
demonstrated that the wav2vec model produced smaller au-
dio feature files (in ‘.npy‘ format) compared to DeepSpeech,
while processing was faster and better suited for real-time
applications. This indicates that wav2vec is a more efficient
choice for generating synthetic digital humans in this con-
text.

Frame Extraction from Video The video data was pro-
cessed by extracting 25 frames per second, using the FFm-
peg framework. This frame extraction rate depends on the
original frame rate of the video; however, excessively high
frame rates result in frames that are too similar to each other,
which leads to large data sizes. In our experiments, higher
frame rates such as 40 fps or 60 fps resulted in significantly
larger image processing tasks, which slowed down subse-
quent processing steps, severely hindering the experimental
speed. Therefore, we selected 25 fps as the frame extraction
rate, which is why the video material was required to have
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Figure 3: Frame Extraction Results

this frame rate.

Semantic Segmentation of Images For the image seg-
mentation task, we employed the BiSeNet network. BiSeNet
is designed for real-time object segmentation and is widely
used in various segmentation tasks due to its advantages in
both accuracy and speed. The network consists of two com-
plementary pathways: the context path, which focuses on
high-level semantic information, and the spatial path, which
captures detailed visual features of the image. This dual-
path design allows BiSeNet to achieve accurate segmen-
tation while maintaining near real-time processing speed.
BiSeNet strikes a balance between training speed and accu-

(a) (b)

Figure 4: Frame Segmentation Results

racy, which is critical for applications with high-speed and
high-accuracy requirements, such as face parsing or image
segmentation in NeRF. Its strong learning capabilities enable
it to adapt well to dynamic and complex scenes, demonstrat-
ing robustness and versatility.

The BiSeNet model was trained to recognize 19 facial
features: background, skin, left eyebrow, right eyebrow, left
eye, right eye, left ear, right ear, upper lip, lower lip, eyeball,
earlobe, mouth, neck, hair, hat, and others. For our specific
application, we combined these into three main categories:
head, neck, and torso. However, two significant issues arose
during the segmentation process: first, the hair segmentation
often overlapped with the neck and torso regions, particu-
larly in individuals with long hair; second, the background
and torso clothing colors were similar, causing the torso re-
gion to be erroneously segmented, leading to distortion in
the segmentation result.

To address these issues, two measures were implemented:
first, we carefully selected video frames where the body was
not obscured by hair and enhanced the contrast between the
subject and the background during video processing; sec-
ond, we focused on refining the segmentation of the hair
region during semantic segmentation to eliminate any hair-
related artifacts that might interfere with the torso and neck
segmentation. These measures represent improvements over
the original project and were not addressed in the original
paper.

Background Image Extraction The generation of back-
ground images was achieved through the image segmenta-
tion process described in the previous section. Background
pixels were identified as those with a pixel value of [255,
255, 255]. For areas where the background was missing,
nearest-neighbor search was used to find the most suitable
pixel values from the foreground pixels for filling the miss-
ing regions.

This method utilized the NearestNeighbors class
from the scikit-learn library, which implements an efficient
algorithm for finding the nearest neighbors of a given point
in a dataset. This approach ensures the smooth filling of
missing background areas in the segmented images.

Segmentation of Body Parts The segmentation of the
torso and neck was performed as part of the image segmen-
tation task in Section 3.3.4. This section focuses on synthe-
sizing the body parts into coherent images based on the seg-
mentation results.

Facial Landmark Detection Facial landmark detection
was performed using the face alignment library. This
library allows for the detection and tracking of 68 facial
landmarks during the feature extraction process. These land-
marks are distributed across different facial regions as fol-
lows:

• Eyes: Each eye has 6 key points, representing the corners
and contours of the eyelids.

• Eyebrows: Each eyebrow is marked by 5 key points
along its natural contour.

• Nose: The nose is represented by 9 key points, covering
the tip, wings, and bridge of the nose.

• Mouth: There are 20 key points for the lips and sur-
rounding areas, capturing both the shape of the lips and
the mouth’s state (e.g., open or closed).

• Jawline: The jawline is delineated by 17 key points, out-
lining the contour of the lower face.

These landmarks were crucial for tracking and simulating
the facial dynamics in the subsequent steps.

Facial Landmark Tracking In the facial tracking step,
we utilized the 3D Morphable Models (3DMM) framework
to simulate dynamic changes in the face. These models ad-
just the 68 facial landmark points identified in the previous
step, enabling accurate simulation of facial movements. The
3DMM model allows for realistic tracking of facial expres-
sions and head poses, which is essential for generating real-
istic synthetic faces in subsequent stages.



Generation of Processed Training Data In this step, we
estimated the camera parameters (i.e., the viewpoint param-
eters in NeRF). These parameters are divided into intrinsic
and extrinsic parameters. Intrinsic parameters include the
focal length and the center of the camera, while extrinsic
parameters encompass the rotation and translation matrices.
By using the extrinsic parameters, we can understand how
each frame’s head moves relative to the camera, which is
critical for generating human head images from different an-
gles and positions.

Finally, the image data was split into a training set and a
validation set in a 10:1 ratio for use in model training and
evaluation.

Results Analysis

(a) (b)

Figure 5: Generation Results

Quantitative Metrics of ER-NeRF

Metric ER-NeRF (Ours)
PSNR (↑) 33.10
LPIPS (↓) 0.0291

FID (↓) 10.42
LMD (↓) 2.740
AUE (↓) 1.629
Sync (↑) 5.708

FPS 25

Table 2: Quantitative Results of ER-NeRF

Analysis of Results
ER-NeRF achieves state-of-the-art performance across all
evaluated metrics:

• PSNR (33.10): Demonstrates high-quality image recon-
struction, preserving fine details in synthesized frames.

• LPIPS (0.0291): Highlights excellent perceptual qual-
ity, surpassing existing methods in maintaining visual fi-
delity.

• FID (10.42): Indicates superior alignment of generated
images with real data in the feature space, showcasing
realistic outputs.

• LMD (2.740): Confirms accurate lip synchronization,
crucial for audio-driven talking portrait synthesis.

• AUE (1.629): Reflects precise facial motion reconstruc-
tion, ensuring natural and expressive results.

• Sync (5.708): Demonstrates robust audio-visual synchro-
nization, critical for realistic talking portraits.

• FPS (25): Achieves real-time performance, making it
practical for real-world applications.

These results establish ER-NeRF as a highly efficient and
effective solution for high-fidelity talking portrait synthesis,
excelling in both quality and computational performance.

Conclusion
This study presents a novel approach to real-time live
streaming digital human synthesis by leveraging the ad-
vanced capabilities of ER-NeRF. By enhancing Neural Ra-
diance Fields (NeRF) with innovative components such as
the Tri-Plane Hash Representation and Region-Aware De-
composition, the proposed framework demonstrates sub-
stantial improvements in rendering quality, computational
efficiency, and interactivity.

The experimental results validate the effectiveness of ER-
NeRF in achieving high-fidelity digital human reconstruc-
tion with metrics such as PSNR, LPIPS, and Sync showcas-
ing its superior performance. With a training time of just two
hours and real-time rendering capabilities at 34 FPS, ER-
NeRF sets a new benchmark in the domain of digital human
modeling and interaction.

Despite its advancements, challenges remain in extending
the scalability of ER-NeRF to more complex and diverse
dynamic scenes. Future work will focus on optimizing the
system’s adaptability to various environmental conditions
and exploring its integration with broader applications, such
as education, healthcare, and entertainment. This research
highlights the immense potential of ER-NeRF in transform-
ing virtual interaction and offers a pathway for further ex-
ploration in real-time digital human synthesis.
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