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Abstract

Reconstructing human-perceived images from neural signals
bridges computer vision and neuroscience but remains chal-
lenging. EEG-based methods often struggle with spatial dis-
crepancies between EEG signals and visual data, hinder-
ing accurate classification and compromising image qual-
ity. This work proposes a novel framework to decode se-
mantic information and primary image representations from
EEG signals and reconstruct images using a pre-trained dif-
fusion model. Our method encodes EEG signals by assigning
distinct weights to brain regions and aligns them with im-
age embeddings through ternary and similarity loss in high-
dimensional space, fine-tuned via a classification task to ex-
tract semantic information. Low-level visual features are de-
coded using a three-stage EEG-image co-training strategy,
addressing EEG data scarcity. Finally, a pre-trained diffusion
model synthesizes high-quality visual reconstructions aligned
with human perception. Experimental results highlight the
framework’s competitive performance in classification, re-
trieval, and reconstruction tasks, showcasing the potential of
EEG-based decoding for brain-computer interfaces due to its
portability, low cost, and high temporal resolution.

1 Introduction
Multimodal learning has recently gained attention, with text-
to-image synthesis(Ramesh et al. 2021) and image-text con-
trastive learning(Jia et al. 2021) driving significant advance-
ments. EEG-to-image reconstruction, a growing area of in-
terest, involves collecting electroencephalography (EEG)
data while subjects view images and reconstructing per-
ceived images from these signals. In this work, we pro-
pose a diffusion model, transforming EEG signals into em-
beddings to guide image reconstruction. Challenges arise
from EEG’s low signal-to-noise ratio and the complexity
of visual representations. Inspired by CLIP(Radford et al.
2021), which aligns text and image embeddings using a
self-supervised contrastive framework, we adopt contrastive
learning to align EEG and image embeddings, enabling the
extraction of semantic information from EEG signals.

The human visual system, crucial for perceiving the
environment and acquiring external information, continu-
ously processes visual input, from basic patterns to com-
plex scenes(Marr and Vaina 1982). Neuroscience aims to
uncover how this processing occurs at the neural level

through the study of neural coding. Brain-computer inter-
faces (BCIs) hold transformative potential, from enhanc-
ing human-machine interaction to aiding paralyzed pa-
tients. A major challenge is decoding and reconstruct-
ing human-perceived visual information using non-invasive
brain recordings. Visual decoding and reconstruction not
only deepen our understanding of brain processing but also
drive advancements in BCI applications.

As a non-invasive technology, EEG has become a cru-
cial tool in visual decoding research, bridging brain activ-
ity and the external world, with applications in clinical di-
agnosis(Sakkalis 2011) and brain-computer interfaces(Vaid,
Singh, and Kaur 2015). Significant progress has been made
in EEG-based visual decoding in recent years. Recent stud-
ies on visual stimulus reconstruction increasingly lever-
age deep generative models, particularly denoising diffusion
models(Rombach et al. 2022). We propose using an EEG
decoder to map EEG signals into embeddings that guide dif-
fusion models in image generation. However, existing meth-
ods(Zeng et al. 2023a) often prioritize reconstructing seman-
tic information while neglecting low-level visual features,
such as color and texture. To address this, we aim to ex-
tract both high-level and low-level visual features from EEG.
Given that brain regions like V1–V4 in the occipital lobe
process low- to mid-level visual information, while the infe-
rior temporal cortex processes high-level features, channels
near specific regions may better decode relevant features.
Thus, the model should integrate global brain information
while focusing on specific areas to decode diverse EEG fea-
tures effectively.

In EEG feature extraction, contrastive learning with im-
ages is commonly used to align the latent representations of
EEG and image embedding spaces(Song et al. 2023). How-
ever, most contrastive learning methods, limited by the self-
supervised framework, fail to achieve category-level align-
ment. Specifically, EEG embeddings focus on increasing the
distance from mismatched images, which, while effective in
separating different categories, unnecessarily increases the
distance from non-identical images within the same cate-
gory. To address this, we propose incorporating supervised
learning into the alignment process. This approach reduces
the distance between EEG embeddings and images of the
same category while increasing the distance from different
categories. By identifying shared EEG features within a cat-



egory, our method facilitates more effective stimulus recon-
struction at the category level.

Our contributions are as follows:

• We introduce a diffusion model for image reconstruc-
tion, guided by two conditions. The primary condition
is class guidance based on semantic information derived
from EEG signals. The additional condition, provided
by T2Iadapter-generated adapters, extracts image-related
features from EEG inputs, such as color, depth, and tex-
ture, to refine reconstruction quality.

• We propose a novel neuro-attention mechanism that en-
ables the model to focus on neural information from spe-
cific brain regions. This mechanism captures high-level
semantic information from the temporal lobe and low-
level visual details, such as color, from the occipital lobe.

• We develop a supervised embedding alignment approach
that pushes EEG embeddings away from images of dif-
ferent categories while pulling them closer to images of
the same category in the embedding space. This method
enhances the model’s ability to identify shared features
within the same category, improving stimulus reconstruc-
tion accuracy.

2 Related Work

Neural encoding and decoding of visual information has
been a longstanding focus in neuroscience and computer sci-
ence. Functional magnetic resonance imaging (fMRI) has
been widely employed to decode semantic information in vi-
sual processing. However, its non-portability, high cost, and
operational complexity render it unsuitable for meeting the
high-speed and practical demands of brain-computer inter-
faces (BCIs). In contrast, electroencephalography (EEG) of-
fers advantages such as portability and high temporal resolu-
tion, making it an essential tool for BCI applications. Conse-
quently, reconstructing images from EEG signals has rapidly
gained traction in recent years.

For example, Spampinato et al.(Spampinato et al. 2017)
used a deep convolutional generative adversarial network
(DCGAN) to reconstruct visual stimuli by extracting seman-
tic features from EEG signals. Tirupattur et al.(Tirupattur
et al. 2018) proposed the ThoughtViz framework, which ap-
plied a conditional GAN to transform encoded EEG signals
into corresponding images. While generative adversarial
networks (GANs) and variational autoencoders (VAEs) have
achieved some success in visual reconstruction, challenges
persist in generating high-quality images due to EEG’s low
signal-to-noise ratio and significant inter-subject variability.

To address these limitations, Zeng et al.(Zeng et al. 2023a)
introduced the EG-DDPM module, which leverages fea-
tures extracted from EEG as guidance for a diffusion model
to generate images. Additionally, Song et al.(Song et al.
2023) incorporated contrastive learning, employing image
and EEG encoders to extract features from paired EEG-
image data, further enhancing decoding performance.

Figure 1: ESTJ-GD’s Overview. Decoding semantic and
colour details from EEG, which consists of three pro-
cesses: 1) decoding semantics from EEG signals, 2) decod-
ing colours from EEG signals, and 3)finally reconstructing
the image completely by a pre-trained SD model.

3 Method
3.1 Problem Statement
The objective of visual decoding is to reconstruct an ob-
served image I ∈ RH×W×3 from brain activity signals
elicited by visual stimuli. Electroencephalography (EEG) is
typically employed to record these brain activities, repre-
senting them as a multivariate time series EEG ∈ RC×S ,
where C is the number of channels and S is the number of
time steps. Formally, the task aims to optimize a function
f(·) such that f(EEG) = Î , where Î closely approximates
the original image I .

3.2 Overview of the Work
To tackle this task, we propose a framework, ESTJ-GD, in-
spired by the fundamentals of human perception. Our ap-
proach explicitly designs reverse visual pathways to decode
the semantic and color information embedded in EEG data.
Given the high noise and low resolution of EEG signals
compared to fMRI, the extracted information is relatively
limited. To address this, we leverage a pre-trained model to
refine the reconstructed image after extracting the basic fea-
tures.

Fig. 1 outlines the proposed model, which comprises three
stages: Joint Spatial-Semantic Alignment, Three-Stage De-
coding of Color, and Guided Image Reconstruction. These
stages decompose the reverse mapping from EEG to image
into three subprocesses: EEG → {Ŝ}, EEG → {Ĉ}, and
{Ŝ, Ĉ} → I .

In the first stage, semantic details are decoded from EEG
through a reverse pathway. We employ joint attention cod-
ing across multiple brain regions (Sec. 3.3) and align these
details with the semantic space of the image using ternary
loss(Schroff, Kalenichenko, and Philbin 2015) and CLIP
space embedding(Radford et al. 2021). To mitigate cross-
domain issues in EEG datasets, we combine metric-based
and classification-based approaches, overcoming the lim-
itations of direct classification methods(Jiang, Fares, and
Zhong 2020) that rely on consistent test set distributions.

In the second stage (Sec. 3.4), we exploit the correlation
between semantics and color to decode color information
from embeddings derived in the first stage. Both stages use
joint spatial learning to align EEG and image embeddings



Figure 2: Overview of EEGTCLIP. EEG and image inputs
are encoded into embeddings Eeeg and Eimg through a neu-
ral encoder and a pre-trained image encoder, respectively.
Following the CLIP methodology, we learn a joint represen-
tation of Eeeg and Eimg. A triplet loss is then applied within
each batch to align different Eeeg embeddings with their re-
spective category spaces. Finally, triplet loss alignment is
applied between Eeeg and the category spaces after the joint
embeddings of Eeeg are fine-tuned for specific classification
tasks.

in a high-dimensional space, improving decoding accuracy
and model generalization.

Given the lossy nature of EEG data and the one-way trans-
formation from image to EEG, we treat the decoding pro-
cess as a generative task. Using extracted Ŝ and Ĉ as guid-
ance, the third stage (Sec. 3.5) employs guided image re-
construction. Here, we follow recent visual decoding meth-
ods(Takagi and Nishimoto 2023; ?) and utilize a frozen SD
model with T2I-Adapter(Mou et al. 2024) to generate im-
ages guided by Ŝ and Ĉ.

3.3 Semantic Decoder

Inspired by advanced time-series models, we propose a joint
EEG-image space learning method, EEGTriClip, which
aligns raw EEG signals to their feature space and refines
them for signal-image classification. Fig. 2 illustrates the se-
mantic decoding phase workflow.

For EEG encoding, we divide the brain into five regions
based on electrode positions. Each region is encoded using
a 4-layer 1D CNN, with a learnable attention weight wi as-
signed to each region. The region embedding ei is calcu-
lated as ei = Fi(Ei) × wi, where Fi is the CNN encoder.
The overall EEG encoding is Eeeg =

∑r
i=1 ei. For image

encoding, a pre-trained Swin Transformer is used, with its
output mapped to the EEG space through a trainable projec-
tion layer, yielding the image embedding Eimg.

In joint space learning, we begin with triplet loss on the
EEG-Label space using semi-hard triplets to enhance feature
differentiation. The triplet loss function is defined as:

∥fθ(xa)−fθ(xp)∥< ∥fθ(xa)−fθ(xn)∥< ∥fθ(xa)−fθ(xp)∥+δ,

where xa, xp, and xn are the anchor, positive, and negative
samples, respectively, and δ is the margin. The model is then

optimized with two loss functions:
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The combined loss is:

L = αLe2i + (1− α)Li2e,

where sim denotes cosine similarity, τ is the temperature,
and α is the weighting coefficient. Finally, we fine-tune the
EEG embeddings on specific semantic classification tasks.

3.4 Color Decoder
The goal of color decoding is to generate low-level images
for background signal generation by the Diffusion model.
To mitigate dataset limitations, we employ a three-stage
encoding-decoding process involving the I2E-Encoder and
E2I-Decoder, as shown in Fig. 3.

Stage 1 Given a set of pairs (E, I) = {EEG, Image}, we
first train an encoder to map images to their corresponding
EEG data. The encoder uses a 4-layer CNN with a residual
structure, optimized with a combination of MSE and cosine
proximity losses:

Lr(Eeeg, Êeeg) = β·MSE(Eeeg, Êeeg)−(1−β) cos(̸ (Eeeg, Êeeg)),

where β is an empirically determined hyperparameter. The
I2E-Encoder is trained through the joint space learning pro-
cess outlined in Sec. 3.3.

Figure 3: Overview of I2E-Encoder and E2I-Decoder: The
encoder aligns the semantic spaces of EEG and image. A 4-
layer CNN encodes the image, and the decoder generates
low-level images from the EEG signal. The decoder uses
ADA-StyleGAN to improve image quality and stability.

Stage 2 The decoding process is framed as an initial
generation task using the StyleGAN-ADA model (Karras
et al. 2020). This model synthesizes images by taking a fea-
ture vector and noise from an isotropic Gaussian distribu-
tion. StyleGAN-ADA enhances the discriminator’s ability



to learn from limited data by augmenting real images during
training. However, the GAN’s performance is constrained by
the limited dataset.

Stage 3 To improve generalization and address the
scarcity of EEG data, we further train the decoder using
a visual-to-decoding approach. The I2E-Encoder is frozen,
and the image embeddings are mapped to the EEG feature
space. These embeddings are then used as inputs for the E2I-
Decoder to generate new images, allowing the model to cap-
ture robust visual representations without direct EEG data.

3.5 Guided Image Reconstruction
Following the training, we have identified the semantic cat-
egory Ŝ associated with the EEG signal and generated its
corresponding sketch Ĉ. Using this information, we can
reverse-engineer the visual process to infer the content. To
reconstruct the final image from the EEG data, we em-
ploy Stable Diffusion (SD) (Li et al. 2024), with guid-
ance provided by the color adapter Rc within the T2I-
adapter (Mou et al. 2024). This process is formulated as
Î = SD(z,Rc, Ŝ), where z is random noise.

4 Experiments
4.1 Experimental Settings
We have used EEGCVPR40 Dataset (Spampinato et al.
2017) for training and testing the EEG representation learn-
ing. The dataset consists of EEG-image pairs across 40 cat-
egories, with the images being a subset of the ImageNet
dataset. During EEG recording, six subjects were shown 50
images per category within a 0.5-second window. After pre-
processing, the EEG signals are represented with 128 chan-
nels and 440 time steps.

4.2 EEG Decoding Performance
To validate the effectiveness of our EEG semantic decoder,
we conducted an image classification task. The classifica-
tion accuracy, shown in Table 1 (a), reached 95.28%, signif-
icantly outperforming classical methods. This demonstrates
our model’s ability to effectively decode the semantic con-
tent of EEG signals.

Additionally, to assess the discriminative power of the
learned features, we evaluated the k-means score. Our model
achieved a score of 0.885, surpassing other methods, as
seen in Table 1 (a). To further visualize the model’s fea-
ture extraction ability, we employed t-Distributed Stochastic
Neighbor Embedding (T-SNE) to project the features into a
2D space. As shown in Figure 4, the inter-class feature dis-
tribution expands, while intra-class features become more
compact during the feature extraction process.

4.3 Image Generation Performance
Figure 5 qualitatively demonstrates our model’s image gen-
eration performance. The synthetic images produced by our
framework exhibit both diversity and high fidelity. To quan-
titatively evaluate the generation and reconstruction accu-
racy, we assess the images from both high-level and low-
level perspectives. For low-level features, we use the Struc-
tural Similarity Index (SSIM) to measure pixel, structural,

Figure 4: t-SNE Visualization of extracted features

Figure 5: EEG to Image

and textural similarity, and Color Discrepancy (CD) to eval-
uate color consistency. Our model achieved scores of 0.335
for SSIM and 3.860 for CD, confirming its effectiveness in
reconstructing low-level features like color.

For high-level features, we use the Inception Score (IS)
and Fréchet Inception Distance (FID) (?)o provide deeper
insights into the quality and diversity of the generated im-
ages. As shown in Table 1 [b, c], our model demonstrates
strong performance across both metrics.

4.4 Ablation Study
Figure 6 presents the ablation study, focusing on three
key aspects: (1) the effect of the reverse pathways for se-

Figure 6: Effect of Semantic and Color Decoding



Table 1: Performance Comparison on Different Metrics

(a) Accuracy and K-means Performance
Method Accuracy (%) ↑ K-means ↑
LSTM 83.36 0.450
EEGNet (Lawhern et al. 2018) 88.13 -
SyncNet (Li et al. 2017) 83.45 -
EEG-ChannelNet (Palazzo et al. 2020) 98.35 -
A-Bi-LSTM 94.15 -
EV-Net (Zeng et al. 2023c) 98.98 -
Neuro Vision (Khare et al. 2022) 98.8 -
ours 95.28 0.885

(b) Inception Score and FID Performance
Method Inception Score ↑ FID ↓
DCVAE (Kavasidis et al. 2017) 1.98 -
DM-RE2I (Zeng et al. 2023b) 7.46 -
DCLS-GAN (Fares, Zhong, and Jiang 2020) 6.64 -
Brain2Image-VAE (Kavasidis et al. 2017) 4.49 -
NeuroVision 5.15 -
Improved-SNGAN (Zheng et al. 2020) 5.53 -
EEGStyleGAN-ADA (Singh et al. 2024) 10.82 174.13
ours 8.78 165.35

Figure 7: Effect of Three-stage Process and StyleGAN-ADA

mantic and color information decoded from EEG as guid-
ance for image reconstruction, (2) the effectiveness of the
Neuro-Attention mechanism in the semantic decoder, and
(3) the role of the three-stage coding-decoding process and
StyleGAN-ADA in color decoding.

Effect of Semantic Decoding. As shown in Figure 6,
semantic decoding significantly enhances image reconstruc-
tion by providing essential semantic guidance, allowing the
model to convey image meaning effectively. Without EEG-
derived semantic guidance, reconstructed images fail to cap-
ture meaningful content, appearing random despite resem-
bling real images in low-level features.

Effect of Color Decoding. As depicted in Figure 6, color
decoding substantially improves visual quality by ensuring
pixel-level similarity. Without EEG color guidance, recon-
structed images fail to match the real images’ color features,
resulting in significant pixel-level discrepancies.

Effect of Neuro-Attention Mechanism. We conducted
a comparative experiment to evaluate the Neuro-Attention
mechanism. Without it, the EEG decoder achieved a classi-
fication accuracy of 85.71% and a k-means score of 0.652.
With Neuro-Attention, these metrics improved significantly,
demonstrating its ability to extract and utilize discriminative
features from EEG signals for enhanced classification.

Effect of Three-stage Coding and Decoding Process.
To address EEG data scarcity and improve generalization to

unseen classes, we implemented a three-stage coding and
decoding process using self-supervised learning. Figure 7
shows that this process preserves pixel-level similarity and
meets basic color decoding requirements. Without it, the de-
coder loses critical color information, impairing the image
reconstruction.

Effect of StyleGAN-ADA. StyleGAN-ADA, used as the
decoder in the three-stage process, significantly outperforms
CNN-based decoders. As shown in the lower part of Figure
7, StyleGAN-ADA preserves color features well, resulting
in accurate and rich color information. In contrast, CNN-
based decoders fail to retain key features, leading to poor
color decoding.

5 Discussion and Conclusion
In this study, we developed the EEG-based image decoding
and reconstruction framework, ESTJ-GD, which operates
in three phases. First, EEG signals are encoded using joint
spatial learning to align with both semantic and categori-
cal image information. In the second phase, the generator is
trained with an adversarial approach and a three-stage pro-
cess (image-to-EEG, EEG-to-image, image-to-image), ad-
dressing data limitations. The final phase integrates a pre-
trained stable diffusion model with a T2I-Adapter, using
EEG-derived semantic and color information as conditions
to guide image generation.

Diffusion models in EEG-based visual reconstruction
tackle two challenges: (1) predicting the image’s categorical
identity and (2) generating visual sketches for refinement.
Our model achieves 94% classification accuracy on unseen
data, making it suitable for BCI devices. Using GANs as de-
coders enhances detail and supports accurate color genera-
tion. This method shows promise for generating visually and
semantically consistent images in EEG-based applications.

However, performance varies between cross-subject and
within-subject settings, likely due to brain heterogeneity and
noise. Moreover, the method is not fully end-to-end, requir-
ing multiple models for task completion. Future work will
focus on cross-domain learning to reduce variability and
simplify the process.
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