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Abstract

In recent years, the field of Artificial Intelligence Generated
Content (AIGC) has made significant strides, particularly
in image generation and editing. Diffusion Models gener-
ate high-quality text-to-image synthesis by simulating a pro-
gressive diffusion process that introduces noise into the data,
followed by a denoising process that recovers the data from
the noise, ultimately generating images with rich details and
diversity based on textual descriptions. However, Diffusion
Models face challenges such as the difficulty of aligning se-
mantics between text and images, inconsistencies and lack of
diversity in generated results, and limited contextual under-
standing. To address these issues, we introduce CLIP (Con-
trastive Language-Image Pre-training) to collaborate with
Diffusion Models. This integration aims to enhance the qual-
ity and diversity of image generation, improve the model’s
generalization ability, and achieve more efficient and stable
image editing outcomes.

Introduction

AIGC text-to-image technology is currently undergoing a
surge in growth and garnering extensive attention. Diffu-
sion Models, a class of deep generative models predicated
on probabilistic processes, simulate the diffusion process by
incrementally introducing noise into data and then employ
a reverse diffusion process to systematically remove this
noise, thereby restoring the original data. In image gener-
ation, these models begin by transforming a crisp image into
pure noise and, through the learned reversal process, are ca-
pable of reconstructing the image from the noise. This ap-
proach is adept at producing high-quality images and excels
in handling complex data distributions, which has propelled
Diffusion Models to the forefront of text-to-image synthesis
applications. They can generate images that are rich in detail
and diverse, aligning closely with textual descriptions. With
the impetus of Diffusion Models, text-to-image technology
has reached a new plateau in delivering high-quality image
generation services. The evolution of this domain has not
only catalyzed a novel creator economy but also foreshad-
ows the trajectory of future content creation.

To date, Diffusion Models have made significant strides in
the field of image generation, surpassing the previous state-
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of-the-art, which was held by Generative Adversarial Net-
works (GANSs). As technology continues to evolve, Diffu-
sion Models have not only matched but exceeded the capa-
bilities of GANSs in the task of image generation, marking
a new era in the realm of artificial intelligence and machine
learning.
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Figure 1: Text-driven facial modifications

While Diffusion Models have achieved notable advance-
ments in image generation, they are not without their chal-
lenges and constraints. In this paper, we mainly focus on
three challenges:

(1) Semantic Alignment between Text and Image. In dif-
fusion models, the process of generating images primarily
involves iteratively removing noise from random noise to
construct the image. This process is fundamentally a “’pixel-
level” reconstruction of the image. However, in the absence
of CLIP, diffusion models lack a direct mechanism to ensure
strong semantic alignment between the generated image and
the input textual description.

(2) The inconsistency in generated results and lack of di-
versity. Diffusion models generate images by progressively
denoising, a process that heavily relies on the initial noise
and the learned distribution. In the absence of CLIP to es-
tablish a more precise connection between the text and the



image, the diffusion model may fail to accurately capture the
implicit details embedded in the text.

(3) Limited contextual understanding of the model. Dif-
fusion models typically struggle to deeply comprehend
the intricate contextual and situational nuances embedded
within textual descriptions. As a result, they often face chal-
lenges in generating images that align well with the spe-
cific context or situational requirements outlined in the text.
This limitation leads to the generation of results that lack
both naturalness and accuracy, as the models are unable to
capture the complex interdependencies between various ele-
ments within the given context. Consequently, the generated
images may fail to fully reflect the intended meaning or spe-
cific details described in the text, compromising the overall
quality and coherence of the output.

In brief, Diffusion Models face challenges in perceiving
context and environment during the text-to-image genera-
tion process. Their limited ability to fully grasp the intrica-
cies of textual descriptions leads to problems such as inaccu-
rate image generation, lack of diversity in generated images,
and unnatural outputs.

To address the aforementioned challenges, we have in-
tegrated CLIP (Contrastive Language-Image Pre-training)
with Diffusion Models. CLIP, trained on a vast corpus of
image-text pairs, has developed a profound understanding of
cross-modal semantic relationships, demonstrating excep-
tional performance across a spectrum of visual and multi-
modal tasks. This integration is poised to tackle the three
primary challenges outlined.

The main insight of this integrated approach lies in lever-
aging CLIP’s robust text-to-image understanding capability
to guide the diffusion model in generating high-quality im-
ages that more accurately align with the textual descriptions.

In summary, the integration of CLIP with Diffusion Mod-
els presents a formidable approach to overcoming the lim-
itations inherent in Diffusion Models, offering a more effi-
cient, statistically robust, and broadly applicable framework
for text-to-image synthesis and beyond.

Related Work
Text-to-Image Synthesis with Diffusion Model

Diffusion Models are a class of deep generative models that
generate new data samples by simulating the diffusion pro-
cess of data. The core concept of these models is to gradu-
ally transform complex data distributions into simpler noise
distributions and then reverse this process to generate new
data samples. The working mechanism of Diffusion Models
is primarily based on two mutually inverse processes: the
forward process and the reverse process.

The forward process involves the model progressively in-
troducing noise into the data until it is entirely converted into
noise. This process is deterministic and can be precisely ex-
ecuted through exact mathematical calculations.

Conversely, the reverse process commences with noise
and incrementally removes it to restore the original data.
This process is typically learned through training and re-
quires the approximation of deep neural networks to imple-
ment effectively.

These models have demonstrated a significant advan-
tage in the quality of generated samples, particularly in im-
age generation tasks, where they have shown the potential
to outperform traditional Generative Adversarial Networks
(GAN:S).

Stable Diffusion is a variant of the diffusion model that
generates images by iteratively denoising data in the latent
representation space, then decoding the results into com-
plete images. This approach reduces the computational re-
sources and time required in the text-to-image synthesis pro-
cess while enhancing the quality and diversity of the gener-
ated images.

NoiseCollage is a layout-aware text-to-image diffusion
model based on noise cropping and merging techniques. It
generates multi-object images that reflect layout and text
conditions, addressing the mismatch between text and lay-
out conditions and the degradation of image quality during
generation.

DiffAssemble is a unified graph-diffusion model for 2D
and 3D reconstruction tasks. It treats elements of 2D patches
or 3D object fragments as nodes in a spatial graph and recon-
structs a consistent initial pose through iterative denoising.
This model not only improves the quality of text-to-image
synthesis but also enhances the model’s adaptability to new
domains and data types, thus enhancing the model’s gener-
alization capabilities.

However, methods solely based on diffusion models still
face the three challenges mentioned above: semantic align-
ment between text and image, inconsistency in generated
results and lack of diversity, and limited contextual under-
standing of the model.

CLIP

The CLIP (Contrastive Language-Image Pre-training)
model is a multimodal pretraining neural network that em-
ploys contrastive learning to map images and text into a
shared latent feature space, thereby enabling cross-modal
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Figure 2: CLIP Decode

similarity matching. The core architecture of the CLIP
model comprises two independent encoders: an image en-
coder for processing visual data and a text encoder for pro-
cessing textual data. The image encoder typically utilizes
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Figure 3: CLIP-Integrated Diffusion Model Framework

Convolutional Neural Networks (CNNs) or Vision Trans-
formers (ViTs), while the text encoder adopts a Transformer
architecture akin to the BERT model. This design enables
the model to classify images directly through natural lan-
guage descriptions without explicit labeling, demonstrating
robust zero-shot learning capabilities.

In the realm of text-to-image synthesis, the CLIP model’s
primary advantage lies in its potent zero-shot learning abil-
ity. This means that even in the absence of explicit training
samples for specific categories, the CLIP model can classify
or generate new image or text samples based on the knowl-
edge it has learned from large-scale datasets. The model’s
capacity for this kind of learning imparts broad application
potential in the field of text-to-image synthesis.

The CLIP model’s architecture and training process are
conducive to its exceptional performance and generaliza-
tion ability. Trained on a vast dataset comprising 400 mil-
lion image-text pairs, CLIP learns rich associations between
images and text through a weakly supervised pre-training
approach. This enables the model to perform well in various
downstream tasks such as image classification, image gen-
eration, and cross-modal retrieval, all without the need for
task-specific fine-tuning. The simplicity of the CLIP model’s
architecture, coupled with its efficient training process, be-
lies its remarkable performance, making it a prominent con-
tender in the field of artificial intelligence for multimodal
tasks.

Method
Workflow

First, the text undergoes pretraining, where the CLIP text en-
coder transforms the text into fixed-length vector sequences.
These vector sequences encapsulate the semantic informa-
tion of the text and are correlated with images from the real
world. This allows the identification of which texts corre-
spond to which images in the dataset, thereby establishing a

bridge between text and image.

The next step involves the pretraining of the diffusion
model. The pretraining of the diffusion model establishes an
effective noise propagation and denoising relationship be-
tween the forward and reverse processes, enabling the model
to generate realistic samples from noise. In the forward pro-
cess, the model progressively adds noise to the original data
until it is entirely transformed into random noise. This pro-
cess is deterministic, with noise being incrementally added
to the data at each step. The process can be expressed as
follows:

Ty = w1 + V1 — ey

In the reverse process, we introduce the CLIP directional
loss, which will be specifically discussed in the next section.
The reverse process begins with noise and progressively re-
moves it to recover the original data. The entire process
trains a neural network to approximate the inverse of the
forward process. The process can be simply expressed as
follows:

po(@t—1|7t) = N (we—1; po (a1, 1), 09 (w1, 1))

Throughout the sampling process of the diffusion model,
we employ Denoising Diffusion Implicit Models (DDIM)
for both the forward and reverse processes. DDIM repre-
sents a non-Markovian sampling method that significantly
reduces the number of steps required in the reverse process
while maintaining high generation quality. In this paper, the
DDIM formulation can be rewritten as follows:

1 1
A a Tt—1 =\ a; Tt _
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After completing the pretraining phase, as Figure 3 shows,
the model can process input images and text. The input im-
age undergoes the forward process of the pretrained diffu-
sion model, where noise is progressively added to generate
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Figure 4: Generated Faces with CLIP-Integrated Diffusion Model



a noisy representation. Simultaneously, the input text is en-
coded using the pretrained CLIP text encoder. During the re-
verse process, the noisy image is iteratively refined based on
the guidance of the CLIP text encoder, with fine-tuning per-
formed under the supervision of the CLIP directional loss.
Ultimately, this process produces a generated image that
aligns with the semantics of the input text.

CLIP Directional Loss in Diffusion Model

Our model incorporates CLIP into the reverse path of the
diffusion model by introducing a directional loss function
defined by CLIP, which works in conjunction with the fea-
ture loss of the diffusion model. The input image is first pro-
cessed through a pretrained diffusion model to generate la-
tent variables. Guided by the integration of the CLIP direc-
tional loss function, the diffusion model is fine-tuned along
the reverse path.The CLIP directional loss function can be
expressed as follows (I: Image ; T: Text ; E: Encode):

([Er(xgen) = Er(@res)], (BT (Ytar) = ET(Yres)])
1E1(2gen) = Er(@rep) | 1Er (Ytar) = Er(yres)|

The CLIP directional loss aligns the direction between the
embeddings of the reference image and the generated image
with the direction between the embeddings of a pair of ref-
erence text and target text in the CLIP space. The reason for
selecting the CLIP directional loss function is that it helps
mitigate the negative effects associated with the global CLIP
loss, such as overfitting, susceptibility to adversarial attacks,
low diversity, and the accumulation of semantic errors. By
focusing on the directional relationship between the image
and text embeddings, the model is better able to capture fine-
grained semantic alignment, ensuring that the generated im-
ages are both more accurate and diverse. This approach not
only improves the robustness of the model but also enhances
its generalization ability, making it less prone to errors and
more adaptable to a wider range of text-to-image synthesis
tasks.

1—

Experiments

In this section, we present the process of fine-tuning a pre-
trained model on input text to generate corresponding out-
put images. The model has been primarily pretrained on fa-
cial data, with additional pretraining targeting specific types
of textual inputs. The pretrained images are of 256x256
pixel resolution, which poses challenges in generating high-
resolution, pixel-level images that meet expectations under
CLIP guidance for specified text. This limitation could be
mitigated by pretraining the model on higher-resolution im-
ages. Methodologically, our outputs also demonstrate the ef-
fectiveness of the proposed model.

To enhance the training of models tailored for facial data,
we selected the CelebA-HQ dataset. For pretraining, we par-
titioned the dataset, using 70% of the images as training data
and the remaining 30% as validation data.

During the pretraining process, we utilized two NVIDIA
A100 GPUs, each equipped with 80GB of HBM memory.
However, we did not specifically test the minimum GPU
memory required for pretraining. Based on our observations,

we recommend using GPUs with at least 16GB of memory.
It is worth noting that most of NVIDIA’s current mainstream
GPUgs, including server-grade models such as the NVIDIA
A100 and NVIDIA H100, as well as PC-grade GPUs like
the NVIDIA RTX 4060 and NVIDIA RTX 3060, support
the Unified Memory mode. Therefore, in theory, as long
as the combined memory capacity of the host system and
GPU exceeds 16GB, the risk of encountering Out of Mem-
ory (OOM) errors during pretraining can be effectively mit-
igated.

It is important to note that during the pretraining process,
the training dataset primarily consisted of images featuring
clear, frontal portraits, where facial features were properly
aligned. Consequently, when the model encounters portraits
from side angles or unconventional perspectives, especially
in conjunction with text inputs, it may produce unexpected
or anomalous results. This limitation highlights the model’s
dependency on specific input conditions.

To ensure optimal performance, we emphasize the neces-
sity of using frontal portraits, preferably with well-aligned
and balanced facial features. That said, it is worth mention-
ing that as long as the facial structure is correctly positioned,
the model can still generate reasonable outputs even if some
facial features are partially missing. This reflects a degree of
robustness in handling incomplete facial inputs but under-
scores the need for adherence to the dataset’s primary char-
acteristics to avoid unintended outcomes.

Figure 4 illustrates how input text prompts are utilized to
perform semantic transformations on input images, align-
ing the visual output with the overall meaning conveyed
by the text. These transformations are not limited to sim-
ple color changes, such as hair color or skin tone adjust-
ments, but also extend to facial expressions, including smiles
and other nuanced emotions. Furthermore, the approach sup-
ports more complex and stylistic modifications, such as ap-
plying makeup, creating a zombie-like appearance, or ren-
dering the image in a two-dimensional (anime) style.

All five examples of input images demonstrate signifi-
cant and perceptible changes, highlighting the versatility and
adaptability of our method in achieving a wide range of text-
guided facial transformations. This showcases the model’s
ability to handle both subtle adjustments and highly styl-
ized alterations, ensuring alignment with the textual guid-
ance provided.

Conclusion

In this paper, we integrate CLIP into the reverse process of a
Diffusion Model, pretraining it on a facial dataset. Our pro-
posed model enables users to input an image along with a
specified textual description to perform image style trans-
formation and generation. Experimental results demonstrate
that the model achieves favorable performance in generat-
ing images of clear, frontal faces. However, its effectiveness
is limited when dealing with faces that exhibit incomplete
facial features or challenging angles.
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