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Abstract— Hyperuricemia (HUA) is a metabolic disorder
caused by purine metabolism dysfunction. In recent years, with
the improvement of living standards and changes in lifestyle in
China, the prevalence of HUA has significantly increased and
is showing a trend toward younger age groups. However, it
remains unclear which HUA patients will develop gout or GN,
and the mechanisms underlying its occurrence and progression
are yet to be fully explored.

In this study, we designed a CNN network and an LSTM
model, focusing on the scientific problem of ”constructing a
risk prediction model for gout based on metabolomics and
genomics.” We propose a deep learning-based method for the
extraction of metabolomic and genomic features of HUA and
its complications, as well as for risk prediction. This approach
incorporates multi-level feature analysis and aims to deeply
investigate key biomarkers.

Index Terms— deep learning,CNN,Lstm,HUA,LC-MS

I. INTRODUCTION

Metabolomics analyzes low-molecular-weight
metabolites in cells, tissues, or biological fluids,
enabling the detection of subtle changes in metabolic
pathways and aiding in the identification of
biomarkers associated with pathological conditions.
Metabolomics experiments involve targeted and
untargeted approaches. Untargeted metabolomics
utilizes various analytical techniques such as liquid
chromatography-mass spectrometry (LC-MS) and
gas chromatography-mass spectrometry (GC-MS) to
analyze a wide range of chemical metabolite classes
simultaneously.

In the study of gout, metabolomics has been pre-
liminarily applied to identify metabolites and metabolic
pathways associated with elevated serum uric acid

(sUA) levels or gout attacks by comparing metabolite
profiles of gout patients and healthy controls. The
metabolic mechanisms associated with HUA and its
gout complications are complex and high-dimensional.
Effectively extracting and selecting key features related
to disease progression, and constructing a machine
learning model to accurately predict the onset of HUA
and its transition to gout and GN, remains a critical
challenge.

Genome-wide association studies (GWAS) have
reported several gout-associated genes, including those
related to renal and intestinal urate transport proteins.
Current research on asymptomatic HUA and gout has
largely focused on serum metabolites, with limited
systematic multi-omics analysis of metabolites in urine,
feces, and genomics.

Several studies have used metabolomics techniques
to explore the metabolic characteristics of HUA pa-
tients and applied machine learning algorithms to iden-
tify biomarkers. For example, Shen et al. used high-
resolution mass spectrometry to reveal significant dif-
ferences in the metabolic characteristics of HUA and
gout, particularly in the arginine metabolism pathway.
Using machine learning algorithms such as random
forests, support vector machines, and logistic regres-
sion, they identified 13 potential biomarkers that could
effectively distinguish between gout, HUA, and normal
uric acid levels. Another study investigated metabolic
pathways associated with HUA and gout, finding that
compared to healthy individuals, patients exhibited sig-
nificant dysregulation in various pathways, especially
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those related to amino acid and purine metabolism.

Machine learning has been widely applied to
metabolomics data processing and analysis. For in-
stance, support vector machine (SVM) and random
forest (RF) algorithms have been used to identify
four sepsis biomarkers. Future studies are expected
to integrate multi-omics data (e.g., genomics, tran-
scriptomics, and metabolomics) to comprehensively an-
alyze the metabolic networks and molecular mech-
anisms of gout and HUA. Giuseppe’s team found
that in multi-omics regression tasks, multimodal reg-
ularized linear models demonstrated competitiveness
and interpretability compared to data-hungry neural
network approaches when learning from experimental
and model-generated omics data. Machine learning-
based multimodal biomarkers have been applied for
early detection and prognosis prediction of HUA. The
team developed and validated a stacked multimodal
ML model trained on genetic and clinical data, which
synthesized in silico quantitative markers for HUA.
This model shows potential for timely HUA identifi-
cation and personalized risk stratification for gout and
metabolism-related outcomes.

Deep learning is an essential research method in
metabolomics. Mayank Baranwal’s team proposed a
deep learning architecture for metabolic pathway pre-
diction, employing a hybrid machine learning approach
that combines graph convolutional networks to extract
molecular shape features as inputs for a random for-
est classifier. Compared to previous machine learning
methods for this problem, their framework directly
extracts relevant shape features from input SMILES
representations—standardized notations of molecular
chemical structures. Their method correctly predicted
the corresponding metabolic pathway categories of
95.16% of tested compounds. Additionally, their frame-
work achieved a prediction accuracy of 97.61% for the
multi-label task of classifying compounds with mixed
pathway memberships. Yongjie Deng’s team published
an end-to-end deep learning method for mass spec-
trometry data analysis, capable of uncovering disease-
specific metabolic features. This interpretable deep

learning-based method performs end-to-end analysis of
raw metabolic signals, delivering highly accurate and
reliable outputs.

Raw liquid chromatography-mass spectrometry
(LC-MS) is one of the most widely used analytical
platforms in metabolomics. One critical challenge is
processing raw signals, as LC-MS data typically consist
of thousands of raw MS spectra, each with sequential
numbers increasing with retention time (RT). These
data include thousands of signals (features), making
manual processing impractical. The typical LC-MS
data processing workflow involves:

(1)Detecting regions of interest (ROI), (2)De-
tecting chromatographic peaks and integrating them,
(3)Matching peaks across all samples in a batch (group-
ing), and (4)Annotating corresponding adducts and
fragment ions to group peaks belonging to the same
metabolite. XCMS and MZmine 2 are commonly used
platforms for LC-MS data processing, but they often
yield a high number of false-positive results. To address
this, we applied a deep learning approach using classi-
fier and segmentation models.

For ROI detection, we retained the classic cent-
Wave ROI method. Subsequently, we used a neural
network (NN) to classify ROI regions, enabling effective
peak detection.

II. METHOD

For ROI data, we should classify it into three
categories: 1. Noise group 2. Peak-containing group,
which includes one or more peaks 3. Peak-like group,
representing uncertain peaks

We plan to use various neural networks to study
the standard metabolites of gout. Considering the lim-
itations of the dataset, we will start with the simplest
CNN and progressively experiment with different neu-
ral network architectures.

A. Using convolutional neural networks to identify
metabolites

Using convolutional neural networks (CNNs) to
identify signature metabolites allows raw LC-MS



AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS ON MEDICAL IMAGING 3

metabolomics data to be directly used as input. The
conventional stepwise methods for metabolomics anal-
ysis may result in significant loss of metabolic signals.
By employing CNNs, the traditional processes of peak
extraction and identification can be bypassed, improv-
ing both the efficiency and accuracy of data analysis.

We propose building an integrated end-to-end deep
learning model that includes multiple CNNs as feature
extractors to capture metabolomic signals associated
with hyperuricemia (HUA).

First, we designed a classifier to categorize the
types of ROI regions. This ROI classifier classifies the
input ROI regions into one of the types described
above. In our test dataset, the classification accuracy
of the classifier reached 82%. It is worth noting that
this accuracy is not low for our current design of
ROI classification. If the classification is simplified to
distinguishing between noise group and possible peak-
containing group, the accuracy improves to 97%. How-
ever, the separation of confirmed peak-containing and
possible peak-containing groups, while less accurate, is
necessary.

Fig. 1. CNN-based classifier architecture
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Fig. 2. CNN-based segmentator architecture

To identify peak regions, we treat the segmentation
of peaks as a straightforward segmentation problem.

We designed a segmentation model to segment
peak regions within the ROI. For this task, we employed
a typical encoder-decoder structure commonly used
in image segmentation tasks. This structure extracts
features and restores the spatial structure of the image
through convolution, pooling, and upsampling opera-
tions. The encoder extracts features, while the decoder
maps these features back to high-resolution space.

Skip connections allow low-level features to propa-
gate directly to subsequent layers, improving prediction
accuracy.

In our test dataset, the model achieved an Inter-
section over Union (IoU) score of 0.82, approaching
high-quality predictions. Considering that the model
was trained on data with only 256-point dimensions, it
demonstrates substantial potential for further improve-
ment.

B. Using convolutional + LSTM neural networks to
identify metabolites

Reviewing our previous work, we used convolu-
tional neural networks to achieve peak detection, but
this modeling approach does not fully match the char-
acteristics of LC-MS data.

For time-series data, the core idea of the convo-
lutional operation is to extract local patterns, such as
the shape features of peaks, through a fixed window
(i.e., convolutional kernel). Convolutional operations
rely on a fixed-size window (receptive field) and can
only extract features near local time points. Peaks in
LC-MS often exhibit global dependencies, such as the
start and end positions of a peak being far apart,
which a simple CNN cannot capture through a single
convolutional layer. This means that yt can only include
information from {xt−k, . . . , xt, . . . , xt+k}, losing signal
context beyond the receptive field.

Furthermore, convolutional operations are insensi-
tive to the order of input data and cannot distinguish
the ”early” or ”late” characteristics of a signal. For peak
detection, the rise, peak, and fall of a signal follow a se-
quential order, but a simple CNN cannot directly model
this directionality in time series. Since convolutional
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operations are symmetric operations within the win-
dow, yt =

∑k
i=−k wixt+i, a symmetric weight distribu-

tion (e.g., wi = w−i) cannot distinguish temporal order
information. Additionally, the boundaries and shapes
of peak signals may depend on the global context. For
example, a weak peak may only be identifiable against
the background of the entire signal sequence. A simple
CNN can only expand the receptive field by stacking
more convolutional layers, which significantly increases
the number of parameters and risks overfitting.

When considering noise, the situation becomes
worse. CNNs treat signals in each local window equally,
but in peak detection tasks, noise signals may be locally
very strong. A CNN without a memory mechanism
cannot ignore irrelevant noise signals from the past and
is prone to misidentifying high-noise points as peaks. If
the noise nt in xt−k:t+k is strong:

yt = w⊤(st−k:t+k + nt−k:t+k) + b

where: The noise term nt−k:t+k may dominate the
output yt, leading to misdetection.

Considering the characteristics of peak signals,
peak signals st typically exhibit the following temporal
dependency features: Local continuity (the value of st
changes smoothly and continuously over time t). Global
correlation (the shape of a peak is related to the changes
in the preceding and following signals. For example, the
rise and fall phases of a peak are correlated).

Therefore, the additional introduction of an LSTM
would be an effective move, as LC-MS-generated data
can be represented as a time series x = {xt}Tt=1, where:
xt ∈ R: Represents the intensity signal at time t. T :
The total length of the time series.

In a noisy background, the signal can be expressed
as:

xt = st + nt

where: st: Target signal (e.g., peak signal). nt: Noise,
usually assumed to be zero-mean Gaussian noise nt ∼
N (0, σ2).

The goal of peak detection is to identify the regions
of the peak signal st and annotate the start and end
positions (i.e., boundaries) of the peaks.

LSTM can learn the dynamic change rules f(·) of
the time-series signal st through its memory state ct
and hidden state ht: For local signal changes: LSTM
can learn short-term dependencies, such as the rising
and falling trends of a peak, through the hidden state
ht. For global background modeling: The memory state
ct retains long-term dependency information and can
capture the differences between peak boundaries and
background signals.

The output of the LSTM can ultimately be ex-
pressed as:

ŝt = Wyht + by

where ŝt is the predicted value of the target signal st.
Through its input gate and forget gate mechanism,

LSTM dynamically controls the influence of the in-
put signal xt on the memory state ct: When noise is
significant, the forget gate reduces the weight of the
noise signal, suppressing its interference with ct. This
selective memory mechanism makes LSTM robust to
noise.

Mathematically, the memory state is updated as:

ct = ft ⊙ ct−1 + it ⊙ tanh(·)

where ft and it are dynamic adjustment coefficients,
ensuring that only significant peak signals are remem-
bered.

When the signal st contains multiple overlapping
peaks:

st =
K∑

k=1

s
(k)
t

where: s
(k)
t : Signal of the k-th peak. K: Number of

overlapping peaks.
LSTM can learn the features f (k)(·) of each peak

through its hidden state ht and memory state ct,
thereby demixing the signals.

Specifically: ht: Stores the comprehensive informa-
tion at time point t. ct: Accumulates and separates the
long-term features of multiple peaks.

The final output extracts the predictions of all
peaks through Wyht, and post-processing steps sepa-
rate the overlapping signals.
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Based on this principle, we added LSTM layers to
both the classifier and the segmenter, and the model
architectures are shown in Figures 3 and 4.

Fig. 3. CNN-based classifier architecture with lstm
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Fig. 4. CNN-based segmentator architecture with lstm

The model achieved an IoU of 0.85 on the test set,
and the improvement might seem modest. However, it
is important to consider that the current ROI region
setting is only 256, which is far from sufficient to
fully leverage the capabilities of LSTM. As the ROI
region selection method improves and the ROI region
increases, the performance of our model will also show
significant improvement.

C. Detection of HUA Characteristic Metabolites Based
on Deep Learning Models

We used our trained model to perform a simple
analysis on the LC-MS spectrum data of patients with
HUA, as shown in Figure 5. We detected a total of

Fig. 5. CNN-based segmentator architecture with lstm

2,210 characteristic peaks, and the target regions have
also been segmented, as shown in Figure 6.

Fig. 6. CNN-based segmentator architecture with lstm

III. DISCUSSION

Our network still has room for improvement, with
the main limiting factor being the rigid division of the
ROI. The ROI areas are quite small, which prevents our
model from fully demonstrating its performance. Addi-
tionally, the classifier’s categorization method can be
optimized, as the definition of the classification criteria
has led to some unclear data annotations. One potential
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improvement could be to treat the ROI division method
as a parameter and include it in the training of the
neural network, which could be a good way to enhance
performance.

IV. CONCLUSION

We designed a deep neural network to analyze
LC-MS data. Initially, we implemented this network
using CNNs and then experimented with adding LSTM
modules. Our approach successfully achieved ROI clas-
sification and peak segmentation. This method effec-
tively enhances the accuracy of data analysis, provid-
ing a more reliable feature detection tool compared
to traditional methods. Using this network, we can
identify potential peaks from LC-MS spectra, enabling
subsequent algorithms to determine the desired charac-
teristic metabolites based on these peaks.

REFERENCES

[1] 中华医学会内分泌学分会, 中国高尿酸血症与痛风诊疗指南 (2019). 中
华内分泌代谢杂志, 2020. 36(1): p. 1-13.

[2] Martinon, F., et al., Gout-associated uric acid crystals activate the
NALP3 inflammasome. Nature, 2006. 440(7081): p. 237-241.

[3] Sellmayr, M., et al., Only Hyperuricemia with Crystalluria, but
not Asymptomatic Hyperuricemia, Drives Progression of Chronic
Kidney Disease. Journal of the American Society of Nephrology:
JASN, 2020. 31(12): p. 2773-2792.

[4] Brown, J. and G.K. Mallory, Renal changes in gout. The New
England Journal of Medicine, 1950. 243(9): p. 325-329.

[5] Dalbeth, N., et al., Gout. Lancet (London, England), 2021.
397(10287): p. 1843-1855.

[6] Johnson, C.H., J. Ivanisevic, and G. Siuzdak, Metabolomics: beyond
biomarkers and towards mechanisms. Nature Reviews. Molecular
Cell Biology, 2016. 17(7): p. 451-459.

[7] Banimfreg, B.H., et al., Untargeted Metabolomic Plasma Profiling
of Emirati Dialysis Patients with Diabetes versus Non-Diabetic: A
Pilot Study. Biomolecules, 2022. 12(7).

[8] Ikram, M.M.M., et al., GC-MS Based Metabolite Profiling to Mon-
itor Ripening-Specific Metabolites in Pineapple (Ananas comosus).
Metabolites, 2020. 10(4).

[9] Shen, X., et al., Serum Metabolomics Identifies Dysregulated Path-
ways and Potential Metabolic Biomarkers for Hyperuricemia and
Gout. Arthritis Rheumatol, 2021. 73(9): p. 1738-1748.

[10] Huang, Y., et al., Identification of the urine and serum metabolomics
signature of gout. Rheumatology (Oxford), 2020. 59(10): p. 2960-
2969.

[11] Köttgen, A., et al., Genome-wide association analyses identify 18
new loci associated with serum urate concentrations. Nat Genet,
2013. 45(2): p. 145-54.

[12] Matsuo, H., et al., Genome-wide association study of clinically
defined gout identifies multiple risk loci and its association with
clinical subtypes. Ann Rheum Dis, 2016. 75(4): p. 652-9.

[13] Chang, B.S., Ancient insights into uric acid metabolism in primates.
Proc Natl Acad Sci U S A, 2014. 111(10): p. 3657-8.

[14] Dalbeth, N., et al., Urate crystal deposition in asymptomatic hy-
peruricaemia and symptomatic gout: a dual energy CT study. Ann
Rheum Dis, 2015. 74(5): p. 908-11.

[15] Stewart, S., et al., Ultrasound Features of the First Metatarsopha-
langeal Joint in Gout and Asymptomatic Hyperuricemia: Compari-
son With Normouricemic Individuals. Arthritis Care Res (Hoboken),
2017. 69(6): p. 875-883.

[16] Wang, P., et al., Identification of monosodium urate crystal deposits
in patients with asymptomatic hyperuricemia using dual-energy CT.
RMD Open, 2018. 4(1): p. e000593.

[17] Jung, S.W., et al., Uric acid and inflammation in kidney disease. Am
J Physiol Renal Physiol, 2020. 318(6): p. F1327-f1340.

[18] Zhu, P., et al., Serum uric acid is associated with incident chronic
kidney disease in middle-aged populations: a meta-analysis of 15
cohort studies. PLoS One, 2014. 9(6): p. e100801.

[19] Oh, T.R., et al., Hyperuricemia has increased the risk of progression
of chronic kidney disease: propensity score matching analysis from
the KNOW-CKD study. Sci Rep, 2019. 9(1): p. 6681.

[20] Piani, F. and R.J. Johnson, Does gouty nephropathy exist, and is it
more common than we think? Kidney Int, 2021. 99(1): p. 31-33.

[21] Wang, S., et al., Research progress of risk factors and early diagnos-
tic biomarkers of gout-induced renal injury. Front Immunol, 2022.
13: p. 908517.

[22] Li, H., et al., Kidney and plasma metabolomics provide insights into
the molecular mechanisms of urate nephropathy in a mouse model of
hyperuricemia. Biochim Biophys Acta Mol Basis Dis, 2022. 1868(6):
p. 166374.

[23] Liu, M., et al., Synergistic effect of Aconiti Lateralis Radix
Praeparata water-soluble alkaloids and Ginseng Radix et Rhizoma
total ginsenosides compatibility on acute heart failure rats. J Chro-
matogr B Analyt Technol Biomed Life Sci, 2020. 1137: p. 121935.

[24] Ohashi, Y., et al., Plasma and Urinary Metabolomic Analysis of
Gout and Asymptomatic Hyperuricemia and Profiling of Potential
Biomarkers: A Pilot Study. Biomedicines, 2024. 12(2).

[25] Han, T., et al., Temporal Relationship Between Hyperuricemia and
Insulin Resistance and Its Impact on Future Risk of Hypertension.
Hypertension, 2017. 70(4): p. 703-711.

[26] Bombelli, M., et al., Uric acid and risk of new-onset metabolic syn-
drome, impaired fasting glucose and diabetes mellitus in a general
Italian population: data from the Pressioni Arteriose Monitorate E
Loro Associazioni study. J Hypertens, 2018. 36(7): p. 1492-1498.

[27] Hahn, K., et al., Serum uric acid and acute kidney injury: A mini
review. J Adv Res, 2017. 8(5): p. 529-536.

[28] Miao, H., et al., 1-Hydroxypyrene mediates renal fibrosis through
aryl hydrocarbon receptor signalling pathway. Br J Pharmacol,
2022. 179(1): p. 103-124.

[29] Tan, Y.M., et al., Plasma Metabolome and Lipidome Associations
with Type 2 Diabetes and Diabetic Nephropathy. Metabolites, 2021.
11(4).

[30] Dalbeth, N., L.K. Stamp, and T.R. Merriman, The genetics of gout:
towards personalised medicine? BMC Med, 2017. 15(1): p. 108.



AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS ON MEDICAL IMAGING 9

[31] Kawamura, Y., et al., Genome-wide association study revealed novel
loci which aggravate asymptomatic hyperuricaemia into gout. Ann
Rheum Dis, 2019. 78(10): p. 1430-1437.

[32] Phipps-Green, A.J., et al., Twenty-eight loci that influence serum
urate levels: analysis of association with gout. Ann Rheum Dis, 2016.
75(1): p. 124-30.

[33] Nakayama, A., et al., GWAS of clinically defined gout and subtypes
identifies multiple susceptibility loci that include urate transporter
genes. Ann Rheum Dis, 2017. 76(5): p. 869-877.

[34] Li, C., et al., Genome-wide association analysis identifies three new
risk loci for gout arthritis in Han Chinese. Nat Commun, 2015. 6: p.
7041.

[35] Sulem, P., et al., Identification of low-frequency variants associated
with gout and serum uric acid levels. Nat Genet, 2011. 43(11): p.
1127-30.

[36] Stiburkova, B., et al., The impact of dysfunctional variants of
ABCG2 on hyperuricemia and gout in pediatric-onset patients.
Arthritis Res Ther, 2019. 21(1): p. 77.

[37] Merriman, T. and R. Terkeltaub, PPARGC1B: insight into the
expression of the gouty inflammation phenotype: PPARGC1B and
gouty inflammation. Rheumatology (Oxford), 2017. 56(3): p. 323-
325.

[38] Chen, Y., et al., CARD8 rs2043211 polymorphism is associated with
gout in a Chinese male population. Cell Physiol Biochem, 2015.
35(4): p. 1394-400.

[39] Rasheed, H., et al., The Toll-Like Receptor 4 (TLR4) Variant
rs2149356 and Risk of Gout in European and Polynesian Sample
Sets. PLoS One, 2016. 11(1): p. e0147939.

[40] Rasheed, H., et al., Replication of association of the apolipoprotein
A1-C3-A4 gene cluster with the risk of gout. Rheumatology (Oxford),
2016. 55(8): p. 1421-30.


