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Abstract

Retrieval-Augmented Generation (RAG), as a technologi-
cal paradigm to alleviate the problems caused by large lan-
guage models (LLMs), often leverages the knowledge re-
trieved from documents to assist generation. However the
most existing research overlook the appropriate segmentation
granularity for different types of documents and poorly con-
sider the discontinuity of relevant information within the doc-
ument. To address this, we propose an Information Density-
driven Multi-scale Segmentation (IDMS) algorithm that im-
proves retrieval efficiency and optimizes resource utiliza-
tion. We address segmentation granularity issue by leverag-
ing LLMs to dynamically partition documents into logically
coherent, independent chunks, ensuring each segment main-
tains a complete expression of ideas. Additionally, we calcu-
late sentence information density, selectively reduce tokens in
low information-density texts and enrich entity information in
high density texts, improving efficiency while retaining key
semantic information.

Introduction

Although large models have made significant breakthroughs
in many areas, they still face several challenges, such as the
issue of hallucinations(Xu, Jain, and Kankanhalli 2024), and
the lack of domain-specific data(Li et al. 2024). The intro-
duction of Retrieval-Augmented Generation (RAG) has ad-
dressed some of the challenges faced by large models to a
certain extent(Lewis et al. 2021). The process of large model
Retrieval-Augmented Generation (RAG) involves first re-
trieving relevant external knowledge and then generating a
response based on the retrieval results. It primarily consists
of two components: a retriever and a generator.

Since the accuracy of retrieval significantly impacts the
performance of the model, current research on RAG pri-
marily focuses on improving the precision of the retrieval
process(Besta et al. 2024). However, in RAG research, the
study of text chunking methods is often overlooked, de-
spite the fact that chunking has a significant impact on re-
trieval results(Xu et al. 2023). Early chunking methods pri-
marily involved splitting the text into fixed-length segments
with a certain degree of overlap between each segment.
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More recent studies have proposed content-based chunk-
ing methods. For example, some approaches segment doc-
uments based on structural elements, such as paragraphs or
chapters(Wang, Chang, and Sui 2020), while others use key
sentences or semantic units for segmentation(Liu and Lapata
2019). However, most existing text segmentation methods in
RAG face the following issues: (1) It is difficult to determine
the appropriate segmentation granularity for different types
of documents, making it challenging to choose whether to
split by sentence, paragraph, or another level of granularity.
(2) Document segmentation may result in the lack of rele-
vant entities in the segmented chunks, resulting in invalid
related information.

To address the issues mentioned above, we propose
an Information Density-driven Multi-scale Segmentation
(IDMS) algorithm. To address the first issue mentioned ear-
lier, we compare the probability difference of a binary clas-
sification with a set threshold, which leverages the capabil-
ities of LLMs to flexibly partition documents into logically
coherent, independent chunks. And to address the second is-
sue, we calculate the information density of sentences and
group them accordingly. For instance, paragraphs with high
information density should be added related entities descrip-
tion, while sections with a more narrative style and lower in-
formation density should be reduced the number of tokens.

The main contributions of this paper are as follows:

* Margin sampling segmentation: We introduce margin
sampling chunking, which leverages the capabilities of
LLMs to flexibly partition documents into logically co-
herent, independent chunks. This dynamic adjustment of
granularity ensures that each segmented chunk contains
a complete and independent expression of ideas, thereby
avoiding breaks in the logical chain during the segmen-
tation process.

» Information density-based segmentation: After text
segmentation, we calculates the information density of
each sentence, allowing sentences to be dealt differently
based on their information density. This solves the sim-
ilarity issue by reducing the tokens numbers to low-
density sections (e.g., narrative descriptions) and supple-
ment the description of related entities to high-density
sections (e.g., important thematic transitions), enhancing
efficiency by reducing redundant text without losing crit-
ical semantic information.



* IDMS algorithm: By integrating the above two steps,
we develop the IDMS algorithm, which effectively bal-
ances segmentation granularity and semantic coherence.
This approach enables the algorithm to adaptively seg-
ment documents based on varying information density
and improve segmentation performance, particularly in
complex document structures.

Related Work
Retrieval-Augmented Generation

When large language models perform poorly in the face of
new or proprietary knowledge, a common practice is to use
knowledge augmentation to improve their performance. As
a specific method of knowledge augmentation, Retrieval-
Augmented Generation (RAG, Lewis et al. 2020) combines
retrieval technology with generative models, allowing the
model to first retrieve relevant text or knowledge, and then
generate answers based on the retrieval results. Traditional
generative models such as GPT (Radford et al. 2019) rely
solely on pre-trained knowledge, leading to issues such as
hallucinations or incorrect information in scenarios that re-
quire external factual information. To address these limi-
tations, RAG combines the capabilities of a retriever with
that of a generator. The retriever fetches relevant documents
from a large corpus, which are then used by the generator to
produce more accurate and contextually relevant text.

Previous retrieval-based approaches like REALM (Guu
et al. 2020) and DPR (Karpukhin et al. 2020) have laid the
groundwork for using external knowledge during generation
tasks. However, these models operate in two separate phases,
where retrieval and generation occur sequentially. RAG in-
novates by merging these two components into a single dif-
ferentiable framework, allowing both retrieval and genera-
tion to influence each other dynamically. This approach has
demonstrated success in tasks such as open-domain question
answering (Izacard and Grave 2020b) and dialogue genera-
tion (Komeili 2021), outperforming purely generative mod-
els in terms of factual correctness and diversity.

Document Chunking for RAG

Document Chunking plays a crucial role in retrieval-based
models like RAG, especially when dealing with lengthy or
complex documents. Traditional models often suffer from
issues related to the length of input sequences, as most
transformer-based architectures have a limited token capac-
ity. Several earlier studies have explored different strate-
gies for segmenting documents. For instance, Wang, Chang,
and Sui (2020) proposed splitting documents based on
discourse-level structures, such as paragraphs or sections,
while others have explored content-based segmentation us-
ing key sentences or semantic units (Liu and Lapata 2019).
A key focus in recent research is finding methods to dy-
namically segment documents, where segmentation is tai-
lored to the query or downstream task, rather than applying
a one-size-fits-all approach. This dynamic segmentation has
shown promise in reducing retrieval noise and improving the
overall relevance of the retrieved passages.

In the context of RAG, chunking documents into man-
ageable segments has been shown to improve both retrieval
accuracy and generation fluency. For instance, Kim, Seo,
and Shin (2021) explored hierarchical approaches for split-
ting large documents, improving the efficiency of both re-
trieval and generation tasks. Additionally, Izacard and Grave
(2020a) proposed a model that splits documents into multi-
ple chunks and applies retrieval to each, generating results
based on relevant sections only.

Token Reduction for RAG

Sequence length has become a significant factor limiting the
scalability of transformer models (Vaswani 2017). Token re-
duction techniques are essential for improving the efficiency
of retrieval and generation models, particularly when deal-
ing with extensive document collections. By reducing the
number of tokens or simplifying input sequences, models
can better handle large datasets without sacrificing perfor-
mance. Sanh (2019) introduced DistilBERT, which reduces
the number of parameters while retaining high accuracy
by distilling the knowledge of larger models. Additionally,
methods such as pruning and token pooling (Kitaev, Kaiser,
and Levskaya 2020) have been explored to reduce model
complexity and accelerate inference.

In RAG-based systems, token simplification directly im-
pacts the quality and speed of both retrieval and generation.
Reducing redundant or irrelevant tokens allows the model to
focus on key information, thus improving the relevance of
the retrieved documents. For example, Li, Ji, and Han (2021)
proposed an approach to filter out uninformative tokens dur-
ing the retrieval phase, leading to faster and more accurate
document retrieval.

Proposed Solution

Our main contribution is an innovative text segmentation
technique named IDMS, which can use the power of large
language models to divide documents into independent and
logically coherent chunks. Our approach allows variable
chunk size, thereby more effectively maintaining the in-
tegrity of chunk content. When it is difficult to determine the
segmentation granularity for different types of documents,
this technique can be flexibly adjusted to avoid interruption
of the logical chain during segmentation, thereby improving
the quality of document segmentation.

As illustrated in Figure 1, our method absorbs the ad-
vantages of traditional segmentation strategies without de-
stroying the coherence of sentences and the integrity of sen-
tence structure. Specifically, we hope to find a semantically
complete chunk that contains several sentences. These sen-
tences are not only semantically related, but also contain
deep language logical connections, including but not lim-
ited to causal relationships, transitional relationships, paral-
lel relationships, and progressive relationships. At the same
time, the entities and their relationships in this chunk must
be clearly expressed. In order to achieve this goal, we have
designed and implemented the following two strategies.
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Figure 1: An illustration of IDMS model structure.

Margin Sampling Chunking

Given a text, the initial step involves segmenting it into a
collection of sentences denoted as (x1, xa, . . . , &, ), with the
ultimate goal being to further partition these sentences into
several chunks, forming a new set (X1, Xs, ..., Xy), where
each chunk comprises a coherent grouping of the original
sentences. The method can be formulated as:

Margin,, (z;) = Py (y = ky | Prompt(z;, X/)) —
, ey
Py (y = ko | Prompt(z;, X ))

where (k1, k2) indicates a binary decision between yes or
no for a segmentation judgment. Prompt(z;, X l) represents
forming an instruction between x; € {x;}/, and X,

regarding whether they should be merged, where X " en-
compasses either a single sentence or multiple sentences.
Through the probability P, obtained by model M, we
can derive the probability difference Margin,, (x;) between
the two options. Subsequently, by contrasting Margin,, (z;)
with the threshold 6, a conclusion can be drawn regarding
whether the two sentences should be segmented. For the set-
ting of A, we initially assign it a value of 0 and then adjust
it by recording historical Margin,, (x;) and calculating their
average.

After completing the above steps, the document has been
preliminarily divided into chunks. However, in order to
maintain the coherence of the sentence structure, the sen-
tences in the same chunk must be continuous. For some
types of documents, some related information is not continu-
ous, and there may be some irrelevant sentences in the mid-
dle. Therefore, our framework also adopts a segmentation
method based on information density. This method allows
LLM to judge the information density in the current chunk
from multiple angles and adopt different strategies accord-
ing to the different information density.

Density-driven Chunking

After document segmentation, the relevant information may
be invalid due to the lack of relevant entities in the seg-
mented chunks. Therefore, we borrowed the idea of Chain
of Dense (COD)(Adams et al. 2023) and proposed an infor-
mation density prompt module. Our goal is to hope that the
chunks we segmented should be detailed, entity-centric, and
not entity-dense and difficult to understand.

Specifically, calculate the information density of the gen-
erated chunks. If the density is low but entities are rela-
tively complete, use the LLM to summarize and reduce to-
ken count. If the density is high, there may be missing en-
tities, then iteratively add them and supplement with non-
adjacent, semantically similar sentences. For high-density
chunks, encode sentences, calculate cosine similarity, and
select the top-k as supplementary sources of relevant infor-
mation. Use the LLM to check for missing entities, expand-
ing the chunk while keeping its size stable. After several it-
erations, achieve a balance with moderate density, ensuring
the chunk is informative yet concise and easy to understand.

Below is the detailed formula definition of information
density. We use the following steps to refine the calculation
method of each item:

>y I(Bi) - W(B;) - C(B;) - S(B;) - o By)
L(B)

p(B) =
2

Effectiveness of entities I(B;). Effectiveness measures
how informative and descriptive the entity description in a
chunk is. It is quantified by the amount of information in
the context, I(B;), which can be evaluated using similarity
methods based on language models (e.g., BERT, GPT) or
external knowledge bases (e.g., Wikipedia, WordNet).

I(B;) = cosine_similarity (E(B;), 3)

Contextual_ Embedding)
where E(B;) is the word vector of entity B;, and ’Contex-
tual_Embedding’ represents its embedding in the context. A
high I(B;) indicates a complete, detailed description with
strong information, while a low I(B;) suggests the descrip-
tion is brief or lacks relevant context.

Number of entities W (B;). The number of entities mea-
sures the diversity of different entities in a chunk, which can
usually be calculated by the number of entities that actually
appear in the chunk:

W (B;) = Number of Unique Entities in Chunk B (4)

where W (B;) is the count of the i-th entity in chunk B.
For each chunk, count and weight all independent entities.
Generally, a higher entity count indicates greater informa-
tion density, as it includes more important concepts and de-
tails.

Correlation within chunk C(B;). The correlation within
a chunk reflects the semantic connection between its sen-
tences or entities. It is measured by calculating the cosine



similarity between all pairs of sentences or entities, result-
ing in an overall correlation score. For n sentences or en-
tities {S1, Sa2, ..., Sn }, the overall correlation is the sum of
pairwise similarities:

1 . . . .
n(n—1) ; cosine_similarity(S;, S;) )

C(B) =
where S; and S; are the ¢-th and j-th sentences or entities in
chunk B. A high correlation between sentences or entities
results in C'(B) close to 1, indicating strong internal consis-
tency, while low correlation leads to C'(B) near 0, indicating
weak information coherence.

Rating of large language model S(B;). The large model
rating S(B;) assesses the quality of chunk B; using a model
(e.g., GPT-4, BERT), considering factors like semantic con-
sistency, redundancy, and completeness. The score is calcu-
lated by evaluating the chunk with the pre-trained model M,
yielding a value S(B;) € [0, 1], where 1 indicates high qual-
ity and O indicates poor quality.

S(B;) = ModelScore(B;) (6)

this metric S(B;) will comprehensively consider multiple
aspects such as chunk coherence, contextual consistency,
and semantic completeness.

Weighted similarity between chunks «(B;). The sim-
ilarity weighting factor measures the similarity between
the current chunk and others using cosine similarity. The
weighting coefficient «(B) is calculated by measuring the
cosine similarity between chunk B and other chunks B’.

a(B) = cosine_similarity(B, B’) (7

where B and B’ are different chunks represented by their
embedding vectors. A higher a( B) indicates greater similar-
ity, allowing complementary information to enhance density.
A low «(B) suggests weak relevance between the chunks.

Chunk length L(B). The length of a chunk L(B) directly
represents the number of tokens in the chunk, which is usu-
ally measured by the number of tokens in the vocabulary.
Longer chunks may contain more information, but they may
also lead to more verbose information, so we include it in
the calculation of information density to balance it.

L(B) = Token Count(B) (8)

Combining all the above dimensions, the final information
density formula can be written as formula 2 that evaluates
information density comprehensively from multiple dimen-
sions, such as entity effectiveness, number of entities, the
correlation within chunk, the rating of large language model,
and the weighted similarity between chunks, by refining the
calculation method of each item. The calculation method of
each factor ensures that the information density can reflect
the semantic depth, information completeness, and similar-
ity between chunks of the text block, while avoiding the
problem of redundant or overly dispersed information. This
method can provide a comprehensive and quantitative eval-
uation standard for text segmentation in the paper.

Experiments

This section mainly introduces the experimental settings and
reports the results of IDMS. We use various datasets and
LLMs to compare IDMS with state-of-the-arts, and conduct
ablation study on the results to verify the effects of different
designs.

Experimental Settings

We evaluate various methods using popular question an-
swering (QA) datasets in the RAG field, focusing on Chi-
nese and English performance with metrics on correctness,
authenticity, and recall. The datasets include CRUD, RAG-
Bench, and LongBench. The CRUD dataset, containing
single-hop, two-hop, and three-hop questions, is evaluated
with BLEU, ROUGE-L, and BERTScore (Lyu et al. 2024).
From RAGBench, we use the CUAD dataset, applying the
same metrics (Friel, Belyi, and Sanyal 2024). LongBench
includes eight Chinese and English datasets covering single
and multi-hop QA, evaluated with F1 and ROUGE-L (Bai
et al. 2023).

RAG chunking methods include rule-based and dynamic
chunking, the latter using semantic similarity models or
large language models (LLMs). Rule-based chunking splits
text into fixed-length chunks, ignoring sentence boundaries.
Llama indexing (LangchainAl 2022) balances sentence
boundaries and token count. Semantic similarity chunking
(Xiao et al. 2023) groups related sentences using sentence
embeddings. LumberChunker (Duarte et al. 2024) predicts
optimal segmentation points with LLMs, with each method
offering context-specific advantages.

Our method heavily relies on LLMs, and we test
various models including Qwen2.5-1.5B, Internlm2-1.8B,
Baichuan2-7B, and Qwen2.5-7B (Yang et al. 2024; Cai et al.
2024; Yang et al. 2023), along with smaller models such
as Pythia-0.16B, Pythia-0.41B, and Qwen2-0.5B (Biderman
et al. 2023; Yang et al. 2024). For longer texts, we use a KV
cache method to maintain logical consistency while prevent-
ing GPU memory overflow. Text segmentation and metric
evaluation are performed on NVIDIA A800, with consistent
block lengths across methods.

Main Results

Comparison against Baselines. We conducted a system-
atic evaluation of the performance of two baseline meth-
ods, as presented in Table 1. Overall, our IDMS method
demonstrates strong performance across various datasets.
Our IDMS method demonstrates strong performance across
all datasets when utilizing the Qwen2.5-7B model. More-
over, on the Qasper and MultiHop-RAG datasets, our model
achieves performance comparable to Lumber-Chunker, fur-
ther demonstrating the effectiveness and feasibility of our
approach. Specifically, our method achieves an F1 score
of 13.11 on the 2WikiMultihopQA dataset, significantly
outperforming other approaches. Overall, the Qwen2.5-7B
model achieves superior performance on the 2WikiMulti-
hopQA and Qasper datasets. On the MultiHop-RAG dataset,
which prioritizes recall as the evaluation metric, smaller
models such as Qwen2-0.5B and Qwen2.5-1.5B also de-
liver competitive results. Notably, within our method, the



Dataset 2WikiMultihopQA Qasper MultiHop-RAG
Chunking Method F1 Time F1 Time Hits@10 Hits@4
Rule-based or similarity-based chunking
Original 11.89 0.21 9.45 0.13 0.6027 0.4523
Llama_index 11.74 8.12 10.15 5.81 0.7366 0.5437
Similarity Chunking 12.00 416.45 9.93  307.05 0.7232 0.5362
Lumber-Chunker
Qwen2.5-1.5B 11.18 1908.25 10.09 1401.30  0.7805 0.6089
Qwen2.5-7B 12.94 8781.82 11.73 5755.79  0.7175 0.5415
Baichuan2-7B 11.23 9926.29 9.76  6498.46  0.7059 0.5596
IDMS

Qwen2-0.5B 11.65 253.32 9.56 143.46 0.6762 0.5342
Qwen2.5-1.5B 12.21 378.53 10.21  204.69 0.7393 0.6154
Qwen2.5-7B 13.11 698.93 11.67 52244 0.7187 0.6797
Baichuan2-7B 12.79 753.78 10.04  569.72 0.6923 0.5896

Table 1: Performance of different chunking methods on various datasets.

Qwen2.5-1.5B model achieves a recall score of 0.7393, sur-
passing even the larger Qwen2.5-7B model.

Efficiency and Accuracy Trade-off. As shown in the ex-
perimental results in Table 1, our IDMS model significantly
outperforms the Lumber-Chunker model in terms of run-
time efficiency across all datasets, while achieving compa-
rable or superior performance. Specifically, on the Qasper
dataset, our runtime is nearly one-tenth that of the Lumber-
Chunker method. This highlights the ability of our approach
to effectively balance speed and overall performance. There-
fore, our method enables more efficient utilization of larger
parameter models, such as Qwen2.5-7B, while maintain-
ing reduced runtime. Compared to traditional rule-based or
similarity-based models, our method requires more runtime
but achieves a significantly improved performance. This fur-
ther demonstrates the capability of our model to effectively
balance speed and accuracy.

Ablation Study

In order to study the contribution of different components
and optional modules in IDMS to performance, we con-
ducted a series of experiments for different design schemes.
All sub-experiments in the ablation study used the same ex-
perimental setting, based on the qasper dataset of the Long-
Bench benchmark, using Qwen2.5-1.5B.

Initial chunking. In the initial chunking, IDMS uses
LLM to cluster sentences based on the coarse chunking
based on punctuation to obtain the primary chunks. In order
to study the contribution of primary chunking to the overall
work, our experiment simply ablates this step and the results
are shown in Table 2.

Method F1 Time

Full IDMS 10.21  204.69
No Initial Chunking 9.52  171.02

Table 2: Ablation Study Results for Initial Chunking

Chunk enhancement based on information density. In
the second stage of IDMS, i.e., chunk enhancement based
on information density, we perform different operations on
chunks containing different information entity densities, in-
cluding supplementing entities and reducing tokens. In our
ablation experiments, we perform ablation of chunk en-
hancement on initial blocks, and the results are shown in
Table 3.

Supplement Entities Reduce Tokens F1 Time
v v 10.21  204.69
v X 9.72 121.82
X v 10.14 167.24
X X 945 8598

Table 3: Ablation Study Results for Chunk Enhancement

Conclusion

In this paper, we proposed an innovative text segmen-
tation method—IDMS, which leverages the capabilities
of large language models to divide documents into in-
dependent and logically consistent chunks. By introduc-
ing boundary sampling-based segmentation and informa-
tion density-driven optimization strategies, we can flexibly
adjust the segmentation granularity while maintaining the
semantic coherence of the text. Experimental results show
that IDMS outperforms existing methods, especially the
Lumber-Chunker, in terms of recall and accuracy in multi-
hop question answering tasks, while also demonstrating im-
proved efficiency. Overall, IDMS provides an efficient and
flexible solution for text segmentation, applicable to various
downstream tasks, with broad potential for practical appli-
cations.
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