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Abstract

Image matching is a core problem in computer vision, play-
ing a vital role in applications such as 3D reconstruction and
object tracking. The objective of the task is to identify cor-
responding keypoints between two or more images captured
from different viewpoints or at different times. Traditional
image matching algorithms, such as SIFT and ORB, rely on
hand-crafted feature extractors, while modern deep learning
models achieve significant improvements in matching accu-
racy by learning end-to-end feature representations. Building
on these advancements, we propose a novel image matching
method based on transformer architecture. Our approach first
extracts image features using a shared image encoder, fol-
lowed by feature fusion through a cross-attention mechanism.
Subsequently, we map the 2D keypoints to 3D space, allow-
ing for more robust spatial reasoning. In the post-processing
stage, we employ a nearest-neighbor matching algorithm to
finalize keypoint correspondence. By leveraging geometric
information in 3D space, our method performs well, demon-
strating superior performance in complex scenarios.

Introduction
Image matching is a fundamental challenge in the domain of
computer vision, underpinning a variety of applications in-
cluding 3D reconstruction, object tracking, and augmented
reality. The ability to accurately identify corresponding key-
points across multiple images captured from varying per-
spectives or at different temporal instances is crucial for
achieving robust performance in these applications. Tradi-
tional image matching methods, such as Scale-Invariant Fea-
ture Transform (SIFT) (Rublee et al. 2011)and Oriented
FAST and Rotated BRIEF (ORB)(Wang, Li, and Li 2020),
rely heavily on hand-crafted features, which often struggle
to generalize across diverse environments and object appear-
ances.

In recent years, the advent of deep learning has signifi-
cantly transformed the landscape of image matching. Con-
volutional Neural Networks (CNNs) have been employed
to learn hierarchical feature representations directly from
data, yielding substantial improvements in matching ac-
curacy and robustness. Techniques such as Siamese net-
works(Zhao et al. 2021) and triplet loss(Vaswani et al. 2017)
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have shown promise in establishing correspondences by
minimizing the distance between matching keypoints in fea-
ture space. However, these approaches often operate within
a two-dimensional (2D) framework, which can limit their
effectiveness in scenarios that require understanding spatial
relationships in three dimensions.

Building on this foundation, we propose a novel im-
age matching approach leveraging the transformer archi-
tecture. Transformers, initially developed for natural lan-
guage processing(Chen et al. 2021), have recently been
adapted for various vision tasks due to their capability
to model long-range dependencies through self-attention
mechanisms. Recent works have demonstrated the effec-
tiveness of transformers in tasks such as image segmenta-
tion, object detection(Carion et al. 2020), and image clas-
sification(Dosovitskiy and Brock 2020). Our method first
employs a shared image encoder to extract feature repre-
sentations from input images. The extracted features are
then fused using a cross-attention mechanism, which en-
ables the model to learn rich interdependencies between dif-
ferent viewpoints.

Crucially, our approach extends beyond 2D matching by
mapping the identified keypoints into 3D space, thereby en-
hancing spatial reasoning capabilities. This 3D representa-
tion allows for the incorporation of geometric information,
which is particularly beneficial in complex matching sce-
narios, such as when objects are occluded or appear at dif-
ferent scales. In the final stages of our pipeline, we apply a
nearest-neighbor matching algorithm to establish definitive
correspondences between keypoints, leveraging the enriched
feature set derived from our transformer-based architecture.

Through extensive experiments, we demonstrate that our
method achieves superior performance compared to exist-
ing techniques in challenging matching tasks. By effectively
harnessing the strengths of transformer models and integrat-
ing 3D spatial reasoning, our approach not only advances
the state-of-the-art in image matching but also opens new
avenues for exploration in multi-view geometry and beyond.

Our main contributions can be summarized as follows:
• Confidence Adjustment Function and Global Alignment:

A dynamic adjustment strategy based on global align-
ment that enhances the attention given to challenging
matching points, thereby improving matching accuracy.

• Nearest Neighbor (NN) Search: A method based on near-



Figure 1: Qualitative results of the LoFTR

est neighbor search for matching 2D images in the 3D
space.

Related Work
The domain of image matching in 3D space has experi-
enced remarkable progress in recent years, with a multi-
tude of algorithms and techniques being developed to tackle
the challenges associated with feature detection, description,
and matching within three-dimensional contexts. This sec-
tion provides an overview of some of the most influential
works that have sculpted the current state of the field.
Traditional Feature Detection and Matching Algorithms
Pioneering algorithms in this field include the Scale-
Invariant Feature Transform (SIFT) and sped Up

Robust Features (SURF). SIFT, introduced by David
Lowe in 1999, is celebrated for its capacity to detect and
describe local features that remain invariant under changes
in scale, rotation, and illumination (Lowe 1999). Despite its
robustness, the computational demands and lack of real-time
capability of SIFT have been identified as significant limita-
tions (Bay, Tuytelaars, and Van Gool 2006).

SURF, proposed by Herbert Bay in 2006, represents an
optimization of the SIFT algorithm. It employs a fast Hes-
sian matrix for feature detection and utilizes integral images
to expedite feature description, leading to a marked increase
in computational speed (He et al. 2020). While SURF en-
hances real-time performance, it still encounters difficulties
in scenarios such as dealing with smooth edges and regions
lacking texture.

Subsequently, some variants optimized SIFT or
SURF.ORB(Rublee et al. 2011),a fast binary descrip-
tor based on BRIEF,is rotation invariant and resistant to
noise.The experimental results show that ORB is two orders
of magnitude faster than SIFT, while achieving comparable
performance in many situations.
Deep Learning Approaches The emergence of deep learn-

ing has been a game-changer in the realm of feature match-
ing. (Dusmanu et al. 2019; Arandjelovic et al. 2016)A no-
table breakthrough is the SuperGlue feature matching net-
work, which utilizes graph neural networks and attention
mechanisms to concurrently address correspondence and the
rejection of non-matches (DeTone, Malisiewicz, and Rabi-
novich 2018). SuperGlue’s approach, based on transformers,
has set new benchmarks in pose estimation tasks, demon-
strating its proficiency in managing complex scenes char-
acterized by occlusions and repetitive patterns. Following
the success of SuperGlue, the Local Feature Transformer
(LoFTR) has risen as a formidable alternative. LoFTR cap-
italizes on the expansive receptive field of transformers to
process dense local features, effectively bypassing the con-
straints of traditional CNNs, which often suffer from lim-
ited receptive fields (Sun et al. 2021). Its strategy of coarse-
to-fine matching has proven to be particularly effective in
sparse texture areas and in achieving high precision in vi-
sual localization tasks.

Additionally, the QuadTree Attention mechanism for Vi-
sion Transformers represents a novel approach to attention
that mitigates computational complexity. It constructs token
pyramids and computes attention in a coarse-to-fine manner,
thereby preserving the precision of feature matching while
reducing the computational load (Tang et al. 2022).

In summary, the advent of deep learning, especially the
Transformer, has brought about significant changes to the
field of image matching. In the next section, we will em-
ploy a Transformer-based model to perform image matching
tasks in 3D space.

Methods
In this section, we mainly demonstrate how to achieve high-
quality image matching by utilizing prior knowledge from
3D space provided by DUSt3R. First, we briefly describe the
principle of DUSt3R, which acquires prior knowledge of the



Figure 2: Pipline of our model.

3D scene in the form of point clouds based on DUSt3R. To
enhance the quality of image matching, we introduce multi-
ple perspectives of the same scene, aligning the point cloud
data of image pairs into the same coordinate system to im-
prove the precision of image matching.The process of our
method is shown in Figure 2.

Our goals are as follows: Given multiple perspectives of a
scene, output high-quality feature matches for the specified
image pairs. The challenges of this problem include:
1. How to align point clouds from multiple perspectives into

the same 3D space.
2. How to obtain 2D image matches based on 3D point

clouds.
Our modeling process for this problem can be roughly di-

vided into the following parts:

Preliminary: DUSt3R
Dust3r (Wang et al. 2024) can take a pair of unconstrained
images as input and reconstruct a 3D scene into a point
cloud without prior information about camera calibration or
poses. Firstly a pair of images taken from arbitrary view-
points of a scene, are processed through a shared Vision
Transformer to extract features. After image encoding, two
transformer decoders exchange information between the to-
ken representations of the images via cross-attention mecha-
nism. Finally, the two decoder tokens pass through a regres-
sion head to regress the final output. Unlike methods such
as NeRF (Mildenhall et al. 2021) and 3DGS (Kerbl et al.
2023), which require scene-specific pre-training, the feed-
forward approach enables general 3D scene reconstruction
through pointmap prediction.
Pointmap Prediction. The process of pointmap prediction
can be described as a network function F : (In, Im) →
(Xn,e, Cn,e, Xm,e, Cm,e), the inputs are two RGB im-
ages In, Im ∈ RW×H×3 from different views of the
scene, the outputs include two corresponding pointmaps
Xn,e, Xm,e ∈ RW×H×3, confidence maps Cn,e, Cm,e ∈
RW×H . Note that e = (n,m) refers to the image pair
formed by In and Im, and both pointmaps are positioned
in the camera coordinate system of In. The predicted
pointmaps locate the 3D positions for every pixel of the in-
put 2D images.

Confidence Adjustment Function
Inspired by (Ross and Dollár 2017) proposed by He et al.,
to focus attention on difficult-to-match target sample points,
we introduce a confidence adjustment function, defined as
follows:
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where F v,e
i · (1 − F v,e

i ) enhances attention on difficult-to-
match points, with confidence scores approaching 0.5, the
axis of symmetry of the quadratic function, α is a hyperpa-
rameter used to adjust the weights, σ denotes sigmoid func-
tion.

Global Alignment
Global alignment is used as a post-process that optimizes
the pointmaps from multiple views into an aligned 3D coor-
dinate system. Given a set of images

{
I1, I2, ..., IN

}
from

a scene, a connectivity graph G = (V, E) is constructed,
where the vertices V represent the N images, and each
edge e = (n,m) ∈ E connects an image pair In and
Im. By traversing the connected graph G, globally aligned
pointmaps

{
χn ∈ RW×H×3

}
are recovered for all pixel co-

ordinates (i, j) ∈ {1...W} × {1...H} and all cameras for
different views n = 1, . . . , N .

Finally, we compute the L2 distance between pointmaps
of all image pairs and their corresponding pointmaps χv in
world coordinates. The final Global Alignment is defined as:

χ∗ = arg min
χ,P,σ

∑
e∈E

∑
v∈e

HW∑
i=1

W v,e
i ∥χv

i − σePeX
v,e
i ∥ , (4)

where Pe ∈ R3×4 represents the pairwise pose, which is a
rigid transformation used to align the pointmaps Xn,e, Xm,e

with the world-coordinate pointmaps χn, χm. Additionally,
σe is a scale factor, subject to the constraint that

∏
e σe = 1

for all e ∈ E .



Point Matching
In the 3D point map space, establishing correspondences
between pixels of two images can be easily accomplished
through nearest neighbor (NN) search. To reduce errors,
we generally keep the reciprocal (mutual) correspondences
M1,2 between images I1 and I2, that is defined as:

M1,2 = {(i, j) | i = NN1,2
1 (j) and j = NN2,1

1 (i)}
with NNn,m

k (i) = argmin
j∈{0,...,WH}

∥χn
i − χm

i ∥ .

where n and m represent images In and Im, respectively.

Experiments
In this section, we describe a series of experiments on the
Map-free localization benchmark to evaluate the perfor-
mance of our proposed 3D space image matching method
with Transformer. The experiments aim to assess the
model’s accuracy, robustness, and computational efficiency
in comparison to existing state-of-the-art methods.

Experiment Details
Dataset The evaluation is conducted exclusively on the
Map-Free localization benchmark, which is designed to test
image matching and localization capabilities in scenarios
without prior maps. The dataset includes pairs of images
with extreme viewpoint changes of up to 180°, repetitive
patterns, and significant occlusions. Ground-truth camera
poses are provided, enabling precise evaluation of matching
accuracy and localization robustness. This dataset presents
one of the most demanding environments for image match-
ing, making it a critical testbed for validating the proposed
method.

Metrics We use standard evaluation metrics for a fair
comparison. Precision measures the proportion of correctly
matched keypoints whose reprojection error is below a
threshold of 90 pixels. A higher precision value indicates
that the majority of predicted correspondences are geomet-
rically accurate.

AUC (Area Under the Curve) quantifies the overall qual-
ity of the matching results by calculating the area under the
cumulative precision curve as the error threshold increases.
This metric reflects the ability of the method to achieve high
accuracy across various levels of tolerance, with higher AUC
values being better.

VCRE (< 90px) measures the quality of pixel matches
relative to ground-truth positions, with lower values indicat-
ing better performance.

Baseline Methods To validate the superiority of our ap-
proach, we compare it against several state-of-the-art meth-
ods, encompassing both traditional and modern deep learn-
ing techniques. SIFT, a widely-used keypoint-based method,
provides a benchmark for traditional feature matching.
SP+SG combines SuperPoint and SuperGlue, integrating
local descriptors with global reasoning for improved cor-
respondence accuracy. LoFTR employs a dense matching
approach using Transformers and coarse-to-fine strategies,
making it a strong baseline for modern methods. DUSt3R, a

recent 3D-aware matching algorithm that incorporates dense
reconstruction, serves as a key benchmark for evaluating 3D
grounding. Additionally, RPR focuses on pixel-level preci-
sion, providing an alternative perspective on dense match-
ing.

Results and Analysis
Quantitative Results The quantitative results of our
method are shown in Table 1. Our method outperforms all
baselines, including DUSt3R and LoFTR, with a precision
of 55.30% and an AUC of 0.759. The 10% improvement
over DUSt3R shows the benefits of integrating 3D point
clouds and refining dense local features with the Trans-
former architecture.

Methods Precision (%) AUC
RPR 40.20% 0.402
SIFT 25.00% 0.504
SP+SG 36.10% 0.602
LoFTR 34.30% 0.634
DUSt3R 50.30% 0.697
Ours 55.30% 0.759

Table 1: Comparison of various methods

Our method’s precision and AUC results show its superi-
ority. It effectively reduces the Virtual Correspondence Re-
projection Error by aligning 3D geometry and enhancing
dense correspondences, demonstrating robustness against
large viewpoint variations and repetitive structures. Com-
pared to LoFTR, which struggles in complex geometric sce-
narios, our 3D-grounded approach with geometric priors im-
proves alignment accuracy. The global alignment module
also enhances keypoint correspondence precision.

Qualitative Analysis Qualitative results further highlight
the robustness of our approach in challenging scenarios.
For example, in scenes with extreme viewpoint changes or
significant occlusions, our model accurately identifies key-
point correspondences where traditional methods like SIFT
or even modern approaches such as LoFTR fail. This is ev-
ident in cases with repetitive structures or low-texture re-
gions, where the integration of 3D spatial reasoning provides
a distinct advantage.

Ablation Study To evaluate the contributions of individ-
ual components, we conducted ablation studies on the Map-
Free dataset. Confidence adjustment plays a crucial role
in improving matching accuracy, enhancing precision by
3% by prioritizing difficult-to-match keypoints. The global
alignment module ensures geometric consistency across
multiple views, reducing VCRE by 5%. Feature fusion,
implemented through a cross-attention mechanism, signifi-
cantly improves dense matching accuracy compared to tra-
ditional concatenation, contributing an additional 4% boost
in performance. These results emphasize the importance of
each component in the overall architecture, demonstrating
that their combined effect is greater than the sum of their
parts.



Summary of Results
The results on the Map-Free localization benchmark demon-
strate the superiority of our proposed method in terms
of precision, robustness, and computational efficiency. The
model’s ability to integrate 3D spatial reasoning with
Transformer-based dense feature extraction enables it to
achieve state-of-the-art performance across challenging sce-
narios. Compared to DUSt3R, our method achieves a 10%
improvement in precision, an 8.9% increase in AUC, and a
significant reduction in VCRE, making it a compelling so-
lution for image matching in 3D space. These findings vali-
date the effectiveness of our approach and open avenues for
further exploration, such as extending the model to handle
larger-scale datasets and improving real-time performance.

Conclusion
In this paper, we proposed a novel image matching method
based on the transformer architecture, which integrates 3D
spatial reasoning to enhance matching accuracy and robust-
ness. Our approach leverages a shared image encoder to ex-
tract features, followed by feature fusion through a cross-
attention mechanism. By mapping keypoints into 3D space,
our method can effectively incorporate geometric informa-
tion, leading to superior performance in complex scenarios
such as those with occlusions and repetitive patterns.

Future work could focus on extending the model to handle
larger-scale datasets and improving real-time performance,
further expanding the potential applications of our approach.
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