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Abstract

As the parameters of Large Language Models (LLMs) in-
crease, quantization has emerged as a potent strategy for
model compression and acceleration. Concurrently, Low-
Rank Adaptation (LoRA) has been recognized as an effec-
tive method for enhancing LLM performance. However, in-
tegrating LoRA with quantization presents significant chal-
lenges, particularly in preserving the quantization format af-
ter model optimization. In this paper, we introduce Low rank
Quantization Adaptation (LoQA) for LLM, a novel approach
that effectively fine-tunes holistic quantization parameters.
Specifically, we first propose a new perspective of quantiza-
tion operator, which is compatiable with LoRA and mathe-
matically equivalent to the original operator. In this way, all
the parameters (scale and zero point) are finetuned simulta-
neously, and thus yields notable improvements in model per-
formance. Thanks to the expanded optimization landscape,
LoQA is broadly applicabile to various Post-Training Quan-
tization (PTQ) techniques, ensuring better generalizability in
practical deployments. To maintain the stability of the opti-
mization, we further propose a LoRA scaling strategy that
leverages quantization data to adjust the norm of the low rank
adaptation, regulating the speed of convergence in optimiza-
tion and preventing inappropriate LoRA scaling, which could
lead to overfitting or underfitting. Compared to existing meth-
ods, LoQA consistently achieves performance gains across a
wide range of models, proving its effectiveness and adaptabil-
ity.

Introduction
In recent years, large language models (LLMs) (Zhang et al.
2022; Le Scao et al. 2023; Brown et al. 2020; Touvron
et al. 2023a,b) have demonstrated remarkable performance
across various fields, attracting significant attention. How-
ever, the increasing number of parameters in these models
has made training and fine-tuning progressively more chal-
lenging. This has led to a research focus on efficiently en-
hancing model performance on diverse tasks using massive
datasets, thereby facilitating the deployment and utilization
of LLMs by researchers and the general public.

Parameter-efficient fine-tuning (Xu et al. 2023; Hu et al.
2021; Köksal et al. 2023; Liu et al. 2024) and quantiza-
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tion (Xiao et al. 2023; Lin et al. 2023; Frantar et al. 2022;
Shao et al. 2023; Ma et al. 2024) have emerged as promi-
nent methods for improving training efficiency and com-
pressing models. Parameter-efficient fine-tuning techniques
aim to minimize the number of fine-tuning parameters and
computational complexity. These techniques enhance model
performance while reducing fine-tuning costs, time, and
computational resource consumption. For example, QLORA
efficiently fine-tunes a 65B parameter model on a 48GB
GPU using Low Rank Adapters and innovative 4-bit quan-
tization (Dettmers et al. 2023). The low-rank adaptation
(LoRA) (Hu et al. 2021) method reduces the number of fine-
tuning parameters through low-rank matrix multiplications.
This approach decreases memory usage during gradient up-
dates and accelerates training speed. Additionally, freezing
parameters in the backbone network during optimization al-
lows for the integration of quantization methods. Mapping
backbone network parameters to low-bit representations fur-
ther improves training efficiency. A series of post-training
quantization methods (Frantar et al. 2022; Xiao et al. 2023;
Lin et al. 2023; Frantar et al. 2023; Shao et al. 2023; Ma
et al. 2024) can quickly produce high-performance low-bit
quantized models for the backbone network. The integration
of quantization and parameter-efficient fine-tuning presents
substantial challenges within neural network optimization.
Notably, maintaining the quantized format of the backbone
network proves difficult following the integration of fine-
tuned parameters. Initially, QLoRA (Dettmers et al. 2024)
addresses this issue by employing post-training quantization
to preserve the structure post-fusion. However, this method
partially compromises the precision of fine-tuned parame-
ters, impacting the overall accuracy of the model. To tackle
this, QA-LoRA (Xu et al. 2023) constrains the dimensions
of low-rank matrices, allowing the fine-tuning parameters to
be incorporated directly into the zero points of the quantized
backbone network. This ensures the stability of the quanti-
zation fixed points during parameter fusion, although it re-
stricts the optimization space for fine-tuned parameters, thus
capping potential performance gains for the language model.

In response, this paper introduces a novel approach named
Low-Rank Quantization Adaptation (LoQA). This method
enhances all quantized parameters with an efficient fine-
tuning module. Conceptually, if the quantization zero points
in the backbone network are viewed as translational op-



erations on intra-group weight parameters, the scale pa-
rameters then serve as scaling transformations that adapt
these parameters to the quantization range. LoQA compre-
hensively optimizes both sets of quantization parameters
through gradient-based methods, thereby broadening the op-
timization space. Concurrently, it preserves the quantized
structure of the backbone network, ensuring that the quanti-
zation fixed points remain stable. The fine-tuning of the two
sets of quantization parameters under a low-rank framework
minimizes both time and computational expenses, yielding
an optimized quantized model efficiently.

Moreover, the increase in learnable parameters introduces
the risk of overfitting, especially in smaller datasets. To mit-
igate this risk, we also introduce a LoRA scaling technique
that regulates the optimization process of the adaptive low-
rank matrices and uses quantization data to regularize the
fine-tuning parameters. Loss optimization curves demon-
strate that LoRA scaling effectively moderates the conver-
gence rate, thus preventing overfitting in smaller datasets.
Extensive experiments with various quantization config-
urations on different benchmarks and datasets using the
LLaMA model consistently demonstrate performance im-
provements, validating the effectiveness of LoQA. In sum-
mary, our contributions are as follows:

• Providing a new perspective in quantization. While
existing methods primarily focus on the fine-tuning of
shallow quantization parameters merged learned param-
eters without preserving the underlying quantized struc-
ture, our Low-Rank Quantization Adaptation (LoQA) ex-
pands the optimization space for fine-tuning all quan-
tized parameters. By conducting a thorough analysis of
the dequantization process, our method efficiently fine-
tunes all quantized parameters, effortlessly enhancing the
model’s capacity.

• We have devised a noval LoRA scaling strategy. This
strategy is designed to mitigate overfitting phenomena
during the fine-tuning phase. This strategy employs a
novel approach by using quantization statistics to reg-
ularize adaptive low-rank matrices, thus ensuring con-
trolled and predictable model convergence. The effec-
tiveness of the LoRA scaling method is substantiated by
optimization loss curves, which illustrate its capacity to
maintain training stability and model generalizability.

• Empirically, our methodologies have shown substantial
improvements in performance across a wide range of
models and quantization configurations. Fine-tuning var-
ious models on the extensive Flan-v2 dataset has yielded
consistent enhancements, demonstrating the practical ef-
ficacy and broad applicability of our proposed tech-
niques. For instance, the performance of the LLaMA7B
model, quantized at 3-bit width, improved by 2.8% in
the MMLU 5-shot tasks compared to the existing state-
of-the-art. This underscores the robust capacity of LoQA.
Furthermore, our experiments on smaller datasets trained
over multiple epochs have even slightly surpassed the
current state-of-the-art, illustrating the effectiveness of
our LoRA scaling strategy in preventing overfitting.

Related Work

Parameter-Efficient Fine-Tuning (PEFT)

Parameter-efficient fine-tuning techniques are designed to
minimize the number of fine-tuning parameters and com-
putational complexity, making them a potent strategy for
fine-tuning Large Language Models (LLMs). For instance,
the Low-Rank Adaptation (LoRA) method (Hu et al. 2021)
reduces the number of fine-tuning parameters through
low-rank matrix multiplications, decreasing memory usage
during gradient updates and accelerating training speeds.
LoRA achieves comparable performance to full fine-tuning
with significantly fewer learnable parameters across various
tasks. Additionally, other types of parameter-efficient fine-
tuning methods, such as DoRA (Liu et al. 2024), VeRA
(Kopiczko, Blankevoort, and Asano 2023), and PiSSA
(Meng, Wang, and Zhang 2024), have also been proposed.

Quantization of LLMs

As the parameters of Large Language Models increase,
quantization has emerged as a powerful strategy for model
compression and acceleration. Existing quantization meth-
ods primarily focus on preserving or restoring the accuracy
of quantized LLMs during the inference stage (Zhu et al.
2023), aiming to reduce memory usage and computational
costs without retraining the LLM. One of the main chal-
lenges is dealing with outliers in the parameters and acti-
vations, which can cause significant errors during quanti-
zation. Particularly in LLMs, outliers significantly compli-
cate the quantization process. GPTQ (Frantar et al. 2022)
employs progressive quantization and mitigates quantiza-
tion errors by applying Hessian matrix corrections to the
full-precision parameters. AWQ (Lin et al. 2023) addresses
the issue of activation outliers by scaling the input channels
of both weights and activations. Furthermore, OmniQuant
(Shao et al. 2023) introduces a post-training quantization al-
gorithm that leverages gradient optimization by making the
scaling and clipping parameters learnable, thereby improv-
ing the adaptability and performance of the quantized model.

Joint Efficient Fine-Tuning and Quantization

The integration of quantization and parameter-efficient fine-
tuning poses significant challenges in neural network op-
timization, especially in maintaining the quantized for-
mat after fine-tuning. This work aims to extend the goals
of parameter-efficient adaptation and computation-efficient
tuning and deployment, which can further enhance the effi-
ciency and scalability of LLMs while mitigating the nega-
tive impacts of quantization errors. Previous work, such as
QLoRA (Dettmers et al. 2023), failed to maintain the quan-
tized format after fine-tuning. QA-LoRA (Xu et al. 2023)
performs group-wise operations on quantization and low-
rank adaptation, which preserves the quantized format post-
fine-tuning, but the optimization space is limited to transla-
tional operations on intra-group weight parameters, showing
limited generalizability on larger datasets.
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Figure 1: LoQA (Low-rank Quantization Adaptation) is an efficient method that combines fine-tuning with quantization, differ-
ing from QLoRA and QA-LoRA methods by integrating low-rank adaptation during the dequantization process. This integration
ensures that quantization is completed simultaneously with fine-tuning, preserving the quantized structure. In downstream infer-
ence tasks, LoQA maintains the advantageous properties of quantization without requiring additional parameters or increasing
inferential overhead.

Low-rank Quantization Adaptation
LoQA, as illustrated in Figure 1, seeks to expand the opti-
mization space and preserve the quantization format by ap-
plying low-rank adaptation adjustments to all quantized pa-
rameters and integrating them with the adaptive matrix and
the original quantized weights. It initially demonstrates the
feasibility of efficiently expanding the optimization space,
both theoretically and practically, as elaborated in Section
. Section explores LoQA’s adaptability to various Post-
Training Quantization (PTQ) methods. In practical training,
it was observed that employing traditional LoRA scaling
strategies with LoQA often led to overfitting or underfitting
issues; thus, a new LoRA scaling strategy grounded in con-
siderations of numerical stability is introduced in Section .

Preliminaries
To make it clear, we follow the symbolic notation system
to elucidate the Low-Rank Adaptation (LoRA) methodol-
ogy (Hu et al. 2021). Specifically, we consider W as a ma-
trix representing the pretrained weights for a specific layer,
with dimensions Dout ×Din. Features are represented by a
vector x of length Din. Consequently, the output vector y,
having dimensions Dout, is computed as y = Wx. Central
to the LoRA approach is the introduction of two low-rank
matrices, A and B, which are dimensioned as Dint × Din

and Dout × Dint respectively. The term Dint, significantly
smaller than both Din and Dout, ensures that the product
BA is a low-rank matrix yet aligns in size with W.

In the training phase, the computation is augmented to
include a scaling coefficient s, yielding the formula y =
Wx+s ·BAx. This formulation allows W to remain static,

while A and B are updated to enable efficient parameter
tuning. Post-training, we employ the reparametrized weight
matrix W′ = W+s·BA, which is utilized during inference
to compute the output as y = W′x, facilitating accelerated
computation.

The paradigm of amalgamating quantization with fine-
tuning, such as QLoRA (Dettmers et al. 2023), generally
begins with a post-training quantization technique to gen-
erate a quantized model. To illustrate this concept straight-
forwardly, let us consider the application of a standard min-
max quantization method. Assuming a model with weights
in FP16 format (denoted as WFP16), and aiming to quantize
these to N bits, the quantization is governed by the follow-
ing formula:

WInt4 = clamp

(
round

(
Temp

)
, 0, 2N − 1

)
,

Temp =
WFP16 − ZeroPointFP16

ScaleFP16

ZeroPointFP16 = WFP16
min ,

ScaleFP16 =
WFP16

max −WFP16
min

2N − 1
.

(1)

In the above equation, ScaleFP16 represents the quantiza-
tion step size, and ZeroPointFP16 serves as the offset, or
zero points, facilitating the alignment of real and quantized
values. The function clamp(z, r1, r2) is used to restrict the
value of z within the range defined by r1 and r2, effectively
bounding it by returning r1 if z is less than r1, and r2 if z



exceeds r2. The function round(z) adjusts z to the nearest
integer.

In the quantization framework, WFP16 and WInt4 matrices
are both dimensioned as Dout × Din, whereas ScaleFP16

and ZeroPointFP16 are defined for each output channel and
shaped as Dout× Din

groupsize . The parameter groupsize indicates
the division of input dimensions into groups for localized
quantization.

This quantization procedure involves storing the values
of WInt4, ZeroPointFP16, and ScaleFP16. To revert to the
floating-point representation WFP16 during inference, we
deploy the corresponding dequantization process:

W̃FP16 = WInt4 ⊙ ScaleFP16 + ZeroPointFP16, (2)

In the above equation, W̃FP16 serves as an approximation
of the original weight matrix WFP16. This approximation fa-
cilitates the restoration of the floating-point values from their
quantized integer form, enabling the use of lightweight mod-
els in high-precision tasks.

Preserving Holistic Quantization Format in
Adaptation
While the dequantization process may incur a slight loss
of precision, it preserves the substantial benefits of quanti-
zation, including notably reduced storage requirements and
minimized input/output (I/O) overhead. Quantization neces-
sitates only the storage of the compressed values WInt4 and a
reduced number of instances of grouping parameters. Meth-
ods like QLoRA ((Dettmers et al. 2022)) and GPTQ-LoRA
commonly leverage this technique to minimize memory us-
age and accelerate the post-quantization fine-tuning phase.
Nevertheless, these models often do not fully capitalize on
the potential synergies that could arise from a more cohesive
integration of quantization and fine-tuning. A key obstacle is
the challenge associated with effectively reincorporating the
learned low rank adaptations back into the original quan-
tized models. To elucidate why such integration is complex,
consider the following equations that describe the forward
process using these methods:

W′=W̃+s·BA=(WInt4⊙ScaleFP16+ZeroPointFP16)+s·BA. (3)

In this model, WInt4 maintains its dimensions as Dout ×
Din, which is compatible with the dimensions of BA. How-
ever, the integer nature of WInt4 presents challenges for
seamless integration with the floating-point operations in-
volving BA, potentially leading to type conflicts and preci-
sion issues.

Within the QA-LoRA framework, although a straightfor-
ward integration of learned low rank adaptations into WInt4

is impractical due to datatype discrepancies and possible
precision degradation, an effective strategy has been de-
vised. This method incorporates LoRA modifications within
ZeroPointFP16, thus avoiding any precision loss. However,
this approach encounters a challenge due to dimensional dis-
parities: ZeroPointFP16 is structured as Dout × Din

groupsize ,
which does not align with the dimensions of BA, set at

Dout × Din. This discrepancy poses significant integration
challenges, necessitating further adaptations or modifica-
tions to harmonize these components within the quantization
and adaptation framework.

To address the dimensional misalignment in the QA-
LoRA framework, two pragmatic modifications are imple-
mented:

• Reshape A: The shape of matrix A is altered to Dint ×
Din

groupsize to align with the dimensions of ZeroPointFP16.

• Adjust Input x: The shape of the input vector x is ad-
justed to Din

groupsize , enabling alignment with the reshaped
A. This adjustment is achieved using an average pool-
ing layer sized to the groupsize, effectively reducing the
dimensionality of x to match A.

These modifications ensure that the integration of low
rank adaptations into the quantized structure is seam-
less and does not compromise fidelity. The revised merge
equation, which incorporates LoRA adjustments within
ZeroPointFP16, is formulated as follows:

ZeroPointFP16 = ZeroPointFP16 + s ·BA. (4)

This equation confirms that the integration of low
rank adaptations maintains the original quantization pre-
cision of the weights. The adjustments are localized to
ZeroPointFP16, preserving both the integrity and efficiency
of the quantized model. Furthermore, this approach facil-
itates enhanced performance through fine-tuning adapta-
tions, thereby maintaining the efficacy of the model even in
resource-constrained environments. This methodology not
only preserves the quantized format but also ensures the con-
tinued effectiveness of the model. Upon reviewing Equa-
tion 3, an intriguing possibility emerges: if learned LoRA
adaptations can be integrated into ZeroPointFP16, is it fea-
sible to similarly integrate these adaptations into ScaleFP16?
To investigate this, we propose a method analogous to the
one used in QA-LoRA, employing the Hadamard product
(element-wise multiplication) between BA and WInt4. This
concept is reflected in the following modification to the
equation:

W′=W̃+s·BA=(WInt4⊙ScaleFP16+ZeroPointFP16)+WInt4⊙s·BA.

(5)
While theoretically sound, this method raises practi-

cal efficiency concerns due to the computational over-
head of additional operations on WInt4, typically stored
as Int32. To address this, we propose LoQA (Low-Rank
Quantization Adaptation), which achieves equivalent adjust-
ments during dequantization by fine-tuning ScaleFP16 and
ZeroPointFP16. Algorithm pseudocode 1 outlines this ef-
ficient adjustment, focusing on modifying the dequantiza-
tion process. Specifically, this involves adjusting the value of
scale before proceeding with the forward process, as shown
in Equation 6.



Scale′
FP16

= ScaleFP16 + s ·BA,

y = W̃x = (WInt4 ⊙ Scale′
FP16

+ ZeroPointFP16)x.
(6)

LoQA not only facilitates these adjustments during the de-
quantization phase but also maintains efficiency by optimiz-
ing ScaleFP16 and ZeroPointFP16.

Algorithm 1: LoQA Pseudocode in the PyTorch-like style
1 # D_in, D_out, D_int: the input, output,

and adaptation dimensions
2 # L: the quantization group numbers (

D_in // L is the group size)
3 # s: the coefficient for adaptation; N:

the bit width of quantization
4 # zp_lora_A, zp_lora_B, scale_lora_A,

scale_lora_B: LoRA Parameters
5 # loqa_scaling: the coefficient for LoQA

-S
6
7 def forward(W_quant,scale,zeropoint):
8 scale_new = scale + loqa_scaling *

scale_lora_B @ scale_lora_A
9 zp_new = zp + s * zp_lora_B @

zp_lora_A
10 W_tilde = scale_new * W_quant +

zp_new #Eq.(7)
11 result = W_tilde @ x
12
13 def deployment(scale,zeropoint):
14 scale = scale + s * scale_lora_B @

scale_lora_A
15 zeropoint = zp + s * zp_lora_B @

zp_lora_A
16 del zp_lora_A, zp_lora_B,

scale_lora_A, scale_lora_B
17 return scale,zeropoint

Scaling Strategy of LoQA
The scaling strategy in LoRA and its derivative, QLoRA,
is typically expressed as α

rank , where ’rank’ denotes the di-
mensionality Dint of the low-rank matrices, and α serves as
a hyperparameter. In QA-LoRA, the scaling is modified to

α
rank×groupsize , a formula driven by the need to adjust the
quantized zero point across a group of parameters. This di-
vision by the groupsize is designed to enhance numerical
stability.

However, within the context of LoQA, our empirical ob-
servations suggest that neither the groupsize-adjusted LoRA
scaling nor the conventional LoRA scaling is optimal. High
scaling values frequently result in overfitting and instability
due to excessive numerical magnitudes, whereas low values
tend to induce underfitting due to insufficient numerical im-
pact. The challenge, therefore, is to stabilize these scaling
values within LoQA-S, as illustrated in Equation 5. LoQA-
S involves pointwise multiplication of the BA matrix with
WInt4, where the fixed points in WInt4 can unpredictably
amplify the LoRA values, leading to numerical instability.

A logical solution might be to normalize each quan-
tization group by dividing by the largest fixed point in
that group. However, this approach would require storing
and computing the maximum quantized values for differ-
ent group fixed points, which would substantially increase
both storage and computational demands. In LoQA-S, we
propose a more efficient, approximate solution. Our adapted
LoRA scaling employs the formula α

rank×maxq , where maxq
is calculated based on the bit width; for instance, in N-bit
quantization, maxq = 2N − 1, shown in Figure.1 This strat-
egy not only enhances efficiency but also strikes a com-
mendable balance between maintaining data stability and
optimizing model fitting capabilities.

Flexibility and Compatibility of LoQA
Recent advancements in Post-Training Quantization (PTQ)
have introduced methods that further compress the Zero-
Point by converting it from floating-point to integer format,
as highlighted in several studies (Ma et al. 2024; Shao et al.
2023; Xiao et al. 2023). These PTQ methods typically em-
ploy the following quantization procedure:

WInt4 = clamp
(
round (Temp) , 0, 2N − 1

)
,

Temp =
WFP16

ScaleFP16 − ZeroPointInt4

ZeroPointInt4 = round
(

WFP16
min

ScaleFP16

)
,

ScaleFP16 =
WFP16

max −WFP16
min

2N − 1
.

(7)

The corresponding dequantization process is described as
follows:

W̃FP16 = (WInt4 − ZeroPointInt4)⊙ ScaleFP16 (8)

With the ZeroPoint no longer stored in FP16 for-
mat, these PTQ methods introduce significant challenges
when attempting to apply the QA-LoRA reparameteriza-
tion techniques to ZeroPoint. This necessitates converting
ZeroPointInt4 back to FP16, and entails modifying the de-
quantization process from Equation 8 to Equation 2. This
conversion might require additional storage space and could
lead to the need for replacing efficiently optimized operators
on downstream devices, which is often not optimal. LoQA
circumvents these issues by supporting fine-tuning of the
Scale component exclusively, making it highly compatible
with various PTQ methods. Experimental evidence suggests
that adjustments to the Scale alone can yield effective results
in Table 3, demonstrating LoQA’s adaptability and efficacy
in enhancing the flexibility of PTQ frameworks.

Experiments
Main Results
Comparative evaluation of the LLaMA model on the
MMLU benchmark against recent competitors. We uti-
lized Low-Rank Quantization Adaptation (LoQA) to fine-
tune LLaMA models and assessed their performance on the



Figure 2: This figure illustrates the impact of different LoRA scaling values on LoQA-S performance. When larger scaling
values are used in LoRA, LoQA-S exhibits greater instability and a higher propensity for overfitting, evidenced by sharp loss
drops after each epoch and shown by the eval accuracy in the right figure.

MMLU benchmark. Table 1 summarizes results across dif-
ferent model sizes, fine-tuning datasets, and bit widths, com-
paring LoQA with similar methods like QA-LoRA (Xu et al.
2023), QLoRA (Dettmers et al. 2023), and the non-LoRA-
based PEQA (Kim et al. 2023). We implemented QA-LoRA
in the same environment for consistency and extracted data
for other methods from published studies. Our results, espe-
cially with the Flan-v2 dataset, show consistent performance
enhancements, demonstrating LoQA’s broad applicability
and effectiveness. For example, fine-tuning the LLaMA7B
model at 3-bit width led to a 2.8% improvement in MMLU
5-shot tasks over the existing state-of-the-art, showcasing
LoQA’s robustness. Experiments on smaller dataset over
multiple epochs indicate slight improvements over the state-
of-the-art, affirming our LoRA scaling strategy’s ability to
prevent overfitting. On LLaMA2 and LLaMA3 models.
We further validated the effectiveness of our method on
LLaMA3. As depicted in Table 2, we fine-tuned the 7B mod-
els from LLaMA2 and the 8B models from LLaMA3, and
tested them on the MMLU benchmark. Compared to the
original FP16 models, the fine-tuned models demonstrated
great performance. These experiments confirm that LoQA
can be generalized across different families of pre-trained
models.

Impact of LoRA scalings. In previous sections, we con-
ducted experiments on the llama7b model to explore the im-
pact of different LoRA scaling values on training loss and
validation accuracy, providing insight into the relationship
between LoRA scaling magnitudes and issues of underfit-
ting and overfitting in Figure 2. The proposed LoRA scaling
approach, as applied in experiments shown in Tables 1 and 3,
has been tested across models of varying bit widths, demon-
strating its broad applicability and effectiveness in address-
ing these issues.

Adjustment of Different Parts of Quantized Weights
As detailed in the methods section, our innovative approach
offers the flexibility to adjust either the scale alone or both
the scale and zero point, expanding upon previous method-
ologies that primarily adjusted the zero point alone. We re-

fer to the method that solely adjusts the scale as LoQA-S. In
our ablation study, we investigated the individual and com-
bined impacts of these adjustments. Applying LoQA-S to
the LLaMA7B model, we evaluated performance across var-
ious bit widths and datasets. Our findings reveal that LoQA-
S consistently performs well on smaller datasets. However,
on larger datasets, while adjustments to the scale alone are
somewhat constrained by the model’s capacity and do not
outperform adjustments to both scale and zero point, they
still yield favorable outcomes.

Conclusion
In this paper, we introduce a novel approach named LoQA,
which proposes HQ-LoRA, capable of effectively fine-
tuning all quantized parameters. We also developed a novel
LoRA scaling strategy called QBAS, which can adjust the
scaling size based on the quantization bit-width. LoQA not
only maintains memory-saving characteristics during quan-
tization but also preserves quantization properties after fine-
tuning. It can be flexibly applied to various uniform quanti-
zation methods.



Table 1: Zero-shot and five-shot accuracy percentages on the Massive Multitask Language Understanding (MMLU) dataset
(Hendrycks et al. 2021). Results are grouped by the foundational model indicated in the initial row of each block. We cate-
gorize the results based on the dataset used for fine-tuning (Alpaca or Flan-v2) and the bit width utilized in quantization. The
quantization bit width notation of ’4+16’ signifies the original QLoRA configuration, with the final inference version imple-
mented in FP16.

Method Dataset #Bits MMLU (0-shot) MMLU (5-shot)
Hums. STEM Social Other Avg. Hums. STEM Social Other Avg.

LLaMA-7B – 16 32.4 26.6 31.4 37.2 32.1 33.3 29.8 37.8 38.0 34.6
QLoRA Alpaca 4+16 38.1 31.1 41.6 46.9 39.4 36.1 31.9 42.0 44.5 38.4
QLoRA w/ GPTQ Alpaca 4 35.7 30.9 38.0 44.0 37.1 33.8 31.3 37.4 42.2 36.0
PEQA Alpaca 4 – – – – – 34.9 28.9 37.5 40.1 34.8
QA-LoRA Alpaca 4 38.7 35.6 46.7 45.9 41.5 37.9 35.4 45.9 46.8 41.2
LoQA Alpaca 4 39.1 34.6 46.2 46.3 41.4 39.1 34.7 47.1 47.8 41.9
QLoRA w/ GPTQ Alpaca 3 31.5 28.9 31.8 36.8 32.2 31.6 30.1 35.6 39.8 34.0
QA-LoRA Alpaca 3 33.7 32.1 39.4 41.5 36.4 34.6 32.6 41.7 42.7 37.6
LoQA Alpaca 3 34.0 30.2 36.3 39.1 34.9 36.1 31.2 40.7 42.4 37.5
QLoRA w/ GPTQ Alpaca 2 24.1 22.1 22.5 23.7 23.2 23.4 26.2 26.4 28.4 25.8
QA-LoRA Alpaca 2 24.8 25.5 23.7 28.0 25.5 25.4 27.8 30.0 26.7 27.2
LoQA Alpaca 2 27.2 27.3 26.7 29.1 27.6 26.4 26.8 25.8 28.8 26.9
QLoRA FLAN v2 4+16 40.9 32.5 47.8 49.5 42.6 41.4 35.0 49.8 52.0 44.3
QLoRA w/ GPTQ FLAN v2 4 39.7 32.5 46.4 48.1 41.6 36.5 33.7 46.9 50.3 41.4
QA-LoRA FLAN v2 4 41.6 33.9 49.5 49.4 43.5 41.8 35.6 53.7 50.8 45.2
LoQA FLAN v2 4 42.7 34.3 53.1 51.7 45.3 44.0 37.2 56.1 52.3 47.1
QLoRA w/ GPTQ FLAN v2 3 36.7 30.2 38.4 40.1 36.5 32.2 31.7 42.7 42.8 36.9
QA-LoRA FLAN v2 3 39.1 30.6 45.5 45.9 40.2 40.8 34.7 50.5 49.8 43.7
LoQA FLAN v2 3 40.3 31.1 47.8 49.0 42.0 42.8 33.8 52.2 52.3 45.1
QLoRA w/ GPTQ FLAN v2 2 24.1 22.5 22.3 23.8 23.3 23.9 25.3 26.2 25.3 25.0
QA-LoRA FLAN v2 2 34.1 30.0 37.2 39.8 35.2 31.8 38.1 34.5 38.5 33.2
LoQA FLAN v2 2 35.4 28.5 39.9 38.9 35.7 34.2 28.8 41.0 40.5 36.0
LLaMA-13B – 16 40.6 36.7 48.9 48.0 43.3 44.0 35.9 53.2 52.9 46.3
QLoRA Alpaca 4+16 45.2 38.3 55.0 54.6 48.1 46.0 37.3 55.8 55.1 48.4
QLoRA w/ GPTQ Alpaca 4 44.7 38.0 54.4 54.0 47.6 45.4 37.4 55.7 54.3 48.0
PEQA Alpaca 4 – – – – – 43.0 37.7 53.6 49.0 45.0
QA-LoRA Alpaca 4 42.5 36.0 52.1 52.9 45.6 46.4 36.1 53.4 53.4 47.4
LoQA Alpaca 4 43.5 35.5 51.1 53.3 45.7 45.8 36.4 54.3 54.4 47.6
QLoRA w/ GPTQ Alpaca 3 43.5 36.2 52.3 52.6 45.9 43.6 36.1 53.0 52.7 46.1
QA-LoRA Alpaca 3 42.3 36.0 51.2 51.6 45.1 42.9 36.8 52.6 51.2 45.6
LoQA Alpaca 3 42.9 36.8 52.3 53.1 46.0 43.9 37.0 54.2 53.2 46.8
QLoRA w/ GPTQ Alpaca 2 27.7 27.6 31.8 29.7 29.0 29.0 27.1 33.4 34.8 30.9
QA-LoRA Alpaca 2 28.9 30.0 34.5 36.2 32.0 29.4 29.7 35.5 37.0 32.5
LoQA Alpaca 2 30.9 29.3 33.8 36.2 32.4 29.3 28.0 34.8 38.8 32.4
QLoRA FLAN v2 4+16 48.0 39.2 58.2 56.7 50.3 49.9 40.1 60.2 57.9 51.9
QLoRA w/ GPTQ FLAN v2 4 47.6 39.6 57.6 56.0 50.0 49.4 40.9 59.7 57.6 51.7
QA-LoRA FLAN v2 4 46.4 36.0 57.5 55.8 48.8 49.9 39.6 60.2 56.6 51.5
LoQA FLAN v2 4 48.9 41.2 59.9 58.0 51.8 50.2 42.7 62.2 58.3 53.1
QLoRA w/ GPTQ FLAN v2 3 46.6 37.9 55.9 55.7 48.9 46.5 38.2 57.2 56.1 49.3
QA-LoRA FLAN v2 3 45.7 38.0 57.3 54.3 48.5 47.2 40.2 59.5 56.2 50.5
LoQA FLAN v2 3 47.4 40.3 59.5 54.7 50.2 48.0 42.2 61.5 57.4 51.9
QLoRA w/ GPTQ FLAN v2 2 36.2 30.3 40.8 44.1 37.8 36.6 32.0 43.8 44.2 38.9
QA-LoRA FLAN v2 2 39.9 31.5 46.9 45.2 40.9 38.3 34.2 47.4 46.9 41.4
LoQA FLAN v2 2 41.0 34.3 49.5 48.4 43.1 39.5 36.1 51.3 48.1 43.3
LLaMA-33B – 16 51.0 42.7 63.3 60.4 54.1 56.2 45.9 67.1 63.9 58.2
QLoRA Alpaca 4+16 52.2 44.9 64.3 61.8 55.5 55.4 46.0 66.4 63.6 57.7
QLoRA w/ GPTQ Alpaca 4 51.7 44.7 63.4 61.0 54.9 53.9 46.6 66.3 62.9 57.1
QA-LoRA Alpaca 4 51.6 44.9 65.0 61.8 55.4 55.8 46.4 67.0 64.0 58.1
LoQA Alpaca 4 51.8 42.5 63.6 61.3 54.6 53.8 44.7 65.0 62.0 56.2
QLoRA FLAN v2 4+16 56.3 46.5 68.6 64.6 58.8 57.2 48.6 69.8 65.2 60.0
QLoRA w/ GPTQ FLAN v2 4 54.9 46.4 68.2 63.6 58.0 57.4 48.6 69.2 64.9 59.8
QA-LoRA FLAN v2 4 53.6 44.8 66.3 62.4 56.5 55.9 47.4 69.6 65.1 59.2
LoQA FLAN v2 4 55.5 46.3 69.2 63.6 58.4 58.7 49.3 71.0 65.8 61.0



Table 2: 0-shot and 5-shot MMLU accuracy (%) based on the LLaMA2 and LLaMA3.

MMLU (0-shot) MMLU (5-shot)
Hums. STEM Social Other Avg. Hums. STEM Social Other Avg.

Method Data #Bits (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑)
LLaMA2-7B – 16 38.9 32.9 46.6 44.9 40.7 43.0 36.4 51.4 52.2 45.5
QA-LoRA Alpaca 4 40.6 37.2 50.9 49.6 44.2 40.9 36.7 48.6 50.6 43.9
LoQA Alpaca 4 42.2 37.3 52.3 52.0 45.6 42.3 38.1 52.5 53.0 46.1
QA-LoRA FLAN v2 4 45.6 38.9 56.0 54.8 48.6 45.1 39.9 58.3 56.4 49.5
LoQA FLAN v2 4 46.0 39.0 59.0 56.3 49.7 46.1 41.1 61.4 57.9 51.1
LLaMA3-8B – 16 - - - - - 59.0 55.3 76.0 71.5 64.8
LoQA Alpaca 4 51.0 49.7 69.8 65.6 58.2 42.7 49.7 68.5 64.2 54.8
LoQA FLAN v2 4 53.0 49.6 69.3 65.7 58.8 44.3 50.8 70.4 66.8 56.6

Table 3: 0-shot and 5-shot accuracy (%) on the Massive Multitask Language Understanding (MMLU) dataset (Hendrycks et al.
2021). Each block is based on the same foundation model specified at the first row. We organize all results using the fine-tuning
dataset (Alpaca or Flan-v2) and the bit width of quantization. The bit width of ‘4+ 16’ refers to the original QLoRA where the
final version for inference is in FP16.

Method Dataset #Bits MMLU (0-shot) MMLU (5-shot)
Hums. STEM Social Other Avg. Hums. STEM Social Other Avg.

LLaMA-7B – 16 32.4 26.6 31.4 37.2 32.1 33.3 29.8 37.8 38.0 34.6
QLoRA Alpaca 4+16 38.1 31.1 41.6 46.9 39.4 36.1 31.9 42.0 44.5 38.4
QA-LoRA Alpaca 4 38.7 35.6 46.7 45.9 41.5 37.9 35.4 45.9 46.8 41.2
LoQA-S Alpaca 4 39.4 34.3 47.5 46.9 41.8 38.2 34.3 46.5 46.9 41.2
LoQA Alpaca 4 39.1 34.6 46.2 46.3 41.4 39.1 34.7 47.1 47.8 41.9
QA-LoRA Alpaca 3 33.7 32.1 39.4 41.5 36.4 34.6 32.6 41.7 42.7 37.6
LoQA-S Alpaca 3 33.9 31.4 37.5 39.9 35.5 35.9 32.7 40.8 43.7 38.1
LoQA Alpaca 3 34.0 30.2 36.3 39.1 34.9 36.1 31.2 40.7 42.4 37.5
QA-LoRA Alpaca 2 24.8 25.5 23.7 28.0 25.5 25.4 27.8 30.0 26.7 27.2
LoQA-S Alpaca 2 26.5 25.9 24.9 28.2 26.4 27.2 25.6 26.5 27.0 26.7
LoQA Alpaca 2 27.2 27.3 26.7 29.1 27.6 26.4 26.8 25.8 28.8 26.9
QLoRA FLAN v2 4+16 40.9 32.5 47.8 49.5 42.6 41.4 35.0 49.8 52.0 44.3
QA-LoRA FLAN v2 4 41.6 33.9 49.5 49.4 43.5 41.8 35.6 53.7 50.8 45.2
LoQA-S FLAN v2 4 42.6 34.9 53.1 51.0 45.2 42.7 36.7 55.3 51.4 46.2
LoQA FLAN v2 4 42.7 34.3 53.1 51.7 45.3 44.0 37.2 56.1 52.3 47.1
QA-LoRA FLAN v2 3 39.1 30.6 45.5 45.9 40.2 40.8 34.7 50.5 49.8 43.7
LoQA-S FLAN v2 3 41.0 33.8 51.1 49.4 43.6 42.8 36.1 52.6 50.4 45.3
LoQA FLAN v2 3 41.3 33.4 50.7 49.4 43.5 41.5 36.0 53.7 50.4 45.0
QA-LoRA FLAN v2 2 34.1 30.0 37.2 39.8 35.2 31.8 38.1 34.5 38.5 33.2
LoQA-S FLAN v2 2 35.3 29.7 39.9 41.4 36.5 32.4 31.2 39.2 39.2 35.2
LoQA FLAN v2 2 35.4 28.5 39.9 38.9 35.7 34.2 28.8 41.0 40.5 36.0
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