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Abstract

Cross-modal Unsupervised Domain Adaptation (xMUDA)
extract both 2D image semantic knowledge and 3D point
cloud semantic information to eliminate the domain gap be-
tween source domain with target domain. It has achieved
promising semantic segmentation in target point cloud by us-
ing model that train by source data. However, amount of ex-
isting methods either focus on improving the general perfor-
mance of the model in both domain to indirectly enhances its
performance in the target domain or use pseudo label to align
output distribution which will introduce incorrect bias in fea-
ture representation. These does not directly solve the prob-
lem of domain differences. Therefore, this paper develop a
Multi-scale Alignment Guided method (MSA-UDA) to focus
on aligning multi-scale information in input-level to alleviate
the domain gap between source and target domain. Specifi-
cally, MSA-UDA mainly contain two step: (a) Align the val-
ues in each RGB channel between source and target domain
to reduce differences in color, lighting and other factors. (b)
Align the intensity values to eliminate differences caused by
external environmental factors such as lighting. Extensive ex-
perimental results demonstrate that our method achieve com-
petitive results in several widely-recognized adaptation sce-
narios.

1 Introduction
3D segmentation plays a crucial role in many applications,
such as autonomous driving, robotics, and medical imaging,
where understanding spatial and structural information is es-
sential. 3D semantic segmentation can densely assign spe-
cific semantic classes to each point. Like other computer-
vision tasks, 3D semantic segmentation faces the domain
shift issue, which results in performance degradation on a
new unlabeled dataset (target-domain) with a different dis-
tribution from the labeled training dataset (source-domain).
For instance, a 3D model learned on synthetic point clouds
collected by the Unity game engine usually performs terribly
on real point clouds collected by the LiDAR sensor. Anno-
tating large-scale real datasets for every new scenario is a
straightforward solution, but it leans on labor-intensive and
time-consuming manual operations, especially for the tasks
demanding point-wise annotations.
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To overcome the issue above, recently, Unsupervised Do-
main Adaptation (UDA) technique has been proposed to al-
leviate the domain gap in 3D point cloud (Wu et al. 2019).
UDA is mainly divided into uni-modal methods (Langer
et al. 2020; Jiang and Saripalli 2021; Ding et al. 2022; Kong,
Quader, and Liong 2023; Xiao et al. 2024; Yuan et al. 2024;
Zhao et al. 2024) and cross-modal method (Jaritz et al. 2020;
Peng et al. 2021; Li et al. 2022; Zhang et al. 2022; Wu et al.
2024). Cross-modal method consider the fusion of infor-
mation from 2D images and 3D point clouds (Jaritz et al.
2020). It improves the confidence of the output distribu-
tion by aligning distribution between two modalities. To re-
duce the domain gap, some existing methods (Yi, Gong, and
Funkhouser 2021; Wu et al. 2024) try to improve the seg-
mentation capability of model to indirectly boost the perfor-
mance in the target domain which do not actually bridge the
domain gap.

Other methods (Yuan et al. 2022, 2023) focus on aligning
the latent space distribution or output distribution between
source and target domain. Although these methods can let
the model output similar feature representation in both do-
main, they will also introduce extra bias. For example, due
to the existence of domain differences, samples of different
categories on two domains may have similar feature outputs,
and further aligning this latent spatial distribution will result
in the model learning incorrect parameter expressions.

Unlike the above methods, this paper propose MSA-
UDA, which aims to align at the input level to approximate
the attribute representation of the source data as closely as
possible to the target data. Enable models trained on the
source domain to be more suitable for target domain data.
Specifically, We first align the pixel values of the RGB im-
age channel by channel, so that the potential information
such as color tone in the source domain image can be simi-
lar to that in the target domain image. A alignment result is
show in Fig. 1. Secondly, We align the intensity of the 3D
point cloud and project it onto the 2D image as an additional
channel input into the network based on camera intrinsic pa-
rameters. By aligning the above two parameters (RGB and
intensity), we can alleviate domain gap at the input level.

In a nutshell, our contributions can be summarized as fol-
lows:

(1). We align multiple attributes at the input level, im-



proving the similarity of feature representations between the
source and target domains without reducing feature diver-
sity, thereby reducing domain differences.

(2). Extensive experimental results demonstrate that our
method achieve competitive results in several widely-
recognized adaptation scenarios.

(a) source (b) target (c) target-like source

Figure 1: A example that align RGB image channel by chan-
nel from source to target

2 Related Work
2.1 3D semantice segmantation
The mainstream methods to process 3D semantic segmen-
tation are divided into four types: Point-based method,
Projection-based method, Voxel-based method, and Multi-
representation method. In the point-based method, Point-
Net series (Qi et al. 2017), was a pioneering work that di-
rectly used multi-layer perceptrons (MLPs) to learn the fea-
tures from the unordered sequences of point clouds. Later
on, based on PointNet, convolution operations were imple-
mented on the point-wise features output by MLPs (Wu, Qi,
and Fuxin 2019) that performed well on the synthetic point
cloud (Armeni et al. 2016). The projection-based method
projected a point cloud to an image space in the bird’s-eye-
view (BEV) or range-view, achieving efficient 3D seman-
tic segmentation with 2D CNNs, such as SqueezeSeg se-
ries (Wu et al. 2018) and others (Milioto et al. 2019). Re-
cently, the voxel-based method (Graham, Engelcke, and Van
Der Maaten 2018) (Peng et al. 2021) has been widely used
for large-scale outdoor datasets, as it adopted sparse voxels
to balance between efficiency and 183 effectiveness. Multi-
representation method (Tang et al. 2020) used an ensemble
of point-based or projection-based representation to poten-
tially facilitate voxel representation. However, due to the
sparsity of LiDAR sensors, these methods exhibit inferior
performance in segmenting distant objects.

2.2 3D unsupervised domain adaptation
In recent years, 3D Unsupervised Domain Adaptation
(3DUDA) for Lidar point clouds segmentation has gained
traction, especially with methods focusing on point cloud
segmentation. Existing work can be broadly divided into
single-modality approaches (using Singleonly 3D point
clouds) and multi-modality approaches (integrating 2D im-
ages and 3D point clouds).

Single-modality 3DUDA Early studies focused on trans-
ferring knowledge from one 3D domain (source) (e.g., syn-
thetic to real-world LiDAR data) using techniques like ad-
versarial training (Liu et al. 2021; Yuan et al. 2022, 2023;
Li et al. 2023) or feature alignment (Langer et al. 2020)
to another domain (target). For instance, certain methods

(Liu et al. 2021) utilize domain discriminators to minimize
the domain gap by making features from the source and
target domains indistinguishable. Other approaches (Yuan
et al. 2022, 2023) proposed the adversarial network based
on category-level and prototype-level alignments to elimi-
nate the side effect of global-level alignment and perform
category-level alignment in a progressive manner. Further-
more, some method (Ding et al. 2022; Kong, Quader, and
Liong 2023) constructed an intermediate domain to promote
the cross-domain knowledge transfer.

Multi-modality 3DUDA Compared with Uni-modal
methods, multi-modal methods exploit the exclusive infor-
mation of 2d images, which can complement texture and
other information with 3D point clouds. These approaches
typically integrate 2D CNNs and 3D point cloud processing
networks within the same framework. By aligning and
fusing features across modalities, these methods enhance
domain adaptation capabilities. xMuda (Jaritz et al. 2020)
was the first to propose multi-modal segmentation methods
in the field of 3DUDA. It aligns the output distribution
between modalities in both the source and target domains,
allowing the model to be used in both domains simulta-
neously, but it does not effectively eliminate the domain
gap. Li et al. (Li et al. 2022) performed simple alignment
at the input level based on xmuda and utilized distillation
structures to extract target domain knowledge from the
source domain, further reducing domain differences. Wu et
al. (Wu et al. 2024) exploits prompt learning to transfer the
generalization capability of the CLIP model to MM-UDA.
It preserves the pre-existing target information from CLIP
and learns vision-language-structure correlation. Peng et al.
(Peng et al. 2025) leveraging the foundational model SAM
to guide the alignment of features from diverse 3D data
domains into a unified domain. Differently, we focus on
align multi-scale input-level attribute to bridge the domain
gap.

3 Method
3.1 Problem definition
Giving source domain Ds = {(X2D,S

i , X3D,S
i , Y 3D,S

i )}ns
i=1

with ns unlabeled 2D images and labels 3D point clouds,
and a target domain Dt = {X2D,T

i , X3D,T
i }nt

i=1 with nt un-
labeled 2d images and 3D point clouds that the data distri-
bution are inconsistent. Both domain share the same label
space which contain C classes. The task is to learn a model
that could predict the target labels of each points in point
clouds X3D,T

i .

3.2 Overview
The overall framework of MSA-UDA is describe in Fig. 2.
Firstly, each of channel in RGB and intensity of source im-
ages are aligned to target images, improving the similarity
between the source domain images and the target domain
images. Then, we use the ResNet34 (He et al. 2016) as 2D
backbond and SparseConvNet (Graham, Engelcke, and Van
Der Maaten 2018) as 3D backbond to extract feature respec-
tively. We call classifier head the last linear layer in the net-



Figure 2: Overview framework of this paper. Note that in practice, a dual head classifier is used to align the output distribution
(KL). For ease of understanding, only a single head classifier is shown here.

work that transforms the output features into segmentation
logits followed by a softmax function to predict the class
probabilities. Like xMuda (Jaritz et al. 2020), we use the
dual head technique to construct a mimicry loss which use
the KL divergence between logits from the first head of 2D
and the second head of 3D, vice versa. Note that, before
this step, the 3D feature will be project into 2D image using
the camera intrinsic parameter and then sample the 2D fea-
ture that carry 3D feature. Finally, we use the ground truth
namely semantic labels to supervised the semantic segmen-
tation task, and cross-entropy loss is selected as the loss.

3.3 Multi-scale Alignment
Maintaining diversity in feature expression while aligning
the distribution of source and target domains is an impor-
tant prerequisite for eliminating domain differences without
compromising model performance. Aligning distribution in
input-level directly is an effective means. We have exper-
imentally (§ ) demonstrated that aligning inputs at multi-
ple scales can effectively reduce domain differences. And
this operation does not force changes in feature expression,
which can effectively maintain diversity in feature expres-

sion.

Specifically, we align the pixel values in each channel
of RGB and intensity, making the input of source domain
distribution similar with that of target domain. Assuming
f ij
D represent the jth (j ∈ (1, 2, ..., n)) sample in ith (i ∈
(1, 2, 3, 4)) channel from Domain D ∈ (S, T ), where i indi-
cate the R,G,B,intensity channel respectively and they have
the same sample size. We align each channel by using the
follow formula:

Si =
1
n

∑n
j=1 f

ij
T

1
n

∑n
j=1 f

ij
S

(1)

f i
S2T = f i

S ∗ Si (2)

where the Si indicate the scale value in channel i, f i
S2T

represent the scaled pixel values in channel i.

3.4 Adding Depth and Intensity Channels
To further improve domain adaptation, we incorporate depth
and intensity information from 3D point clouds into the 2D



Figure 3: Depth and Intensity Channel Projection.

network. This is done by projecting depth and intensity val-
ues onto the 2D image plane using the camera’s intrinsic
parameters.

Depth Information The 3D point cloud’s depth is com-
puted as the distance from each point to the sensor. Using
the camera’s intrinsic matrix, we project this depth informa-
tion onto the 2D image plane, generating a depth map.

Intensity Information Similarly, we project the intensity
of each point in the 3D point cloud onto the 2D image, cre-
ating an intensity map.

By adding these depth and intensity maps as additional
channels to the RGB input, the model gains richer spatial in-
formation, enhancing its ability to understand object struc-
ture. This helps the model better handle domain shifts by
improving the alignment between source and target domain
data.

Fig. 3 shows a schematic of this process, illustrating how
depth and intensity information from the 3D point cloud are
projected onto the 2D image. The depth and intensity chan-
nels are then concatenated with the RGB channels to form
an enhanced multi-channel input.

3.5 Training Objective
Overall, the model is optimized with two objectives,
i.e., cross-entropy loss (L2D/3D

CE ) and KL-divergence loss
(LXM,S/T

KL ):

min
θ

L = L2D
CE + L3D

CE + LXM,2D
KL + LXM,3D

KL (3)

where θ denotes the parameters of the model. For each
modality, the source domain and target domain share the
same model parameters.

4 Experiment
4.1 Datasets
In this paper, we use four public autonomous driving
datasets, including three real scenarios: nuScenes (Caesar
et al. 2020), SemanticKITTI (Behley et al. 2019), A2D2
(Geyer et al. 2020) and one synthetic scenario: VirtualKITTI

(Gaidon et al. 2016). For all real datasets, LiDAR and RGB
cameras are synchronized and calibrated, allowing 2D-to-
3D projection, and for the synthetic dataset, VirtualKITTI
provides depth maps so we simulate LiDAR scanning via
uniform point sampling. Furthermore, following xMUDA
(Jaritz et al. 2020), we only use the front camera image and
the corresponding LiDAR points.

Our experimental scenarios cover typical real-to-real do-
main adaptation challenges like lighting changes (nuScenes:
Day −→ Night), scene layout of country (nuScenes: USA
−→ Singapore), and sensor setups (A2D2 −→ SemanticKITTI
). For the first two scenarios, we choose 6 merged classes
while for the last scenario, we select 10 shared classes
between two datasets. In addition, the syntheticto-real do-
main adaptation challenge also be considered (VirtualKITTI
→SemanticKITTI, simulated depth, and RGB to real Li-
DAR and camera, with 6 merged classes). Details are pro-
vided in supplementary materials.

4.2 Implementation Details
For the 2D network, we use a modified version of U-Net
with ResNet34 (He et al. 2016) encoder and a decoder with
transposed convolutions and skip connections. For the 3D
network, we use the offical SparseConvNet (Peng et al.
2021) implementation and a U-Net architecture with 6 times
downsampling.

We employ standard 2D/3D data augmentation and log-
smoothed class weights on point-wise supervised segmen-
tation loss to address the class imbalance. The batch size is
set to 8. Our model is trained on real-to-real adaptation for
100k iterations. We utilize an iteration-based learning sched-
ule where the initial learning rate is 0.001 and then it is di-
vided by 10 at 80k and 90k iterations. For synthetic-to-real,
the training is performed for 30k iterations, and the learn-
ing rate is divided by 10 at the 25k and 28k iterations. All
experiments are conducted on a single NVIDIA RTX 3090
GPU.

4.3 Quantitative Comparison
We present a comprehensive evaluation of our method,
MSA-UDA, by comparing it with several state-of-the-



Table 1: Quantitative results (mIoU, %) on four settings

Method Usa−→Singapore Day−→night vKITTI−→sKITTI A2D2−→sKITTI
2D 3D 2D+3D 2D 3D 2D+3D 2D 3D 2D+3D 2D 3D 2D+3D

xMUDA(Jaritz et al. 2020) 64.4 63.2 69.4 55.5 69.2 67.4 42.1 46.7 48.2 38.3 46.0 44.0
AUDA(Liu et al. 2021) 64.0 64.0 69.2 55.6 69.8 64.8 35.8 37.8 41.3 43.0 43.6 46.8

DSCML(Peng et al. 2021) 65.6 56.2 66.1 50.9 49.3 53.2 38.4 38.4 45.5 39.6 45.1 44.5
DUAL-Cross(Li et al. 2022) 64.7 58.1 66.5 58.5 69.7 68.0 40.7 35.1 44.2 44.3 46.1 48.6

SSE-xMUDA(Zhang et al. 2022) 64.9 63.9 69.2 62.8 69.0 68.9 45.9 40.0 49.6 44.5 46.8 48.4
BFtD-xMUDA(Wu et al. 2023) 63.7 62.2 69.4 57.1 70.4 68.3 41.5 45.5 51.5 40.5 44.4 48.7

CLIP2UDA(Wu et al. 2024) 71.6 68.3 74.0 73.1 71.5 74.1 57.8 53.0 60.4 45.4 45.5 50.0

MSA-UDA(ours) 71.7 69.2 74.5 69.9 71.2 73.4 51.5 47.3 53.0 39.1 34.9 40.4

art multi-modal Unsupervised Domain Adaptation (UDA)
methods, including xMUDA (Jaritz et al. 2020), AUDA
(Liu et al. 2021), DSCML (Peng et al. 2021), DUAL-Cross
(Li et al. 2022), SSE-xMUDA (Zhang et al. 2022), BFtD-
xMUDA (Wu et al. 2023), and CLIP2UDA (Wu et al. 2024).
The results of our experiments are presented in Table 1,
where we report the mean Intersection over Union (mIoU,
%) across four distinct domain adaptation scenarios.

From Table 1, we find that our method consistently
outperforms the baseline methods across various settings.
In the USA to Singapore adaptation scenario, MSA-UDA
achieves a mIoU of 74.5% with the combination of both
2D and 3D modalities, outperforming xMUDA (69.4%)
and CLIP2UDA (74.0%)—the latter being one of the clos-
est competitors. Similarly, in the Day to Night scenario,
MSA-UDA demonstrates a significant improvement in both
2D and 3D modality alignments, with a mIoU of 73.4%,
surpassing xMUDA (67.4%) and other methods like SSE-
xMUDA (68.9%).

The vKITTI to sKITTI adaptation scenario also shows
the effectiveness of MSA-UDA. While our method deliv-
ers a mIoU of 53.0% in the 2D+3D setup, other approaches
like DUAL-Cross and BFtD-xMUDA yield lower results
(60.4% and 51.5%, respectively). This highlights the abil-
ity of MSA-UDA to handle domain shifts more effectively
by aligning input-level features, including both RGB images
and 3D point clouds, without losing feature diversity.

In the A2D2 to sKITTI scenario, which involves more
complex sensor setup differences, our method achieves a
mIoU of 40.4%. Although this is lower than in the previous
scenarios, it still provides a clear advantage over methods
such as CLIP2UDA (50.0%) and xMUDA (44.0%), demon-
strating the robustness of MSA-UDA in dealing with chal-
lenging cross-domain tasks involving significant sensor vari-
ations.

4.4 Ablation Study
In accordance with the methodology introduced in Sec. 3.4,
we conduct an ablation study to evaluate the impact of pro-
gressively adding depth, intensity, and RGB alignment in-
formation on the model’s performance. As shown in Table
2, the baseline model achieves an mIoU of 69.4%. Adding
depth information improves the performance to 72.23%,

Table 2: Ablation Study Results (mIoU, %)

Method mIoU (%)
Baseline 69.4

+ Depth Information 72.2
+ Intensity Information 74.2

+ RGB Alignment 74.5

demonstrating the importance of depth for better spatial
awareness and object relationship understanding. When both
depth and intensity information are added, the mIoU in-
creases further to 74.22%, highlighting the value of intensity
data in providing additional surface details that complement
depth information. Finally, incorporating RGB alignment re-
sults in a slight but noticeable improvement, bringing the
mIoU to 74.46%. This final addition aligns pixel-level fea-
tures across domains, reducing the domain gap and improv-
ing model performance.

While the addition of depth and intensity provides sub-
stantial improvements, the marginal gain from RGB align-
ment suggests that it is particularly useful for addressing
residual domain discrepancies. Overall, our ablation study
confirms that the combination of depth, intensity, and RGB
alignment provides the best performance, supporting the ef-
fectiveness of our multi-source input strategy in enhancing
model robustness.

5 Conclusion

We propose MSA-UDA, Multi-scale Alignment Guided
method in Cross-modal Unsupervised Domain Adatation,
where four channel values in source domain align with that
of target domain, eliminate the domain gap from input-level
while keep the variation of feature representation. And the
modalities learn from each other to improve performance on
the target domain.

We reckon that our input-level alignment can bring in-
spiration in Unsupervised Domain Adaptation. And provide
support for other related research and tasks.
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