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Abstract

This study presents an unsupervised anomaly detection
framework for the early and accurate identification of liver
lesions, including hepatocellular carcinoma (HCC), utilizing
computed tomography (CT) imaging data. Traditional diag-
nostic methods, reliant on radiologists’ expertise, suffer from
inter-observer variability. Our approach leverages the Sim-
pleNet framework, which employs pre-trained feature extrac-
tion, domain-specific adaptation, and anomaly feature gener-
ation to efficiently localize anomalies while addressing do-
main bias. We focus on adapting features to the target do-
main, generating synthetic anomalies, and utilizing cluster-
ing to differentiate normal and abnormal liver tissues. The
Liver Tumor Segmentation (LiTS) dataset serves as a robust
platform for developing and evaluating our proposed method.
Our model achieves an Instance AUROC of 0.8823 and a
Full-Pixel AUROC of 0.7984, demonstrating its potential to
enhance automated diagnostic tools for HCC by detecting
liver lesions with high accuracy and reliability. The integra-
tion of unsupervised clustering with advanced feature adap-
tation methods shows promise in improving the detection of
subtle liver abnormalities and diagnostic accuracy.

Introduction
The liver is a vital organ responsible for multiple critical
functions, including metabolism, detoxification, protein syn-
thesis, and bile production. Despite its regenerative capac-
ity, the liver is vulnerable to chronic injuries, which may
progress to cirrhosis and ultimately hepatocellular carci-
noma (HCC), the most common primary liver malignancy
(Christ and Parvathi 2011). HCC accounts for over 80%
of liver cancer cases worldwide and is a leading cause of
cancer-related mortality. Accurate and early detection of
liver lesions, including HCC, is crucial for improving pa-
tient outcomes.

Medical imaging, particularly computed tomography
(CT), is essential for the diagnosis, staging, and monitoring
of liver diseases. CT imaging offers high-resolution multi-
phase scans that provide detailed insights into the vascular
and tissue characteristics of liver lesions (Dietrich, Dong,
and Wang 2021). However, traditional diagnostic methods
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heavily rely on radiologists’ expertise, which may introduce
inter-observer variability. In this context, unsupervised ma-
chine learning and anomaly detection techniques are emerg-
ing as promising solutions for automating diagnostic pro-
cesses (Litjens et al. 2017).

Unsupervised anomaly detection methods aim to iden-
tify deviations from normal patterns in data without rely-
ing on labeled abnormal samples. Among these, clustering-
based approaches group data into distinct clusters, enabling
the identification of anomalies as outliers or underrepre-
sented patterns. The SimpleNet framework exemplifies a
state-of-the-art method for anomaly detection by leverag-
ing pre-trained feature extraction, domain-specific adapta-
tion, and anomaly feature generation (Liu et al. 2023). Sim-
pleNet combines the strengths of synthesizing-based and
embedding-based approaches to efficiently localize anoma-
lies while addressing domain bias.

The Liver Tumor Segmentation (LiTS) dataset provides
a robust platform for developing and evaluating liver tumor
detection methods (Bilic and Christ 2023). By incorporating
annotated CT scans from diverse clinical cases, it supports
the validation of algorithms aimed at liver and tumor seg-
mentation. The integration of unsupervised clustering with
advanced feature adaptation methods offers the potential to
enhance the detection of subtle liver abnormalities and im-
prove diagnostic accuracy.

In this study, we propose to apply unsupervised cluster-
ing techniques inspired by the SimpleNet framework to CT
imaging data from the LiTS dataset. Our approach focuses
on adapting features to the target domain, generating syn-
thetic anomalies, and utilizing clustering to differentiate nor-
mal and abnormal liver tissues. This methodology aims to
advance automated diagnostic tools for HCC by achieving
high accuracy and reliability in detecting liver lesions.

Related Work
In recent years, researchers have proposed various deep
learning models for liver tumor segmentation tasks on the
LiTS dataset (Manjunath and Yashaswini 2024).

Improved U-Net model enhances attention to important
regions by incorporating attention mechanisms into the skip
connections of the U-Net, improving the segmentation ac-



Figure 1: This is the structure of SimpleNet. As is shown to us, images will be processed by feature extractor to get their local
features; Feature adaptor is used for fine-tuning them to adapted features; During training, anomalous feature generator will
add some Gaussian noise to adapted features for anomalous features; at last, discriminator is trained by adapted features and
anomalous features to draw the anomaly maps, or just give the anomaly maps of the adapted features while testing.

curacy of small tumors, with a Dice similarity coefficient
reaching 0.69.

MA-cGAN is a model that combines multi-axis attention
with conditional generative adversarial networks, capable of
extracting key features from 3D CT images and generating
high-quality segmentation results, achieving a Dice coeffi-
cient of 96.95 for liver segmentation and 78.53 for tumor
segmentation.

YOLOv8 framework was developed for lightweight liver
and tumor segmentation, balancing computational cost and
accuracy, making it suitable for clinical practice.

G-Unet model, which was evaluated on the LiTS dataset
with various configurations, demonstrating a Dice global
score of up to 72.9%, proving its effectiveness in liver tu-
mor segmentation.

DeepLabv3+, which utilize dilated convolutions, have
also been applied to this task, enhancing feature extraction
capabilities and further improving segmentation accuracy
(Tanfoni et al. 2024).

The research on these various models showcases the wide
application and potential of deep learning techniques in the
automated segmentation of liver tumors while also high-
lighting the challenges faced in handling complex medical
imaging tasks.

This diverse range of model approaches provides a wealth
of options for achieving efficient and accurate liver tu-
mor segmentation and fosters continued development in this
field.

Method
Our work uses SimpleNet, which is designed as a simple and
efficient model in Industrial Anomaly Detection(IAD), with
the following key features:

• Utilizing a pre-trained feature extractor to extract local
features.

• Introducing a feature adapter to fine-tune the features
from the pre-trained features extractor to the target do-
main, minimizing domain bias.

• Generating synthetic anomalous features by incorporat-
ing Gaussian noise to the normal feature space.

• Employing a simple binary classifier as anomaly discrim-
inator to differentiate normal features from anomalous
features.

• During the inference phase, the synthetic anomalous fea-
ture generator is discarded, ensuring fast and efficient
network performance.

Feature Extractor
This module intends to provide high-quality features for
subsequent modules. Local features extracted from this part
is referred to this paper (Roth et al. 2022). For every image
xi ∈ RH×W×3 in training set Xtrain and test set Xtest, the
pre-trained network ϕ (such as WideResNet50) will extract
features from all hierarchies, which actually is unnecessary.
Considering the domain bias between the pre-trained dataset
and the target dataset, SimpleNet chooses the features from
a subset of levels, defined as L. In level l, we can get feature
map as ϕl,i ∼ ϕl(xi) ∈ RHl×Wl×Cl . At location (h,w), we
define its neighborhood as

N (h,w)
p = {(h′, y′)|h′ ∈ [h− ⌊p/2⌋, · · · , h+ ⌊p/2⌋],

y′ ∈ [w − ⌊p/2⌋, · · · , w + ⌊p/2⌋]}
(1)

By using adaptive average pooling as aggregation function
fagg , local feature zl,ih,w can be obtained by aggregating the
features within the neighborhood.

zl,ih,w = fagg({ϕl,i
h′,y′ |(h′, y′) ∈ N h,w

p }) (2)

In order to integrate information from different hierarchies,
this module resizes all related feature maps to the same size
(H0,W0), then we get the feature map oi ∈ RH0×W0×C by
following process:

oi = fcat(resize(z
l′,i, (H0,W0))|l′ ∈ L) (3)

At last, just simplify the process mentioned above and we
can define the feature extractor Fϕ as follows:

oi = Fϕ(x
i) (4)



Feature Adaptor
Receiving those local features from feature extractor, this
module transfer them into adapted features, reducing the
bias between the distribution of ImageNet and that of tar-
get domain. The feature adaptor Gθ is defined by projecting
the local feature oh,w to the adapted feature qh,w as shown
in follows:

qih,w = Gθ(o
i
h,w) (5)

Figure 2: As is shown in this graph, adapted features have
much more compact space than local, which makes the train-
ing more efficient.

Anomalous Feature Generator
While training, this module generates forged anomalous fea-
tures based on those adapted features, providing negative
samples for discriminator. To train a binary classifier, we
need to prepare normal and abnormal samples. Since this
is an unsupervised model, we can only get normal features
directly from input images, therefore, this generator helps
to generate some anomalous features. By adding Gaussian
noise ϵ on normal features qih,w ∈ RC , the anomalous fea-
ture qi−h,w can be expressed as follows:

qi−h,w = qih,w + ϵ (6)

Discriminator
As the last module, discriminator transfers its input features
to anomaly score map, which enables pixel-wise anomaly
detection. Discriminator does nothing but estimating the
normality at each location. After training the discriminator
DΨ , we can predict the anomaly score map by calculating
DΨ (qh,w)

Loss
Since we use a binary classifier as the discriminator, we just
need to ensure the positive being positive and the negative
being negative, therefore, we choose a simple l1 loss as fol-
lowing:

lih,w = max(0, th+ −DΨ (q
i
h,w)) + max(0,−th− +DΨ (q

i−
h,w))

(7)
th+ and th− are used to prevent overfitting. And the objec-
tive of training is

L = min
θ,Ψ

∑
xi∈Xtrain

∑
h,w

lih,w
H0 ×W0

(8)

Scoring Function
The anomaly score is predicted by discriminator as

sih,w = −DΨ (q
i
h,w) (9)

Accordingly, this allows us to compute the performance
metrics for both pixel-wise and image-wise evaluations.

SAL(xi) := sih,w|(h,w) ∈ H0 ×W0 (10)

SAD(xi) := max
(h,w)∈H0×W0

sih,w (11)

Experiments
Dataset Description
In this work, we utilized the Liver Tumor Segmentation
Challenge (LiTS) dataset. It is a benchmark created under
the purviews of ISBI 2017 and MICCAI 2017 intended for
fostering improvement in automatic liver lesion segmenta-
tion. The dataset comprises contrast-enhanced abdominal
CT scans along with segmentation annotations from differ-
ent clinical sites worldwide. It consists of 130 CT scans for
training, as well as an additional 70 for testing.

Evaluation Metrics
We evaluate our approach using the following three metrics,
tailored for unsupervised anomaly detection and localiza-
tion:

Figure 3: Performance of different on databse, our model
behave the best on both I-AUROC% and P-AUROC%.

• Instance AUROC quantifies the model’s ability to differ-
entiate between anomalous and normal images by com-
puting the area under the receiver operating characteristic
curve at the instance level.

• Full-Pixel AUROC evaluates pixel-level anomaly detec-
tion across the entire image by measuring the AUROC
for all pixels, providing an overall assessment of anomaly
localization performance.

• Anomaly-Pixel AUROC focused on detecting anomalous
regions, this metric calculates the AUROC for pixels
within predefined regions of interest, offering finer in-
sight into the model’s ability to localize specific anoma-
lies.



model I-AUROC% P-AUROC%
Ours 0.8823 0.7984

U-Net 0.7853 0.6900
YOLOv8 0.8553 0.7890

MA-cGAN 0.8227 0.7762

Table 1: Comparison of SimpleNet with state-of-the-arts works on database. Image-wise AUROC (I-AUROC) and pixel-wise
AUROC(P-AUROC) are displayed in each entry as I-AUROC%/P-AUROC%

Figure 4: Compare the extracted feature maps from normal images with those extracted from noisy images. This comparison
illustrates how well the model can segment out anomalies.

Results
The performance of the proposed framework is illustrated
through various experiments. From the results obtained, the
model gives an Instance AUROC of 0.8823, which shows
its capability to discern between normal and anomalous im-
ages. It attains a Full-Pixel AUROC of 0.7984; therefore,
proving that it can identify anomalies at the pixel level
across entire images. However the Anomaly-Pixel AUROC
is 0.4732, proving somewhat weaker ability to spot and less
salient anomalies at that finer level.

The feature maps for normal images form the base rep-
resentation of healthy patterns and structures. By introduc-
ing noise to these features, the model simulates realistic
uncertainty and reconstructs the features to evaluate its ro-
bustness and precision.The discrepancies observed between
the original and noised feature maps indicate regions where
the model struggles to accurately recreate specific patterns.
These areas often correspond to potential anomalies, as
they deviate from the learned normal patterns. This system-
atic comparison demonstrates the model’s ability to han-
dle noise-augmented scenarios while retaining sensitivity to
structural deviations, making it well-suited for unsupervised
anomaly detection tasks.

Conclusion
This study showcases the utility of an unsupervised anomaly
detection framework for identifying liver lesions. By lever-

aging feature extraction, noise injection, and reconstruction
techniques, the model efficiently highlights deviations in-
dicative of anomalies. The approach demonstrates strong po-
tential to assist in automating diagnostic workflows, reduc-
ing dependency on manual interpretation. However, chal-
lenges remain in achieving precise localization of subtle
anomalies, which will guide future improvements to ensure
the framework’s broader clinical applicability.
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