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Abstract

The cold-start problem is a critical challenge in recommender
systems, especially for new users who lack sufficient inter-
action data. Cross-domain recommendation (CDR) methods
have emerged as a promising solution, leveraging auxiliary
source domains to enhance recommendations for target do-
mains. However, existing CDR methods primarily depend on
overlapping users between domains, which are often sparse in
real-world datasets, leading to poor generalization and lim-
ited scalability. Additionally, these methods typically focus
on learning bridging functions based on user-item interac-
tions, neglecting the rich multimodal information, such as
textual data, that could further improve the model’s perfor-
mance. To address these issues, we propose a novel Mul-
tiModal Cross-Domain Recommendation framework based
on Meta-learning (MetaMMCDR). Our framework leverages
multimodal item information to effectively model user pref-
erences and learn personalized mapping functions that trans-
fer these preferences across domains. By integrating multi-
modal data and meta-learning, MetaMMCDR mitigates the
reliance on overlapping users and improves the generaliza-
tion and performance of cold-start recommendations in cross-
domain settings.

Introduction

In recent years, e-commerce and video recommendation
platforms have undergone rapid growth, making the abil-
ity to recommend items that users enjoy increasingly cru-
cial. However, the cold-start problem remains a significant
challenge, as new users often fail to receive satisfactory rec-
ommendations, which negatively impacts user retention on
these platforms.

Cross-domain recommendation (CDR) (Singh and Gor-
don 2008) has emerged as a promising solution to address
this issue by leveraging rich information from auxiliary
(source) domains to enhance the performance of recommen-
dation systems in target domains.

Many studies have demonstrated the effectiveness of CDR
methods based on embedding mapping (Kang et al. 2019;
Man et al. 2017; Zhao et al. 2020; Fu et al. 2019; Zhu et al.
2018). However, these methods often encounter a critical is-
sue: heavy reliance on overlapping users between domains.
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In such approaches, the number of training samples is de-
termined by the number of overlapping users, which is typ-
ically low in real-world datasets. So, the learned mapping
function often suffers from poor generalization, making it
challenging to accurately represent user preferences in the
target domain. Furthermore, these methods generally focus
on user-item interactions when constructing embeddings,
overlooking the rich multimodal information, such as text
data, which could significantly improve knowledge transfer.
To address these challenges, we propose a novel MultiModal
Cross-Domain Recommendation framework based on meta-
learning (MetaMMCDR). The proposed framework consists
of two key stages: a pre-training stage and a meta-learning
stage.

During the pre-training stage, we leverage multimodal in-
formation to learn user embeddings separately for the source
and target domains. Importantly, the data used in this stage
is comprehensive and not limited to overlapping users, en-
abling the model to capture a broader range of user prefer-
ences.

The meta-learning stage aims to develop a meta network
that takes user characteristic embeddings from the source
domain as input and generates personalized mapping func-
tions for each user. After training, we feed the source-
domain user embeddings into these mapping functions to
obtain transformed user embeddings.

Moreover, existing methods for learning mapping func-
tions typically rely on a mapping-oriented optimization pro-
cedure that minimizes the distance between the embeddings
of users from the source and target domains. However, such
optimization is highly sensitive to the quality of the embed-
dings, which limits the performance of the learned mapping
function. In contrast, our approach follows previous work
(Tao et al. 2022) and employs a task-oriented optimization
procedure that directly utilizes the rating task as the opti-
mization goal, resulting in more robust and accurate map-
pings.

The main contributions of this work can be summarized
in two key aspects:

¢ We introduce MetaMMCDR, a novel framework that
integrates multimodal information and meta-learning to
generate personalized mapping functions, addressing the
cold-start problem in CDR.

* We plan to validate the effectiveness of MetaMMCDR
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Figure 1: (a)ln existing CDR methods: all users share the common bridge function. (b) PTUPCDR utilizes a meta network to
generate personalized bridge functions for each user. (c) The proposed MetaMMCDR leverages multimodal item information

to improve the generalization and performance.

through extensive experiments on cross-domain recom-
mendation tasks using the Amazon dataset, aiming to
demonstrate its ability to significantly improve recom-
mendation performance.

Related Work
Cross-domain Recommendation

Cross-domain recommendation (CDR), inspired by transfer
learning, has emerged as a promising solution to address
the cold-start problem. In recent years, many deep learning-
based models have been proposed to enhance knowledge
transfer across domains (Hao et al. 2021; He et al. 2018;
Hu, Zhang, and Yang 2018; Xi et al. 2021; Xie et al. 2022;
Zhu et al. 2021c). Another important group of CDR meth-
ods focuses on bridging user preferences across different do-
mains (Kang et al. 2019; Man et al. 2017; Pan et al. 2010;
Zhao et al. 2020; Zhu et al. 2018; Lee et al. 2019; Zhu et al.
2021a), which is most closely related to our work. How-
ever, to the best of our knowledge, all existing methods learn
mapping functions without incorporating multimodal infor-
mation. In contrast, our proposed MetaMMCDR is the first
approach to learn personalized bridges by integrating multi-
modal data.

Meta Learning for CDR

Meta-learning, also referred to as “’learning to learn,” aims to
improve the performance of models on novel tasks by train-

ing them on a few-shot learning paradigm. Several meta-
learning methods have been proposed to enhance the perfor-
mance of recommender systems (Zhu et al. 2021c; Lee et al.
2019; Pan et al. 2019; Zhu et al. 2021b,a, 2022). Among
these, the most relevant work includes TMCDR (Zhu et al.
2021a) and PTUPCDR (Zhu et al. 2022), both of which em-
ploy meta-learning techniques in CDR. However, similar to
other CDR approaches, they do not incorporate multimodal
information in the learning process.

Multimodal Recommendation

Multimodal recommendation systems are designed to under-
stand and interpret data from various modalities, thereby ad-
dressing the issues of data sparsity and the cold-start prob-
lem. Current methods typically extract features from differ-
ent modalities and fuse them to form a unified item represen-
tation (He and McAuley 2016; Wang et al. 2021; Tao et al.
2020, 2022). Given that users frequently engage with plat-
forms containing rich multimodal information, it is essential
to learn multimodal representations to improve the accuracy
and relevance of recommendations.

Method
Problem Setting

In Cross-Domain Recommendation (CDR), we define two
domains: a source domain and a target domain. Each do-
main consists of a set of users, Y = {uy,uz,...}, aset of



items, V = {vy,vs,...}, and a rating matrix R. The entry
r;; € R represents the interaction between user u; and item
v;. To distinguish between the two domains, we denote the
user set, item set, and rating matrix of the source domain
as U®,V?®,R?, and the corresponding sets for the target do-
main as U?, V¢, Rt. The set of overlapping users is denoted
as U° = U* NUT, while there is no overlap of items between
the source and target domains.

Both users and items are represented as dense vectors,
also known as embeddings or factors. In this work, the em-
beddings of a user u; in domain d € {s,t} and item v; are
denoted as u¢ € R¥ and vjl € R*, where k is the dimension-
ality of the embeddings.

Semantic Embedding

Previous research has demonstrated that semantic embed-
dings of items are effective for knowledge transfer between
domains, especially when user behaviors across domains are
homogeneous or heterogeneous.

To obtain semantic item embeddings, we leverage pre-
trained LLMs, such as BERT, to extract text representa-
tions that capture semantic information. Specifically, for
each item v, we denote its textual content as text(v) and
its semantic embedding as v. The semantic embedding v is
computed as the sum of the token embeddings produced by
BERT for each token in the item’s description:

v=">" éperr(t), )]

tetext(v)

where ¢prrr(t) represents the embedding of token ¢ ob-
tained from the BERT model.

Characteristic Encoder

The first step in generating the personalized bridge function
is to extract users’ transferable characteristics from the items
they have interacted with. For cold-start users, who have no
interaction history in the target domain, we rely on their
interactions in the source domain. To capture the transfer-
able characteristics of users, we apply an attention mecha-
nism to the item embeddings, performing a weighted sum of
item embeddings to allow different parts to contribute dif-
ferently when aggregating them into a single representation.
The characteristic embedding for user u; is computed as:

Pu = Y a, )
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where S, is the set of items that user u; has interacted with
in the source domain. The attention scores a; are computed
by applying a two-layer feed-forward network h(-):

exp(a))
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where a; represents the attention score for item v;, and ¢
denotes the parameters of the attention network h(-). The
resulting user characteristic embedding p,,, € R¥ represents
the transferable features of user u; based on their interac-
tions with items in the source domain.

Meta Network

Users’ preferences across domains vary significantly, and
capturing these personalized preferences is crucial for effec-
tive cross-domain recommendation. To achieve this, we em-
ploy a meta network that takes the user’s transferable char-
acteristics, p,,;, as input and generates personalized mapping
functions to bridge the user embeddings in the source and
target domains. The meta network is formulated as:

Wy, = G(Pu; D)5 4

where g(-) is the meta network parameterized by ¢, and w,,
is the personalized mapping vector for user u;. This vector
Wy, is used as the parameter for the bridge function f(-).
The bridge function can take various forms, and for sim-
plicity, we use a linear layer for f(:), as in previous work
(Man et al. 2017). The vector w,,, is reshaped into a matrix
w,, € R¥** and with this bridge function, we obtain the
transformed user embeddings in the target domain:

where 4! represents the transformed user embedding in the
target domain, which can then be used for predictions. No-
tably, the vector w,,, is used as the parameter of the bridge
function, rather than as input. To train the meta network and
characteristic encoder, we can minimize the distance using
the mapping-oriented optimization procedure following ex-
isting bridge-based methods:
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and the task-oriented loss of our work can be formulated as:
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where RY, = {r;;lu; € U°,v; € V'} denotes the interac-
tions of overlapping users in the target domain.

Algorithm 1: MultiModal Cross-Domain Recommendation
framework based on Meta-learning (MetaMMCDR)

Input: U8, UL, VS, VU, RS, RE, VS VE,
Input: Meta network g.
Input: Characteristic encoder hy.

Pre-training Stage:

1. Learning a source model which contains u*, v°.
2. Learning a target model which contains u®, vt
Meta Stage:

3. Learning a characteristic encoder hy and a meta network
g4 by minimizing Equation 7.

Initialization Stage:

4. For a cold-start user u! in the target domain, we use the

transformed embedding f,,, (u$; w,, ) as the user’s initial-
ized embedding in the target domain.
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Figure 2: MetaMMCDR utilizes a meta network with users’ characteristic embeddings in the source domain as input to generate
personalized bridge functions for each user. Then, we can obtain the transformed user’s embeddings as the initial embeddings

in the target domain.

Overall Procedure

The structure of MetaMMCDR is shown in Figure 2. The
training procedure can be divided into three steps: pretrain-
ing, meta and initialization stages, as see Algorithm 1.

Experiment
Experimental Settings

Dataset and Evaluation Metrics. Following most exist-
ing methods (Kang et al. 2019; Zhao et al. 2020; Zhu et al.
2021a, 2022), our experiment utilizes a real-world public
dataset, namely the Amazon review dataset. Specifically, we
use the Amazon-5cores dataset, where each user or item has
at least five ratings. We choose three popular categories out
of a total of 24: movies and TV (Movie), CDs and Vinyl
(CD), and books (Book). We define three CDR tasks as fol-
lows: Task 1: Movie — CD, Task 2: Book — Movie, and
Task 3: Book — CD. As shown in the details in Table 1, the
number of ratings in the source domain is significantly larger
than that in the target domain. In line with (Man et al. 2017;
Zhao et al. 2020; Zhu et al. 2022), we adopt Mean Absolute
Error (MAE) and Root Mean Square Error (RMSE) as the
evaluation metrics for performance comparison.

Baseline. Since our method belongs to the bridge-based
methods for CDR, we compare MetaMMCDR primarily
with other bridge-based methods. Therefore, we select the
following baseline methods for comparison:

* Target: Target denotes the target MF model, which is
trained only using target domain data.

* EMCDR (Man et al. 2017): A popular CDR method
for cold-start problems, which uses Matrix Factorization
(MF) to learn embeddings and then employs a network
to bridge the user embeddings from the source domain to
the target domain.

* SSCDR (Kang et al. 2019): A semi-supervised, bridge-
based CDR method.

* PTUPCDR (Zhu et al. 2022): This method trains a meta
network using users’ characteristic embeddings to learn
personalized bridge functions, facilitating the personal-
ized transfer of user preferences.

Implementation Details. Following (Man et al. 2017;
Zhu et al. 2022), we randomly sample a fraction of ratings
from overlapping users in the target domain and treat them
as test users. We set the proportions of test(cold-start) users
as 80%, while the remaining samples of overlapping users
are used for training.

Cold-start Experiments

This section presents experimental results on cold-start sce-
narios. Table 2 presents the results of the experiments. The
Target is a single-domain approach that solely relies on data
from the target domain, which unfortunately leads to sub-
par performance. In contrast to TGT, various cross-domain



Table 1: Statistics of the cross-domain tasks

CDR Tasks Domain Item User Rating
Source Target || Source  Target || Overlap  Source Target Source Target
Task 1 Movie CD 50,052 64,443 || 18,031 123,960 75,258 | 1,697,533 1,097,592
Task 2 Book Movie || 367,982 50,052 || 37,388 603,668 123,960 || 8,898,041 1,697,533
Task 3 Book CD 367,982 64,443 || 16,738 603,668 75,258 | 8,898,041 1,097,592

Table 2: Cold-start results (MAE and RMSE) of 3 cross-domain tasks.

Source Domain || Target Domain || Metric ~ Target

SSCDR EMCDR PTUCDR MetaMMCDR

Movi cD MAE 4480  1.301 1.235 1.150 0.901

ovie RMSE 5.158 1.6579 1551 1.519 1.172

Book Movi MAE 4.183 1.239 1.116 0.997 0.925

o0 ovie RMSE 4814 1652 1412 1.331 1.205

Book cD MAE 4520 1.541 1.352 1.228 0.840

RMSE 5230  1.928 1.673 1.608 1.115

methodologies have the advantage of leveraging data from B EMCOR £ FTUPCOR BB MetaMMCDR
the source domain, thereby yielding superior outcomes. u
Consequently, harnessing data from an auxiliary domain
emerges as an effective strategy to mitigate data scarcity oo u

and enhance recommendation accuracy within the target do-
main. Our method could significantly outperform the best
baseline in most scenarios, demonstrating that MetaMM-
CDR is effective for cold start recommendation. The sig-
nificant improvements achieved are due to the incorpora-
tion of additional information from the textual modality. It
is worth noting that incorporating information from the vi-
sual modality simultaneously can lead to a decline in recom-
mendation performance. This indicates that exploring how
to properly introduce multimodal information is necessary
for cross-domain recommendations.

Generalization Experiments

MF is a non-neural model, and it is probably too simple
to achieve satisfying performance in large-scale real-world
recommendations. Thus, to testify the compatibility of our
framework as well as other bridge-based methods, we ap-
ply EMCDR, PTUPCDR and ours upon a more complicated
neural model. In other words, we use other models to replace
the MF: GMF (He et al. 2017). GMF assigns various weights
for different dimensions in the dot-product prediction func-
tion, which can be regarded as a generalization of vanilla
MF. For GMF, the bridge function directly transforms the
user embeddings.

From the results shown in Fig 3, we have several insight-
ful observations: (1) The bridge-based CDR methods can be
applied upon various base models. With different base mod-
els, both EMCDR, PTUPCDR, and MetaMMCDR effec-
tively improve the recommendation performance for cold-
start users in the target domain. Since GMF is a popular
and well-designed model in large-scale real-world recom-
mendations, it achieves better performance than vanilla MF.
(2) The MetaMMCDR could achieve satisfying performance

00
Taskl Task2 Task3 Taskl Task2 Task3
(a) MF Based (b) GMF Based

Figure 3: Generalization experiments: applying EMCDR,
PTUPCDR and MetaMMCDR upon two base models (a)
MF, and (b) GMF.

and the result is good enough to testify the effectiveness of
out method in real-world scenarios.

Conclusion

In this study, we investigated cross-domain recommendation
(CDR), which aims to transfer user preferences from an aux-
iliary domain to the target domain. Most existing methods
often overlook the rich information contained in multimodal
data, such as textual information.

To address this limitation, we proposed a MultiModal
Cross-Domain Recommendation framework based on meta-
learning methods (MetaMMCDR). Specifically, we leverage
text-based embeddings derived from users’ historical inter-
action data to capture personalized preference embeddings.
These embeddings are then used as input to train a meta-
network that generates personalized bridge functions.

We conducted experiments on real-world datasets to eval-
uate the effectiveness of the proposed MetaMMCDR frame-
work, and the results demonstrate its efficacy in improving
the performance of cross-domain recommendation.
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