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Abstract

Expressions are crucial carriers of human emotions, with
their subtle variations often conveying complex feelings. Ac-
curately capturing the relationship between expressions and
emotions, and generating images that can convey delicate
emotions, poses significant challenges in the field of image
generation. This paper proposes a framework for expression
generation based on diffusion models, aiming to enhance the
quality of generated images and the accuracy of emotional ex-
pression. To validate the effectiveness of this framework, we
conducted comparative experiments using three mainstream
generative models: StarGAN, VAE, and Diffusion. Using the
same input data, we evaluated the quality of the generated re-
sults by calculating the Fréchet Inception Distance (FID). We
also conducted an in-depth analysis of the advantages and
disadvantages of each model, exploring their differences in
generative diversity, training stability, and expression authen-
ticity.

Introduction

Facial expressions serve as a crucial medium for human
emotions, with their subtle variations conveying rich emo-
tional information. In the field of image generation, the
ability to accurately express a range of emotions from a
single expression is significant for enhancing the natural-
ness of human-computer interaction and deepening our un-
derstanding of human emotions. With the advancement of
deep learning technologies, utilizing methods such as Gen-
erative Adversarial Networks (GANSs), Variational Autoen-
coders (VAEs), and diffusion models for generating expres-
sion images has become a hot research topic. Notably, diffu-
sion models have recently demonstrated enormous potential
in image generation tasks, with their advantages in preserv-
ing image details and quality gradually being recognized.
Previous studies have explored the use of VAEs and
GANSs to generate facial expression images with various
emotional representations. For example, latent space inter-
polation through VAEs allows for smooth transitions be-
tween expressions, and emotion-specific GANs enable de-
tailed control over the emotional features of generated ex-
pressions. However, these methods still face challenges in
improving the diversity of generated expressions and the
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authenticity of the conveyed emotions. Moreover, the com-
plexity of expression generation tasks poses a challenge in
effectively capturing and expressing the multiple emotions
underlying a single expression.

This study aims to explore a framework for expres-
sion generation based on diffusion models to enhance the
accuracy and diversity of emotional expression in gener-
ated images. We selected three mainstream generative mod-
els—StarGAN, VAE, and diffusion models—for compar-
ative research, intending to analyze the performance dif-
ferences of each model in generating expression images
through comparative experiments. We believe that an in-
depth investigation of the strengths and weaknesses of these
models will provide valuable insights for future research on
expression generation.

2 Relatedwork
2.1 Image Generation

Image Generation is a type of task that converts one type
of image into another, typically requiring the preservation
of the original image’s content while generating a new im-
age with certain specific features or styles. At its core, it
learns the mapping relationship between pairs of images
(i.e., input image—target image”) to enable transformations
from one image domain to another. This task has wide ap-
plications in various image processing fields, such as style
transfer, semantic segmentation, expression generation, and
image enhancement. The primary goal of this project is to
generate diverse expressions from a single facial expression
image. The study of generating multiple emotional expres-
sions from a single facial expression has garnered signifi-
cant attention in the fields of computer vision and affective
computing. Popular generative models for image generation
include GAN, VAE, and Diffusion.

2.2 StarGAN

StarGAN is an extension of Generative Adversarial Net-
works (GANs) designed to achieve multi-domain image
generation with a single model. Unlike traditional GAN
models, StarGAN utilizes a structure comprising a genera-
tor and a discriminator but can handle images from multiple
input domains, enabling the transformation between differ-
ent emotions and styles. By incorporating conditional infor-



mation, StarGAN learns the relationships between different
emotional states without requiring a large amount of labeled
data, thus facilitating high-quality image generation. The in-
novation of StarGAN lies in its ability to use the same gen-
erator network for transformations across various emotional
states, eliminating the need to train a separate model for each
emotion. This feature significantly enhances the efficiency
and flexibility of the generative model. Numerous studies
have explored the applications of StarGAN in emotional
synthesis. For example, Choi et al. (2018) first proposed the
StarGAN framework, which was utilized for multi-domain
image translation, demonstrating the capability of generat-
ing different emotional expressions by manipulating input
conditions. Zhang et al. (2019) further advanced StarGAN
by introducing an improved training method, resulting in a
model that performs more stably and accurately when gen-
erating expressions with nuanced emotional characteristics.

2.3 VAE

Variational Autoencoders (VAEs) are probabilistic genera-
tive models composed of an encoder and a decoder. The
encoder maps input images to a continuous latent space,
while the decoder samples from this latent space to gener-
ate images. The advantage of VAEs is their ability to pro-
duce images with diversity and continuity, making them
suitable for generating images with controlled features. The
framework proposed by Kingma and Welling (2014) offers
a probability-based solution to generative modeling, which
has been widely applied to expression generation and emo-
tion recognition tasks. In the field of emotion generation,
the latent space of VAEs can capture rich facial expression
features, allowing for smooth interpolation from a single ex-
pression to various emotions. Recent work by Tewari et al.
(2020) further demonstrates VAEs’ effectiveness in generat-
ing diverse emotional expressions by modeling facial fea-
tures within the latent space, enabling the exploration of
multiple emotional states based on a base expression. This
approach not only allows for natural transitions between ex-
pressions but also preserves the structural characteristics of
the original expression. Additionally, VAEs effectively cap-
ture and produce complex emotional features, allowing for
nuanced emotional expressions that align with intuitive hu-
man perception of emotions.

2.4 Diffusion

Diffusion Models have gained significant attention as pow-
erful generative tools due to their ability to generate high-
quality, stable images. The generative process in diffusion
models involves two stages: adding noise gradually to an im-
age and then denoising it to reconstruct a clear image. Sohl-
Dickstein et al. (2015) initially introduced the principles of
diffusion models by simulating a gradual denoising path for
image generation. In subsequent research, improvements by
Ho et al. (2020) showcased the model’s potential for gener-
ating complex, diverse outputs, making it especially suited
for complex image generation tasks. In the task of emotion
generation, diffusion models present unique advantages, al-
lowing for subtle emotional variations based on a single ini-
tial expression. This gradual transformation process accu-

rately captures emotional features and maintains structural
integrity in the generated images throughout the emotion
generation process. Therefore, in multi-emotion generation
tasks, diffusion models provide an effective solution, result-
ing in smoother emotional transitions. Compared to other
generative methods, the denoising process in diffusion mod-
els significantly reduces noise and artifacts in generated im-
ages, improving both the quality and stability of the final
outputs.

3 Method
3.1 Conditional Convolutional VAE

The Conditional Convolutional VAE is an extension of the
traditional Variational Autoencoder, incorporating convolu-
tional layers and conditioning mechanisms to handle image
data and emotion labels effectively. This architecture is par-
ticularly suited for tasks such as facial expression synthesis,
where both spatial information and conditional attributes are
crucial.

Model Architecture: Our Conditional VAE consists of an
encoder and a decoder, both conditioned on emotion labels
to guide the synthesis process.

Encoder: The encoder comprises a series of convolutional
layers that extract hierarchical features from the input image.
These features are flattened and concatenated with a one-hot
encoded emotion label vector. This combined representation
is used to compute the parameters of the latent distribution,
specifically the mean y and the log variance log 2.

Decoder: The decoder reconstructs the image from the la-
tent vector, which is concatenated with the emotion label.
It uses transposed convolutional layers to upsample the la-
tent representation back to the original image size, ensuring
that the generated facial expression aligns with the specified
emotion.

h = ReLU(Conv2d(z)) (1)
Zinput = F'latten(h) & c 2)
w,logo? = Linear(Zinput) 3)

The reparameterization trick is employed to allow gradient
descent through the stochastic latent space, with the latent
variable z computed as:

z=p+e-o, e~N(0I)

Loss Function: The Conditional VAE is trained to min-
imize a combined loss function comprising reconstruction
and KL divergence losses:

Reconstruction Loss: Ensures the generated image closely
resembles the input image in terms of pixel-wise similarity,
measured by Mean Squared Error (MSE).

Lrccon = MSE(x, &)

KL Divergence Loss: Regularizes the latent space to fol-
low a standard normal distribution, promoting smooth and
continuous latent representations.
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The total loss is given by:

L= Lrecon + ﬂ Lkr

where [ is a hyperparameter that balances the two com-
ponents.

Training Efficiency: The use of a single encoder-decoder
pair conditioned on emotion labels allows efficient training
across different expression domains. This approach reduces
model complexity compared to training separate models for
each expression type, enhancing both flexibility and scala-
bility.

This architecture enables our Conditional VAE to gener-
ate diverse facial expressions while maintaining high fidelity
to the input image, making it a powerful tool for facial ex-
pression synthesis tasks.

3.2 StarGAN

StarGAN is a multi-domain image generation framework
based on Generative Adversarial Networks (GANs), de-
signed to efficiently perform image translation across dif-
ferent domains. It demonstrates strong versatility and can be
widely applied to various image generation tasks, such as fa-
cial expression transfer, style transfer, and attribute editing.
StarGAN is an extension of CycleGAN, inheriting the cycle-
consistency property and utilizing adversarial loss to learn
mappings between different domains (e.g., from x to y and
vice versa). The key difference from CycleGAN lies in the
use of a single generator to perform bidirectional mapping,
instead of two generators in a cyclic structure. Specifically,
StarGAN introduces a reconstruction loss to ensure feature
consistency between the input image x and the generated
image G(x), which is defined as:

Lrec = IEarr,c,c’ [Hx - G(G(xa C): C/)Hl} (4)

Here, the generator G takes the generated image G(x,c)
and the domain label ¢’ of the original image as inputs
and attempts to reconstruct the original image x. This ap-
proach reduces the number of model parameters, improving
the training efficiency, while enabling the generator to learn
the bidirectional mappings x to y and y to x.

A distinctive feature of StarGAN is the introduction of
the mask vector m, which facilitates joint training on multi-
domain datasets. During training with multiple domains,
StarGAN uses a unified label vector c to represent the tar-
get domains, which is represented as:

¢=le1,y ..., cn,m], 5)

where each domain label c; is represented as a one-hot
vector. The mask vector m is an n-dimensional one-hot vec-
tor that indicates the target domain to which the generator
and discriminator should translate the input image.

Figure 1: Comparison Between Traditional Cross-Domain
Models(left) and StarGAN(right)

This design sets StarGAN apart from traditional cross-
domain models, as it does not require training separate gen-
erators for each pair of domains. Instead, a single genera-
tor is used to learn mappings across multiple domains. This
significantly simplifies the model architecture and improves
training efficiency, making StarGAN both more efficient and
flexible for multi-domain image generation tasks.

3.3 Diffusion
3.3.1 Diffusion Model

Diffusion models are a class of probabilistic generative mod-
els that focus on modeling the gradual denoising process
of data to generate target samples. Specifically, a diffusion
model consists of a forward process and a reverse pro-
cess. In the forward process, Gaussian noise is progres-
sively added to the original data until it approaches a pure
noise distribution. In the reverse process, the model learns
to iteratively denoise the data, gradually restoring it from
pure noise to the original data distribution. This step-by-
step approach enables diffusion models to generate high-
quality and realistic images. Compared to traditional Gener-
ative Adversarial Networks (GANSs), diffusion models offer
greater training stability and enhanced diversity in generated
samples, though the generation process is often more time-
consuming. In recent years, diffusion models have achieved
remarkable results in tasks such as image and video genera-
tion, making them a prominent focus in the field of genera-
tive modeling.

Inspired by non-equilibrium thermodynamics, the diffu-
sion model now produces the most advanced image qual-
ity,with examples as follows:

The training process of diffusion models involves two
main phases: the forward process and the reverse process.
In the forward process, noise is progressively added to the
input data until it is completely transformed into noise. This
process is typically controlled by a predefined noise sched-
uler, which gradually increases the amount of noise at each
step. In the reverse process, the model’s objective is to learn
how to recover the original data from the noise. To achieve
this, the model uses a neural network to predict the amount
of noise to remove at each denoising step, gradually restor-
ing the data to its original distribution. During training, a
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Figure 2: Diffusion Model Generation Examples

loss function is used to measure the prediction error at each
denoising step, with the most common loss function being
Mean Squared Error (MSE). The goal of training is to min-
imize these errors, enabling the model to efficiently recover
the data from noise and generate high-quality images.The
entire process is shown in Figure 3.
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Figure 3: Diffusion Model Working Principle

3.3.2 Conditional Diffusion Model

To further enhance the performance of diffusion models,
researchers have introduced Conditional Diffusion Models.
Conditional diffusion models incorporate conditional infor-
mation (such as labels, image features, or other types of aux-
iliary data) to guide the generation process. This enables the
model not only to generate realistic images but also to gen-
erate images that meet specific conditions. For example, a
conditional diffusion model can generate images with spe-
cific emotional expressions based on given emotion labels
or generate images that match a textual description. By in-
troducing such control, conditional diffusion models offer
greater flexibility and customization in the generation pro-
cess.

To tackle the task of facial expression generation, we aim
to leverage the powerful reconstruction and manipulation ca-
pabilities of diffusion models. A standard diffusion model,
as illustrated in Figure 3, takes an image as input z( and it-
eratively adds Gaussian noise at configurable timesteps 7',
generating a series of noisy inputs zy,...,z7. Ideally, zr

follows a Gaussian distribution, appearing as random noise.
Starting from the noisy image, a denoising network predicts
the added noise at a given timestep, i.e., p(x¢—1|z:). Typi-
cally, the denoising network is trained using a mean squared
error (MSE) loss between the actual added noise and the
predicted noise.With this setup, during inference, a user can
sample random noise at timestep 7, iteratively use the de-
noising network to predict the added noise, and remove it
step-by-step until reaching the first timestep. At this point,
the output is an image generated by the diffusion model. The
conditional diffusion model has the same overall architec-
ture, except that the denoising network takes an additional
“condition” input along with the noisy input z.
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Figure 4: Model Architecture

In our model, the denoising network condition includes
an embedding of the timestep information and the output
label semantics, with emotional labels projected into a 256-
dimensional space using an embedding layer. The additional
label embedding is designed to guide the denoising process
by emphasizing the desired target facial expression in the
output image.

As mentioned earlier, the training process is supervised
by the MSE loss between the predicted noise and the actual
noise. Specifically, during training, the labels passed to the
semantic embedding layer correspond to the facial expres-
sion labels of the input image. During inference, we pass the
label of the desired emotion, and the model generates the
target facial expression in the output image.

3.3.3 Loss function of Model

During the training of the Conditional Diffusion Model,
there are forward noise addition and backward denoising
processes. The denoising network is trained using the mean
squared error (MSE) loss between the actual added noise and
the predicted noise.

Edenoise = MSE({L'7 -’f;)

4 Experiments
4.1 Implementation Details
4.1.1 Training Conditional VAE

The Conditional VAE model was trained using the CK+
dataset, which includes a collection of facial expression im-
ages with corresponding emotion labels. The dataset was



preprocessed to focus on facial regions, ensuring each im-
age was centered and normalized. Images were augmented
to maintain consistency in the training data, with each im-
age resized to 64x64 pixels, aligning with the model’s input
requirements.

The model was implemented using the PyTorch frame-
work. Training utilized the Adam optimizer with a learn-
ing rate of 0.001. The optimizer’s parameters were set to
default values, providing stability and efficient convergence
during training. The model was trained on a single NVIDIA
GPU, employing a batch size of 64 to balance memory usage
and computational efficiency. The training spanned 100,000
epochs, with model checkpoints saved every 500 epochs to
facilitate progress monitoring and potential recovery.

The loss function incorporated both mean squared error
(MSE) and a Kullback-Leibler (KL) divergence term, with
a weighting factor of 5 = 0.001 applied to the KL diver-
gence. This configuration aimed to ensure a balance between
reconstruction fidelity and latent space regularization. The
training process was monitored using TensorBoard, which
provided real-time insights into loss dynamics and model
performance, aiding in the fine-tuning of model parameters
and training strategies.

4.1.2 Training StarGAN

StarGAN was trained on the CK+ dataset, which contains
10,708 facial expression images categorized into seven emo-
tion labels: angry, contempt, disgust, fear, happy, neutral,
sadness, and surprise. Due to variations in facial position-
ing within the dataset, preprocessing was performed prior
to training. This involved centering the faces and resizing
the images to 224x224 pixels to ensure consistency in input
data.The model was implemented using the PyTorch frame-
work. During training, the Adam optimizer was employed
with a learning rate of 0.0001 and momentum parameters
set to $1=0.5 and [32=0.999. The training was conducted on
a single RTX 3090 GPU with a batch size of 16, taking ap-
proximately 5 hours to complete.This training configuration
and optimization setup provided a solid foundation for Star-
GAN’s performance in facial expression generation tasks.

4.1.3 Training Conditional Diffusion Model

The Conditional Diffusion Model was trained using the CK+
dataset, which includes facial expression images with corre-
sponding emotion labels. The dataset was preprocessed, and
each image was resized to 48x48 pixels.

The model was implemented using the PyTorch frame-
work. During training, the AdamW optimizer was used with
a learning rate of 0.0003 and a weight decay coefficient
of 0.001 to ensure stability and efficient convergence. The
model was trained on a single NVIDIA 3090 GPU, with a
batch size of 32 to balance memory usage and computational
efficiency. The training spanned 1000 epochs, with model
checkpoints saved every 10 epochs to monitor progress and
allow for potential recovery.

The loss function utilized mean squared error (MSE), and
the denoising network was trained by computing the MSE
loss between the actual added noise and the predicted noise.

4.1.4 Qualitative Comparison

We trained the model using the same dataset and evaluated
it on the same test set to generate images corresponding to
seven facial expressions. The results were visually compared
to assess the quality of the generated outputs.

In Figure 5, we can observe the facial expressions gen-
erated by VAE, StarGAN, and Diffusion models. Overall,
the images generated by VAE exhibit relatively low facial
clarity in expression generation. StarGAN generates images
that maintain a high degree of similarity to the original im-
ages, particularly in the upper facial regions. However, in
the lower facial regions, especially around the mouth, a phe-
nomenon known as “texture sticking” occurs, leading to no-
ticeable spatial distortions of features like teeth or lips in
the generated images. The Diffusion model designed in this
study struggles to ensure that the generated faces resemble
the input faces, but it does exhibit the best expression repre-
sentation among the three models.
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Figure 5: Comparison of Expression Generation Samples
from Different Models

Furthermore, the lip features for generating other expres-
sions are more complex and variable, making them difficult
for the models to fully capture, and the results for all three
models are not ideal. The limited size of the dataset may also
contribute to this issue.

5 Conclusion

This paper addresses the problem of generating multiple fa-
cial expressions from a single image. We approach this issue
using state-of-the-art image generation algorithms, includ-
ing VAE, StarGAN, and Diffusion models. Using the same
dataset as input, we evaluate the performance of these meth-
ods through both quantitative and qualitative metrics. Ulti-
mately, we find that StarGAN performs the best for this task.
This contrasts with the best performance typically achieved
by diffusion models, leading us to hypothesize that modi-
fying a basic diffusion framework similar to StarGAN may
yield better results. This is something we plan to explore
further in the future.
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