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Abstract

With the rapid advancements in remote sensing technology,
remote sensing semantic segmentation has found widespread
application in areas such as land cover mapping and ur-
ban change detection. Compared to traditional single-modal
segmentation techniques, multi-modal fusion-based segmen-
tation models have demonstrated superior performance and
garnered considerable attention in recent years. However,
many of these models rely on Convolutional Neural Networks
(CNNs) or Vision Transformer (ViT) for fusion operations,
leading to limited capabilities in modeling and representing
local-global context. In this study, we propose a multi-modal
fusion method that integrates CNNs and ViT within a unified
framework, offering an efficient solution for remote sensing
semantic segmentation. First, shallow features are extracted
and fused using convolutional layers and shallow feature fu-
sion (SFF) modules. Next, deep features representing seman-
tic information and spatial relationships are extracted through
a specially designed deep feature fusion (DFF) module. The
DFF module comprises the self-attention (SA) layers and mu-
tually boosted attention (MBA) layers, where MBA computes
SA and cross-attention (CA) in parallel, enhancing both intra-
modal and cross-modal contextual information while direct-
ing attention to semantically relevant regions. Therefore, the
proposed method is capable of fusing shallow and deep fea-
tures at multiple layers, fully leveraging CNNs to accurately
represent local details and transformers to capture global se-
mantics. Extensive experiments conducted on publicly avail-
able high-resolution remote sensing dataset validate the ef-
fectiveness and superiority of the proposed method.

1.Introduction

Image semantic segmentation is a classic task in computer
vision, aiming to divide an image into multiple regions and
assign a semantic label to each pixel to identify the category
to which the pixel belongs. With the continuous develop-
ment of technology, semantic segmentation has been widely
applied in the field of remote sensing imagery process-
ing. The semantic segmentation of urban scene images has
driven various city-related applications, including land cover
mapping(Li et al. 2022), change detection(Xing, Sieber, and
Caelli 2018) and road and building extraction(Griffiths and
Boehm 2019).
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Although significant progress has been made in semantic
segmentation technology for remote sensing images, mul-
tiple challenges remain, such as multi-scale and resolution
variations, complex backgrounds and diversity of ground
objects, and the impact of noise and occlusion on image
quality. Traditional semantic segmentation algorithms, such
as K-nearest neighbors (KNN)(Larose and Larose 2014) and
random forests(Rigatti 2017), have achieved certain results
in early computer vision tasks but are limited in performance
when dealing with complex scenes. In recent years, the de-
velopment of deep learning has greatly advanced the field
of image semantic segmentation, with convolutional neu-
ral networks (CNNs) making significant progress in par-
ticular. However, CNNs rely on local receptive fields for
convolution operations, which limits their ability to capture
global contextual information. The introduction of the Vi-
sion Transformer (ViT)(Han et al. 2022) has improved this
issue. ViT utilizes attention mechanisms, allowing the model
to capture relationships between pixels at arbitrary posi-
tions within the image, making it more effective in handling
global information and achieving remarkable results.

Compared to single-modal data provided by a single sen-
sor, multi-modal data processing(Roche et al. 2021) demon-
strates clear advantages in many computer vision applica-
tions. By combining information from different modalities,
models can obtain richer and more diverse features, thereby
improving overall performance. However, the differences
and incompatibility between different modalities pose chal-
lenges for multi-modal data fusion. Typically, three strate-
gies are employed: early fusion, mid-level fusion, and late
fusion. Early fusion relies on precise alignment of multi-
modal data but is less robust in handling task-irrelevant in-
formation. Late fusion processes different modalities inde-
pendently before merging them, but it falls short in cap-
turing the cross-modal relationships of the data. In con-
trast, mid-level fusion can capture cross-modal dependen-
cies at intermediate feature levels, making it more effec-
tive in representation learning tasks. However, most existing
research adopts simple summation or concatenation-based
single-layer feature fusion methods, neglecting the model-
ing of long-range cross-modal dependencies across differ-
ent feature levels, which limits the potential of multi-modal
fusion.

To address the aforementioned challenges, we propose a



cross-modal fusion network that integrates CNN and ViT.
First, shallow features are extracted and fused using convo-
lutional layers and shallow feature fusion (SFF) modules.
Next, deep features representing semantic information and
spatial relationships are extracted through a specially de-
signed deep feature fusion module (DFF). Finally, the ob-
tained shallow and deep features were sent to a decoder for
feature fusion and upsampling, restoring the input image
size.

2.Related Work

2.1.CNN-based Semantic Segmentation Methods

The Fully Convolutional Network (FCN) was the first ef-
fective CNN architecture to address semantic segmentation
in an end-to-end manner. Since then, CNN-based methods
have dominated semantic segmentation tasks in the field of
remote sensing(Kotaridis and Lazaridou 2021). However,
due to the overly simplified decoder in FCN, segmentation
resolution is limited, impacting both image fidelity and ac-
curacy.

To address this issue, an encoder-decoder network called
UNet was proposed for semantic segmentation, featuring
two symmetrical paths known as the contracting path and
the expanding path(Ronneberger, Fischer, and Brox 2015).
Building on the encoder-decoder structure, researchers have
designed various skip connections to capture richer con-
text(Diakogiannis et al. 2020). However, the limited recep-
tive field of CNN-based segmentation networks restricts
their ability to capture local semantic features, lacking the
capacity to model global information across the entire im-
age. Given that remote sensing image scenes are more com-
plex, identifying these intricate targets poses a significant
challenge.

2.2. Transformer-based Semantic Segmentation
Methods

The Vision Transformer (ViT)(Alexey 2020)is an innovative
model capable of effectively extracting global feature infor-
mation, particularly beneficial in the field of remote sensing
image semantic segmentation. Researchers have extensively
explored methods for applying ViT to semantic segmenta-
tion tasks. For instance, ViT-Adapter(Chen et al. 2022) is
a flexible framework that incorporates image-related prior
knowledge into the pre-trained ViT network, enabling more
effective handling of complex scenes. SETR(Zheng et al.
2021), another Transformer-based segmentation model,
treats semantic segmentation as a sequence-to-sequence
problem, achieving efficient segmentation.

However, ViT also presents certain limitations in semantic
segmentation tasks. Firstly, when processing high-resolution
images, ViT’s computational complexity grows quadrati-
cally with the increase in input sequence length, which re-
stricts its feasibility in practical applications. Secondly, ViT
is heavily dependent on large-scale datasets, which can lead
to reduced performance in tasks with limited data. Addition-
ally, ViT’s global receptive field may overlook local detail
information.

2.3.Multimodal Semantic Segmentation Based on
CNN and Transformer

With the application of advanced remote sensing technolo-
gies, the field of remote sensing can now comprehensively
acquire a broad spectrum of multimodal data, including
hyperspectral imaging (HSI), visible light imaging (VIS),
and LiDAR. Multimodal semantic segmentation networks,
by integrating the distinct information from various modal-
ities, have significantly enhanced segmentation accuracy.
The Sigma network(Wan et al.)utilizes a Selective Struc-
tured State-Space Model (Mamba), achieving global recep-
tive field coverage with linear complexity. LET-Net(Ta et al.
2023) effectively combines U-shaped CNNs with Trans-
formers, using capsule embeddings to address each model’s
shortcomings.

Although these approaches perform well, the optimal in-
tegration of CNNs and Transformers for feature extraction
and fusion has not been fully explored, limiting the net-
work’s ability to capture both local details and global con-
text, thus affecting the quality of feature representation. To
address this, this paper explores the integration of Trans-
formers and CNNs with multimodal remote sensing data to
achieve more robust semantic segmentation.

3.Proposed Solution

Figure 1 illustrates the structure of the proposed framework.
Specifically, the CNN backbone incorporates the SFF mod-
ule for feature fusion, while the MBA layer in DFF en-
ables deep feature fusion. More specifically, our method
extracts features from VIS and DSM using two separate
ResNet branches. The shallow features at varying scales are
enhanced by the SFF modules following each CNN block.
These features are then flattened into sequences and passed
through DFF, where deep-level feature fusion is performed
via MBA to capture additional contextual information. The
fused outputs from DFF are summed and reshaped before
being sent to a cascaded upsampler decoder, which helps re-
store spatial details with higher precision. In the following
sections, we will provide a detailed explanation of the key
components of our method.

3.1.Shallow Feature Fusion

We denote VIS images and DSM images by X € RH*Wx3
and Y € REXWX1 where H and W represent the height
and width of the images, respectively. Our method employs
a dual-branch encoder to extract multi-scale features from
each modality. Each branch consists of four convolutional
layers for multi-scale feature extraction, producing down-
sampled feature maps of size (%) X (2—,1) x Cj,where
C; represents the number of channels at the i-th layer of
the encoder. These shallow features are then fused through
the SFF module, where the features from the auxiliary DSM
modality are integrated into the VIS modality before being
passed to the next branch of the VIS encoder. Additionally,
skip connections are utilized, directly feeding the outputs of
the SFF module into the corresponding decoder layers to re-
cover local and contextual information.



As shown in Figure 2, the SFF module first aggregates
global information by applying Global Average Pooling
(AvgPool) separately on the VIS and DSM branches. Subse-
quently, the squeeze and excitation process is carried out us-
ing AvgPool followed by two 1x 1 convolutional layers, with
ReLU and Sigmoid activation functions applied. Finally, the
features from VIS and DSM are weighted and element-wise
summed, resulting in the final fused shallow-level features.
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Figure 1: Overview of our method
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Figure 2: Proposed SFF module for SFF in the CNN blocks.

3.2.Deep Feature Fusion

x; and y; are the feature maps of VIS and DSM, respec-
tively, obtained from a certain layer of the convolutional
neural network (CNN). The dimensions of these feature
maps are (21%) X (%) x C7, where [ is the layer index,
and C7 is the number of output channels from the last layer
of the CNN.The feature maps x; and y; are first passed
through two embedding layers to change the channel size
from C7 to Clq for further processing. These embedded fea-
ture maps are then flattened into two 2D patch sequences of
length L, denoted as z% and z{. At this point, the feature
map size becomes Cpyq X L, where L = %.To
retain the position information of the image patches in the

original image, position embeddings are added to z{ and z{.
Finally, the position-encoded and embedded sequences z§
and z{ are passed as inputs to the DFF module.

The input to the DFF module sequentially undergoes three
processes: the SA layers for enhancing deep-level feature
representations, the MBA layers for deep-level feature fu-
sion, and the SA layers for further enhancement of the fused
feature representations. The number of layers for each pro-
cess is N1, No, and N3, respectively. In each layer, the fea-
tures from the VIS and DSM branches are processed simul-
taneously, with 2 and z¥ denoting the hidden features at the
n-th layer, where n € {1,2,..., Ny + No 4+ N3}. Through-
out the entire process, the DFF module maintains the feature
map dimensions as Chjq X L. The SA layers consist of mul-
tiple modules, including two SA modules, two multilayer
perceptron (MLP) modules, and Layer Normalization (LN)
operations,as shown in Figure 3(a)
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Figure 3: (a) Proposed SA layer in DFF. (b) Proposed MBA
layer in DFF

Given the multimodal feature inputs z(n 1 and z(n 1)

the global relationships within the features are learned using
the multihead self-attention mechanism. The output of the
n-th layer SA can be written as:

_SA(LN(Z(n 1)))+Z(n 1)
ph = SA(LN(z{, 1)) + 2(, 1
)

z, = MLP(LN(py,)) + pj,
z;, = MLP(LN(py)) + pj;

After the feature enhancement through the SA layers, the
MBA layers further fuse the multimodal features in an ab-
stract semantic space and leverage rich contextual informa-
tion,as shown in Figure 3(b) .During the deep feature fusion
stage, the MBA module computes both CA and SA informa-
tion simultaneously to learn the correlation between the two
modalities. The output of the MBA layer can be written as:

(97-97) (2(n_1))

Let gy = gy + 20, 1y, ¢4 = gi + 2{,_,). the fused
output at the n-th layer is then:

= MBA(LN(z{,_,)),LN

2z, = MLP(LN(qy)) + g5,



2 = MLP(LN(g})) + a5,

With the support of multihead design, the MBA module
divides the multimodal feature inputs Z(In—1)> Z(yn,l) into H

equal segments, denoted as zgjn_lyh), zg’nfl’h), where h =
1,2,..., H. The projection matrices for the multimodal in-
formation, {Q,, K, V;} and {Q,, K,,V,}, are obtained
through linear projections. Then, SA information (sa, sa,)
and CA information (cag, cay) are derived for both modal-
ities.Figure 4 illustrates the structure of the proposed MBA
module. Specifically, the SA module uses {Q.., K, V.. } and
{Qy, K,,V,} to compute intra-modal features, while the
CA module computes cross-modal associations.

Next, an adaptive fusion mechanism is proposed to fuse
the SA and CA features:

xT xT xr 1 1 1
gn = A5 88, + AL cay, gy =AY sa, + A\ cay

where A%, A%, A%, and \Y, are learnable weighting coeffi-
cients used to balance the contributions from SA and CA. Fi-
nally, the fused features are further enhanced through the SA
layers. The final output of DFF, denoted as zy € RChexL

is the feature map derived from the last SA layer.

e (O 3

Self Attention !

________________ B—gr
{" Multihead :cax

I CrossAttention |

X
Znl1—

SIS

zZy—

RBAN OA=

&) Matrix Multiplication (1): element-wise addition

Figure 4: Schematic of the MBA module

3.3.Cascaded Decoder

The Cascaded Decoder uses multiple upsampling modules
to recover the fused features from the hidden layers, thereby
completing the final segmentation process. The decoder first
uses a reconstruction module to convert the 2D input se-
quence zpy into a 3D tensor of size Cyee X T}fn X 2(}”7,1)
where Cye, is the number of input channels for the first block
of the decoder. Then, multiple cascaded decoder blocks
gradually restore the spatial resolution to / x W by concate-
nating skip connections from the corresponding CNN back-
bone layers. Each decoder block consists of an upsampling
operation, a convolution layer, and a ReL U layer. Finally, the
segmentation head performs the final semantic prediction.

4.Experiments

Dataset.The Vaihingen dataset consists of 16 very high-
resolution orthophotos, with an average image size of 2500
x 2000 pixels. Each orthophoto has three channels—near-
infrared, red, and green (NIRRG)—along with a normalized
digital surface model (DSM). The ground sampling distance
(GSD) is 9 cm. The dataset includes five foreground classes:
buildings (Bui.), trees (Tre.), low vegetation (Low.), cars

(Car), impermeable surfaces (Imp.), and one background
class (Clutter). The 16 orthophotos are split into a training
set with 12 patches and a test set with 4 patches. Specifically,
the training set includes images numbered 1, 3, 23,26, 7, 11,
13,28, 17, 32, 34, and 37, while the test set includes images
numbered 5, 21, 15, and 30.

Evaluation metrics.To evaluate segmentation results of
multimodal remote sensing data, overall accuracy (OA),
mean F1 score (mF1), and mean Intersection over Union
(mloU) are used. These metrics provide a fair basis for com-
paring our method with other state-of-the-art approaches.
Implementation details.All experiments were implemented
using PyTorch on a single NVIDIA GeForce RTX 3090
GPU with 24 GB of memory. Stochastic gradient descent
(SGD) was used for model training with a learning rate of
0.01, momentum of 0.9, weight decay of 0.0005, and batch
size of 10. After collecting samples using sliding windows,
simple data augmentation techniques such as random ro-
tation and flipping were applied.The method we proposed
uses a CNN backbone composed of two ResNet50 mod-
els, each with four convolutional layers (I = 4) and ahid-
den layer size of C;;q = 768. The DFF module contains
Ni + Ns + N3 = 12 transformer layers, distributed as
N; = 3,N; = 6, and N3 = 3. Each layer has H = 12
attention heads, with a channel size of Cy.. = 512.Finally,
all transformer backbones and ResNet50 were pre-trained
on ImageNet for better initialization.

4.1.Performance Comparison

We benchmarked the performance of our proposed method
against five representative state-of-the-art approaches, in-
cluding PSPNet(Zhao et al. 2017), ESANet(Seichter et al.
2021), CMGFNet(Hosseinpour, Samadzadegan, and Javan
2022), TransUNet(Chen et al. 2021), and MFTransNet(He
et al. 2023).

As shown in Table 1, our proposed method significantly
outperforms the baseline TransUNet in terms of OA, mFI,
and mloU, confirming that our method successfully fused
shallow and deep features by extracting complementary in-
formation from the assisting modality, resulting in robust
representations. Compared to other methods, our proposed
method outperforms the others in two categories: Low veg-
etation and Car. Specifically, our method outperforms the
existing MFTransNet by 2.03% in the Low vegetation cat-
egory. Additionally, the classification accuracy for the Car
category is improved by 4.19% over the existing CMGFNet.
These results can be attributed to our method’s more ef-
fective extraction and fusion of multi-level multimodal fea-
tures through the sequential use of CNN and Transformer.
Overall, our method achieved 92.22% OA, 89.00% mF1
score, and 82.11% mloU, reflecting improvements of 1.22%,
2.89%, and 5.41%, respectively, compared to the baseline
TransUNet. These results validate that our method achieves
superior generalization performance.

Figure 5 presents the visualization results of all six meth-
ods in the experiment. It is evident that remote sensing im-
ages are more complex than natural images, for example:
1) Object edges are distinct, but shapes vary, requiring ac-
curate edge segmentation; 2) Small target objects are more



Table 1: Segmentation Results Comparison

Type Method Bui. Tre. Lov(v).A(%éar Imp. Total mF1(%)  mloU(%)
PSPNet 98.39 9426 6497 5558 90.92 89.45 82.32 71.87
CNN-based ESANet 98.34 94.08 75.53 68.19 87.92 90.41 85.52 75.87
CMGEFNet 92.50 93.67 7623 7884 9250 91.75 88.50 80.03
TransUNet 91.95 95.11 7299 62.63 91.95 91.00 86.11 76.70
Transformer-based MFTransNet 95.20 93.22 79.57 76.07 93.23 91.56 87.36 78.47
our 97.94 91.60 81.60 83.03 93.15 92.22 89.00 82.11
difficult to segment. Clearly, our method excels at identify- 4.2.Ablation Study

ing complex edges, producing smoother results, and provid-
ing complete and connected object segmentation with fewer
isolated points. Specifically, the SFF module helps preserve
details of objects with various scales and shapes, resulting in
accurate edges for Building objects. Additionally, the DFF
module can more accurately capture complex long-range
semantic information, aiding in the identification of com-
plete objects with fewer scattered points. These advantages
allow our method to achieve more accurate classification
than other approaches. In Figures 5(d)—(i), two red boxes
are highlighted. In the upper box, our method clearly delin-
eates the edges of the building, yielding cleaner and more
complete building segmentation results. In the lower box,
our method efficiently identifies small target objects.So, our
method was able to achieve significant overall performance
improvement.

Figure 5: : Qualitative performance comparisons. (a)
NIRRG images, (b) DSM, (c) Ground truth, (d)PSPNet, (e)
ESANet, (f) CMGFNet, (g) TransUNet, (h) MFTransNet,
(1) Our. Two red boxes are added to all subfigures to
highlight the differences.

To validate the effectiveness of each component in our pro-
posed method, we conducted ablation experiments by sys-
tematically removing specific components while maintain-
ing the dual-branch framework. As presented in Table 2,
we designed two ablation experiments based on our fu-
sion scheme. In the first experiment, the proposed DFF
module was decoupled into two single-modal ViT mod-
ules, i.e., two independent self-attention-based transformers,
while the SFF module within the CNN block remained un-
changed. In contrast, the second experiment removed the
SFF module from CNN, with the shallow features of the
two modalities being independently extracted by two sep-
arate branches.

Table 2 illustrates that both the shallow and deep feature
fusion modules are critical for the enhanced performance of
our proposed method. Specifically, the SFF module is ca-
pable of learning and providing robust representations of
the fundamental features of ground objects, such as shape,
boundaries, color, and texture, irrespective of scale varia-
tions. Furthermore, the DFFF module helps to distinguish
complex remote sensing scenes by leveraging the semantic
information extracted by the SFF module.

Table 2: Ablation study of the proposed approach.

SFF DFF OA(%) mF1(%) mloU(%)
v 9191  88.36 81.25
v 9159  88.41 81.32
v v 9222 89.00 82.11

4.3.Model Complexity Analysis

We assess the computational complexity of our proposed
method using the following metrics: floating-point opera-
tions (FLOPs), the number of model parameters, memory
usage, and frames per second (FPS). FLOPs are employed
to assess model complexity, while the number of model pa-
rameters and memory usage serve to evaluate memory re-
quirements. Finally, FPS is intended to evaluate execution
speed.

Table 3 presents the results of the complexity analysis for
all the compared methods. Compared to PSPNet, our pro-
posed method exhibits lower FLOPs, despite having a larger
number of parameters. Compared with other methods, al-
though the approach we proposed achieves optimal perfor-
mance, its complexity is higher. While it outperforms other
models, it also has certain limitations. In the future, we will



Table 3: Computational complexity analysis measured on a
single Nvidia Geforce RTX 3090 GPU.

. FLOPS Parameter Memory Speed

Method Multimodal ) ™) (MB) (FPS) MloU(%)
PSPNet N 49.03 46.72 3124 66.01 71.87
ESANet Y 7.73 34.03 1914 10.42 75.87
TransUNet Y 32.27 93.23 3028 10.81 76.70
CMGFNet Y 19.51 64.20 2463 11.61 80.03
MFTransNet Y 8.44 43.77 1549 14.88 78.47
our Y 4521 160.88 3463 9.74 82.11

further optimize this method to develop a more lightweight
version.

5.Conclusion

In this work, we integrate CNN and ViT into a unified frame-
work and propose a multi-layer multi-modal fusion method
for remote sensing semantic segmentation. Specifically, we
design a CNN-based SFF module to extract and fuse de-
tailed shallow features across multiple scales, followed by
the DFF module for deep semantic feature extraction and fu-
sion. The proposed DFF utilizes an MBA module integrated
with SA and CA to extract deep features and guide the multi-
modal deep feature fusion, enabling effective segmentation
of complex remote sensing images. Experiments on the IS-
PRS Vaihingen dataset show that our method outperforms
several other semantic segmentation approaches in multiple
metrics. However, there are some limitations in our method,
such as suboptimal performance on certain categories, and
the model has a large number of parameters and high com-
putational complexity. In the future, we will further optimize
this method to achieve higher segmentation accuracy and de-
velop a more lightweight version.
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