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Abstract

IMU-based human motion capture is a task with great poten-
tial. Existing methods show effective results using a template-
shaped adult body model. However, when applied to a subject
with a large difference in size(such as a child), motion cap-
ture accuracy will decrease significantly. To this end, we pro-
pose a sparse inertial motion capture solution that achieves
motion tracking of various-shaped humans, from small kids
to adults. Including a learning-based method to convert mo-
tion data (e.g., joint acceleration and velocity) between SMPL
and non-SMPL human shapes. Given the shape informa-
tion of a body, by converting signals captured from 6 IMUs
to a SMPL-shaped body, we then apply the template-based
pose estimator and output motion-related data such as lo-
cal pose and joint velocities. To further obtain global motion
for the target human shape and ensure its physical plausibil-
ity, we utilize a shape-aware optimization strategy, which re-
covers motion to target characters and improves translation
accuracy remarkably. For validation, we collected a dataset
with various-shaped subjects. Experiments demonstrate that
our approach outperforms state of the art on motion track-
ing accuracy and produces plausible results for various body
shapes.

Introduction
Human motion capture (MoCap) has seen a surge in research
in the past few decades(Nagymáté and Kiss 2018; eas 2021;
Yi, Zhou, and Xu 2021), focusing primarily on optical-based
methods. Both marker-based and camera-based tracking ap-
proaches have achieved high accuracy. The main objective
of these tasks is to reconstruct the 2D/3D pose and global
translation of the human body. However, because of the di-
versity in body shapes, the reconstructed pose is often ex-
pected to be compatible with the individual’s shape. Target-
ing parametric body models, many researchers also consider
shape estimation as one of the goals of motion capture. For
example, using images and videos, (Kocabas, Athanasiou,
and Black 2020; Wang and Zhang 2023; ?) extract human
body shape information from visual data, enabling motion
capture for various body shapes.
Although effective, optical-based methods are highly depen-
dent on cameras and require carefully adjusted surround-
ings. In recent years, motion capture using wearable sen-
sors has gained widespread attention due to its advantages

in portability and lower cost. Compared to camera-based
systems, inertial motion capture is not restricted by envi-
ronmental factors such as lighting and occlusion. Such ap-
proaches use only six IMU sensors attached to key body
parts (legs, arms, head, and waist) to track human motion
in real time.
However, in a lack of real-world data, state-of-the-art sys-
tems are mostly trained on synthesized IMU data from a
template-shaped human body with SMPL parameters. We
observed that although they are able to perform efficient
motion tracking on many adult subjects, their accuracy
in pose and translation significantly decreases when ap-
plied to subjects that differ greatly from the template shape
(such as small children). This problem occurs especially in
acceleration-dominated poses, e.g., raising hands or legs, for
when performing the same poseure, different-sized charac-
ters demonstrate very similar joint orientations.
We assume that with the same pose (joint rotation), the IMU
measured orientation is also the same for different body
shapes. Thus, 1) by ”correcting” IMU measured acceler-
ations, we can estimate the pose for any given body shape.
For translation regressing, we follow the baseline method in
(Yi et al. 2022) and (Yi, Zhou, and Xu 2024) by estimating
joint velocities and foot-ground contact probabilities and ap-
ply a physics-based motion optimization. In this process, 2)
estimated template-body velocities need to be restored to the
target body shape and on top of the recovered pose and ve-
locity, 3) various-shaped subjects call for a size-aware phys-
ical optimization technique to ensure the physical correct-
ness of captured motion.
To this end, we propose Physical Shape-aware Poser (PSP),
the first sparse IMU real-time motion capture solution that
can handle subjects with various body shapes. To address
1) and 2), we propose a learning-based kinematic signal re-
targeting method. This algorithm is for estimating template-
shaped acceleration from target-shaped acceleration, and in
reverse, target-shaped joint velocity from template-shaped
velocity. Since the human body shape expressed in weighted
models such as SMPL is often a parameter from a PCA la-
tent space, its representational range is limited to the latent
space composed of adult subjects. We scale the human skele-
ton in AMASS to obtain bodies shaped differently from the
parametric space. Then, by adding physical constraints to
the global translation, we obtained motion of the scaled hu-



man bodies, along with the ”unscaled” AMASS motion data.
We train our data retargeting model on this dataset. To ad-
dress 3), we utilize proportional derivative(PD) rules on a
shape-aware dynamic model. Compared to previous meth-
ods, our PD controller takes shape-differed joint positions
into consideration and is able to perform optimization on
various-shaped subjects.
To validate the effectiveness of our method, we collected
a real-world dataset from 3 subjects with heights 139cm,
153cm and 180cm. Experimental results demonstrate that
our method is applicable to various body sizes and signif-
icantly outperforms state-of-the-art solutions in terms of ac-
curacy on both synthesized and real data. In summary, our
main contributions are as follows.

• Physical Shape-aware Poser (PSP): The first real-time
motion capture solution using sparse IMU that achieves
motion tracking of various-sized subjects, from small
kids to adults.

• A learning-based method to convert human motion data
(e.g., joint acceleration and velocity) between a template-
shaped adult body and human bodies with various sizes.

• A shape-aware physical optimization strategy that re-
covers physically plausible motion from different-shaped
human motion data, which also improves translation ac-
curacy significantly.

Related Work
Optical-based Motion Capture
Optical-based motion capture has a long history in research.
Commercial-level systems like (Point 2011; Nagymáté and
Kiss 2018), use multiple cameras and dense marker points to
achieve the golden standard human mocap. With the rapid
development of deep learning, studies such as (Sun et al.
2019; Kocabas et al. 2021; Zhao et al. 2024) based on single
camera input have made remarkable progress. Using RGB-D
data (Kehl et al. 2016; Yu et al. 2021) and multiple view im-
ages (Wu et al. 2021; Ye et al. 2022; Zhang et al. 2021) has
also been a research focus in this task. Furthermore, motion
tracking studies often use parametric 3D human body mod-
els (Loper et al. 2023; Pavlakos et al. 2019) as output target,
as capturing statistics of human shape from images(Wang
and Zhang 2023; Xu et al. 2020) or videos (Zhang et al.
2023; Kocabas, Athanasiou, and Black 2020) can result in
not standard but various shaped target avatars when repre-
senting different subjects.
However, the above methods all rely on cameras. Although
optical methods have become the golden standard for human
motion capture, their cost and experimental environment re-
quirements make them unsuitable for everyday life.

Motion Tracking from Sparse IMUs
IMU sensors can be used to measure acceleration and rota-
tion. Due to their portability and independence from cam-
eras, IMU-based motion capture solutions have received
widespread attention in recent years. Von Marcard et al.
(2017) proposed a method using six IMUs for motion cap-
ture, but it operates offline and is not suitable for real-time

applications. Huang et al. (2018) developed a method us-
ing bidirectional RNNs to reconstruct human body posture
in real-time with six IMUs, although it only estimates local
pose without considering global translation.
To achieve real-time motion capture, Yi, Zhou, and Xu
(2021) introduced the TransPose model, which captures both
human pose and global translation simultaneously. An ex-
tended version of this system was later proposed by Yi
et al. (2022), incorporating a physical dynamics optimiza-
tion module to enhance motion capture accuracy and ensure
physical plausibility of motion. By introducing a dual PD
controller, PIP is able to gain global control of the character
and is the first to leverage explicit physics-based optimiza-
tion into spare IMU-based motion capture. However, this
technique only works on a template-shaped character. Not
long after, Jiang et al. (2022b) demonstrated the application
of Transformers for motion capture using sparse IMUs, also
generating terrain maps during the motion process. Some
studies also focus on practical application. For instance, Zuo
et al. (2024) introduce a loose-wear jacket with IMU in-
tegrated for wearing comfortableness. In VR/AR domains,
researchers such as Jiang et al. (2022a) and Ponton et al.
(2023) use IMUs in VR devices to track human movement.
Most recently, to cope with undeterministic acceleration
measurements, Yi, Zhou, and Xu (2024) introduced non-
inertial root frame and fictitious force modeling in inertial-
based motion capture.
Although these approaches show great potential in the task
of inertial-mocap, when the mocap target body shape differs
from the adult body shape used in training, the estimating
error becomes apparent. Additionally, for algorithms with
a physical optimization strategy, the proposed technique is
also limited to a template-shaped character.

Plan
Our main contributions are as described in the Introduction
section. Our proposed plan include various-shaped motion
tracking data synthesize, design and training of our motion
data retargeting neural network and our shape-aware physi-
cal optimization strategy.
We also plan to conduct thorough experiments as follow:

• Comparision with state-of-the-art (Yi et al. 2022; Yi,
Zhou, and Xu 2024) on both synthesized data and real-
world data of our own collecting using the noitom PN
studio system.

• Evaluation on our main modules acceleration retargeter
and velocity retargeter, as well as the physical optimiza-
tion module.

• Other related experiments.

Method
Our goal is to estimate real-time human motion from 6 In-
ertial Measurement Units (IMUs) placed on the leaf joints
(forearms, lower legs, head) and the root joint (pelvis). The
inputs to our system are IMU measurements including ac-
celerations, angular velocities, and orientations. We also in-
put subject height to obtain human shape information in the



Figure 1: Pipeline of our method: input IMU signals of a non-SMPL shaped human body(e.g. a child), are first retargeted to
SMPL-space IMU measurements. Then, the global motion estimator based on PNP estimates local pose, foot-ground contact
probability and joint velocity of the template SMPL body. A second retargetor Rv is applied to transform the estimated velocity
back to target body shape. Our shape-aware motion optimitzer utilizes a dynamic model corresponding to the target human
body to obtain physically corrected motion.

process. The output of our system are the local pose and
global movements. In the following, we first introduce our
learning-based motion signal retargeter and then explain our
shape-aware physical optimazation module. See Fig. 1 for
an overview.

Leaning-based Kinematic Signal Retargeting
Shape-aware Nerual Retargeter Consider two individu-
als with significantly different body sizes (an adult and a
child), we can divide their joint kinematic data into two cat-
egories: rotation-related signals and position-related signals.
When performing the same pose, rotation-related signals are
also the same, such as angular velocity and leaf IMU orienta-
tion. However, due to their difference in skeleton, position-
related signals such as joint velocity and acceleration will
vary. When feeding the IMU input of a child to state-of-the-
art networks trained on adult data, the estimated motion in-
evitably exhibits error. To address this issue, we first use an
RNN-based kinematic signal retargeting network to regress
the input position-related signal(IMU accelrations) to the
corresponding acceleration for the template SMPL body that
produces the same local pose. Input of this network Ra, is
the target subjects’ IMU acceleration and shape feature. The
input to Ra consists of the IMU accelerations a ∈ R6×3 and
the target human shape b ∈ R23×1: as = Ra(at,b). Where
b is the length vector of the 23 bones in the SMPL body
model, t and s denote the target and SMPL. We compute the
target body shape vector by adding a scale to the template
SMPL body computed with the height input:

Bone =

(
height

heights

)
·Bones (1)

Next, using the IMU input angular velocities and rotations,
along with the regressed template-shaped accelerations, we
first transform these global coordinates to the root joint co-
ordinate system. For IMU data that do not contain shape in-
formation, we split the motion reconstruction task into local
pose estimation and global translation estimation, as in pre-
vious works.

For local pose estimation, we first apply a neural auto-
regressive estimator that learns the physically correct ficti-
tious forces arising from modeling the non-inertial human
root’s coordinate frame, and outputs the fictitious force ac-
celeration afic, following (Yi, Zhou, and Xu 2024). Fol-
lowing (Yi, Zhou, and Xu 2021; Yi et al. 2022; Yi, Zhou,
and Xu 2024), we first estimate leaf joint positions pRL,
then all joint positions, and finally all joint rotations. This is
achieved through three Long Short-Term Memory (LSTM)
recurrent networks with jump connections on the IMU input.
The resulting joint rotations correspond to the local pose,
which is the same for both the SMPL body and the target
human body.

For global translation estimation, we follow (Yi et al.
2022; Yi, Zhou, and Xu 2024) to regress joint velocities
and foot-ground contact probabilities. However, while body
shape changes do not affect foot-ground contact, joint veloc-
ities differ for individuals with different bone lengths. A sec-
ond shape-related kinematic signal retargeting network Rv

is used to regress the predicted joint velocities for a SMPL-
template human model back to the joint velocities of the tar-
get body shape, as shown in Figure 1. Symmetrically to Ra,
the input to velocity retargeter is vsR

24∗3, Bone, and the
output is the target human’s joint velocities vsR24∗3.

Training Data Synthesize To train our kinematic signal
retargeters, we need motion data of SMPL-shaped adults
and paired motion data of various-shaped bodies. We ac-
quired the former from AMASS dataset whereas the lat-
ter requires synthesization. AMASS dataset contains motion
data for adults and their corresponding SMPL body shapes,
which is used to train state-of-the-art methods as well as out
pose estimator. To enrich body shapes, we scale the original
AMASS adult skeletons within a range of 0.5 to 1.2, result-
ing in skeletons with heights ranging from 0.8m to 2.0m,
covering a much wilder range of human bodies, including
preteen children. Next, to calculate global translation of the
scaled bodies, we add physical constraints based on the fol-
lowing conditions. In any given motion frame i, velocity of



the ground-contact point ∆vi:

∆vi = vi − vi−1 (2)

where
vi = FK(Bone, posei) (3)

and we calculate the root joint translation trani by adding
translation of frame i to the original translation trani−1.
However, when there is no detected foot-ground contact, we
use ground truth translation to calculate root joint velocity,
and

trani = trani−1 +∆tranGT
i (4)

Note that this ensures, in actions where both feet are off
the ground, the root joint acceleration follows physical laws
(e.g., when jumping into the air, MMM and SSS should land
at the same time with the root node acceleration equal to
gravity, meaning they should jump to the same height). This
does not prevent the motion data we generate from being vi-
sually reasonable and suitable for training motion tracking
algorithms.

For foot-ground contact (global movement), we select two
mesh vertices on both feet of the SMPL model, located at
the toe and heel positions. If the movement distance of one
vertex in a frame is less than 0.5cm, we consider the joint
to be in contact with the ground (global rest position).In this
way, we obtain motion data for bodies with different shapes
in the AMASS dataset.

The IMU data simulation follows the PNP data generation
method, by simulating the raw signals, including the acceler-
ations, angular velocities, and magnetic field measurements,
and employing the IMU fusion algorithm utilizing the error-
state Kalman Filter.

Shape-aware Physics Model
We use the dynamics module to explicitly apply the physi-
cal constraints following PIP, in order to obtain the motion,
internal joint torques, and ground reaction forces that align
with the reference but also satisfy physical constraints. Input
of the physics module is local pose, foot-ground contact pre-
dicted by motion estimator and target-shaped joint velocity
output from Rv . However, the dynamic model used in pre-
vious works are based on a single human model proposed
in Physcap. This directly leads to the fact that the greater
the difference between the target body shape and the model,
the more inconsistent the calculated translation will be. To
address this, we propose a shape-aware dynamic model and
kinematic model initialized by Bone.

Our joint rotation controller computes the desired joint
angular acceleration des from the estimated reference joint
rotations using:

θdes = kp (Eθ − φ)− kd θ̇ (5)

Where and are the current joint angles and angular veloci-
ties; E(·) transforms the reference pose to local Euler angles;
kp = 2400 and kd = 60 are the gain parameters.

Joint position controller utilizes the proposed shape-
aware kinematic model and follows (Yi et al. 2022) in dy-
namic state updating.

Experiments
In this section, we present the implementation details. We
then compare our method with state-of-the-art in motion
capture from sparse IMUs and evaluate the key contributions
of our method.

Implementation Details

Networks Our method incorporates 8 neural networks, in-
cluding 2 recurrent networks for kinematic signal retarget-
ing, 5 recurrent networks for local pose and global mo-
tion estimation following (Yi et al. 2022) and 1 fully con-
nected network for the fictitious force estimator following
(Yi, Zhou, and Xu 2024) The kinematic signal retargeters
each contains 4 layers with a hidden width of 512, activated
by ReLU, and optimized by the Adam optimizer. We train
our retargeting networks on a windows PC with NVIDIA
RTX 4090D graphics card.

Hardware and Performances For real world data collect-
ing, we use noiton PN studio system with 17 IMUs. Our
framework is implemented in Pytorch and the physics-based
optimization is implemented using Rigid Body Dynamic Li-
brary (RBDL). Our live demo also uses noitom Perception
Neuron series IMUs.

Comparisions

We compare our method with the state-of-the-art works in
motion capture from sparse IMUs including PIP(Yi et al.
2022) and PNP(Yi, Zhou, and Xu 2024). When evaluating
local pose accuracy, we align the root joint position and ori-
entation with the ground truth, and use the same metrics as
in (Yi, Zhou, and Xu 2021; Yi et al. 2022; Yi, Zhou, and Xu
2024), including:

• SIP Error (°): the global rotation error of hips and shoul-
ders.

• Angular Error (°): the global rotation error of all joints.

• Positional Error (cm): the position error of all joints.

• Mesh Error (cm): the vertex error of the posed SMPL
meshes.

• Jitter (103m/s
3): the average jerk of all joints w.r.t. the

world.

The pose comparison results are presented in 1. Our
method consistently outperforms previous works in pose
accuracy on both synthesized dataset DanceDB and the
real world data of our own collection. Note that we also
report results of (Yi et al. 2022) on the unscaled adult
DanceDB dataset, which demonstrate that state-of-the-art
baseline methods are able to perform motion reconstruction
as long as subjects are SMPL-shaped adults. This also shows
the effectiveness of our motion data retargeting networks.
We show qualitative comparison results in Fig.2, selected
poses are all from non-SMPL subjects. Our method is visu-
ally the most accurate over all the methods.



Table 1: Comparison with state-of-the-art on the synthesized DanceDB dataset (DanceDB*) with non-SMPL shaped subjects
and a real dataset of our own collection (PSP dataset). We also report the performance of PIP on the original DanceDB dataset.

Method SIP Error (deg) Angle Error (deg) Joint Error (cm) Vertex Error (cm) Jitter Error (km/s3)

PSP Dataset (height 153cm)

PIP 13.84 7.48 4.54 5.29 0.11
PNP 13.51 9.64 5.17 6.09 0.10
PSP (ours) 12.76 7.44 4.43 4.78 0.12

DanceDB* (height 100cm-120cm)

PIP 15.82 10.93 7.03 8.23 0.47
PNP 12.85 9.39 5.64 6.64 0.58
PSP (ours) 12.32 8.67 5.24 6.09 0.47

DanceDB (adults over 165cm)

PIP 11.79 8.27 4.98 5.82 0.43

Figure 2: Qualitative comparisons with prior works. The ex-
amples are picked from DanceDB* dataset.

Table 2: Ablation study on retargeting networks (R) and
shape-aware physics model (P) on PSP dataset.

Method Angle Err Joint Err Vertex Err Jitter
PNP(baseline) 9.64 5.17 6.09 0.10
PNP w/ R 9.36 4.53 5.04 0.11
PNP w/ R&P 7.44 4.43 4.78 0.12

Evaluations

Shape-aware Motion Signal Retargeting In Fig.3 we
evaluate our shape-aware motion signal retargeting by visu-
alizing accelration data input and output of Ra. (a) demon-
strates the difference in IMU input of an adult and a child
when performing the same pose and, thus, necessary to uti-
lize our network before using baseline methods. The latter
three figures show the output of Ra compared to the SMPL-
shaped accelerations. In figure (b), the output as is obviously
close to the ground truth accelrations. We also show a more
clear comparison by separate the two signals in (c) (ground
truth) and (d) (as).

Figure 3: We demonstrate 4 figures of acceleration
over time. (a): Root joint IMU acceleration data of
adult(DanceDB, blue) and child(DanceDB*, orange); (b):
Our acceleration retargeting results(orange) and original
SMPL-body accelerations(blue) of root IMU Y-axis; (c) and
(d): X axis of acceleration in (b). The examples are picked
from DanceDB*.

Shape-aware Physics Model In Tab.2 , we show ablation
study results on the real-world PSP dataset. We use PNP
without its physics model as our motion estimator. Note
that although our retargeting networks decrease joint error
greatly, our shape-aware physics model has a significant ef-
fect on angular errors. We attribute this to our shape-aware
dynamic model.

Conclusion We address the issue of non-SMPL shaped
human motion tracking with sparse inertial sensors. We pro-
pose to use two separate learning-based motion signal re-
targeting networks before and after performing motion es-
timation. Additionally, we designed a shape-aware motion
optimization technique to replace the physics model used
in prior works. Our proposed PSP method outperforms the
state-of-the-art in pose accuracy on both synthesized dataset
and a real-world dataset of our own collection.
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