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Abstract
Plant disease identification is crucial for ensuring crop
health and improving agricultural productivity. How-
ever, existing models often require substantial com-
putational resources, limiting their applicability in
resource-constrained environments. In this paper, we
use VanillaNet-5, a lightweight and efficient deep learn-
ing model designed for plant disease classification. The
model leverages a minimalist architecture, combining
deep training and series activation to optimize both
performance and computational efficiency. Experimen-
tal results on the PlantDoc dataset demonstrate that
VanillaNet-5 achieves an accuracy of 54.237% and an
F1 score of 0.429, outperforming traditional models like
MobileNetV3-L and ResNet50 in terms of both accu-
racy and latency. The proposed model offers a practical
solution for real-time, large-scale plant disease monitor-
ing, particularly in field conditions where computational
resources are limited. This work contributes to the ad-
vancement of smart agriculture by providing an efficient
and scalable framework for plant disease detection.

Introduction
Agriculture, as the foundation of human civilization,
plays a pivotal role in ensuring food supply, fostering
employment, and driving economic growth. As a cor-
nerstone of the global economy, the health of crops di-
rectly impacts food security and agricultural productiv-
ity. However, the widespread occurrence of plant dis-
eases and pests significantly hampers crop growth and
yield, posing a severe threat to agricultural production.
According to the Food and Agriculture Organization
(FAO), up to 40% of global crop yields are lost annu-
ally due to pests and diseases. Consequently, the devel-
opment of efficient and automated plant disease identi-
fication technologies is critical for enhancing crop pro-
tection, ensuring food security, and promoting sustain-
able agricultural practices (Xu et al. 2023).

Traditional methods for plant disease diagnosis heav-
ily rely on human expertise and experience. While these
methods are often accurate, they are time-consuming,
costly, and impractical for large-scale, real-time agri-
cultural monitoring and management. In recent years,
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advancements in artificial intelligence (AI), deep learn-
ing (DL), and computer vision (CV) have paved the way
for automated approaches to detecting crop diseases
through image analysis. Among these technologies,
models such as Convolutional Neural Networks (CNNs)
and Vision Transformers (ViTs) have demonstrated out-
standing performance in computer vision tasks like
image classification and object detection (Dosovitskiy
et al. 2021). By training these models on large datasets
of crop disease images, they can learn feature patterns
and achieve high-precision classification of various dis-
ease types, thereby significantly improving the accuracy
and efficiency of plant disease identification (Chang
et al. 2024). Furthermore, research leveraging multi-
modal data, such as images, climate, and soil infor-
mation, to enhance recognition performance is rapidly
advancing. These technologies not only enable cost-
effective identification but also integrate seamlessly
with mobile devices and drone systems, greatly enhanc-
ing the efficiency of disease monitoring.

However, despite these advancements, several chal-
lenges remain. Leaf images captured in natural environ-
ments are often subject to various noise factors, and the
deployment of deep learning models in real-world agri-
cultural settings is still difficult (Mingyue Shao 2022).
This paper aims to design and implement a lightweight
and efficient model for leaf disease identification using
VanillaNet (Chen et al. 2023). This research offers sev-
eral key contributions:

• Developed a lightweight network architecture for
crop disease recognition. This work addresses the
limitations of data and computational resources
commonly encountered in complex natural environ-
ments.

• The proposed approach promotes the automation
and intelligence of leaf disease identification, con-
tributing to more efficient and scalable agricultural
solutions. Through these efforts, we aim to provide
an effective and practical solution for smart agricul-
ture, addressing the pressing challenges in disease
management.



Figure 1: Vanillanet architecture for classification of leaf disease.

Related work
Crop disease recognition has evolved significantly over
the years, transitioning from traditional machine learn-
ing approaches to advanced deep learning-based mod-
els.

Traditional Machine Learning Approaches: Tradi-
tional machine learning methods for crop disease iden-
tification often rely on handcrafted feature extraction
combined with classifiers such as Support Vector Ma-
chines (SVMs), Random Forests (RFs), and K-Nearest
Neighbors (KNNs). These techniques extract features
like color, texture, and shape to classify and detect dis-
eases. SVMs are particularly effective in handling small
datasets and high-dimensional data, while RF, as an en-
semble method, improves stability and accuracy by in-
tegrating multiple decision trees (Rodrı́guez-Lira et al.
2024). However, these methods heavily depend on the
quality of the handcrafted features and the effectiveness
of feature extraction. Additionally, the diversity of dis-
ease samples and environmental variations in natural
settings limit the generalization performance of these
models.

PlantDoc solutions: Recent studies have made sig-
nificant progress in PlantDoc dataset detection and dis-
ease recognition. Cascade-DETR (Ye et al. 2023) im-
proved detection accuracy by introducing Cascade At-
tention and IoU-aware Query Recalibration, enhancing
localization performance in plant detection tasks. BIO-
CLIP (Stevens et al. 2024) utilized biological taxon-

omy information to learn finer-grained visual features,
improving accuracy on the PlantDoc dataset. AgriDet
(Pal and Kumar 2023) proposed a framework that com-
bines image preprocessing, a multivariable grabbing al-
gorithm, and an improved INC-VGGN neural network
to effectively extract and classify plant diseases from
complex backgrounds.

Deep Learning Approaches: Deep learning-based
image recognition has revolutionized crop disease de-
tection by automating feature extraction, significantly
enhancing efficiency and accuracy (Wanjie Liang,
2023). Convolutional Neural Networks (CNNs) and Vi-
sion Transformers (ViTs) have been widely employed
to process large datasets, achieving state-of-the-art per-
formance in precision agriculture (Wanjie Liang 2023).
These approaches enable timely interventions, effec-
tively mitigating crop losses. For instance, GSMo-CNN
adopts a multi-task prediction framework that lever-
ages hierarchical classification to improve disease and
species identification (J. P. S. Schuler 2022).

To address the limitations of deep learning in
resource-constrained environments, lightweight mod-
els have gained significant attention. Wang Chunshan
et al. proposed a multi-scale residual module-based
model by adjusting the connections of residual layers
and decomposing large convolution kernels, resulting
in a lightweight and efficient disease recognition sys-
tem (Chunshan Wang 2020). Saleem et al. demonstrated
the superior performance of Xception, which achieved
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Figure 2: Four images of the Plantdoc.

a 99.81% accuracy on the PlantVillage dataset by inte-
grating Adam optimization for enhanced performance
(Saleem, Potgieter, and Arif 2020). De Ocamop and
Dadios employed MobileNet for disease classification,
showcasing its ability to handle small datasets effec-
tively while maintaining high classification accuracy
(Ocampo and Dadios 2018). MobileNet’s compact ar-
chitecture ensures suitability for scenarios with limited
computational resources.

Despite these advancements, several challenges per-
sist. First, the complexity of natural environments, in-
cluding backgrounds with soil, weeds, and shadows, of-
ten obscures disease symptoms, making accurate iden-
tification difficult. Variations in lighting conditions and
camera angles further complicate symptom recognition
by altering leaf color and texture (Singh et al. 2020).
Second, the diversity of plant diseases poses generaliza-
tion challenges, as the same disease may present differ-
ent symptoms across plant species and growth stages.
Finally, deploying deep learning models in agricultural
settings is constrained by the need for substantial com-
putational power and large datasets, limiting access for
smallholder farmers. These challenges underscore the
need for lightweight, efficient models that perform reli-
ably in diverse and resource-constrained environments.

Methods

This section presents a architecture for classification
of leaf disease, illustrated in Figure 1. Initially, the in-
put image undergoes a series of data augmentation pro-
cesses to enhance the robustness of the model. These
processes include techniques such as Color Jitter Auto
Augment, which randomly adjusts the brightness, con-
trast, saturation, and hue of the images; interpolation,
which is used to resize or transform images while main-
taining their quality; and Random Erasing, which in-
volves randomly erasing a portion of the image to
simulate occlusions. Following these augmentations,
the image is subjected to feature extraction using the
VanillaNet-5 network from (Chen et al. 2023). The
extracted features are then fed into a fully connected
layer, which serves as the final step in the classification
pipeline, producing the classification outcomes.

Data augmentation

In this work, we incorporate several data augmentation
techniques to enhance the robustness and generaliza-
tion ability of our plant recognition model. We apply
color jittering to introduce random variations in bright-
ness, contrast, saturation, and hue, allowing the model
to become invariant to changes in lighting conditions.
Additionally, AutoAugment is utilized, an automated
augmentation policy search method that combines mul-
tiple transformations such as rotation, translation, and
shearing to optimize performance. Random erasing is
also employed, where a random rectangular region of
the image is replaced with a constant value, encourag-
ing the model to focus on diverse visual features rather
than memorizing specific areas of the image. To han-
dle images of varying resolutions, different interpola-
tion methods are used during resizing, ensuring that the
model is capable of dealing with multiple input image
qualities. Finally, random resized cropping is applied to
vary the scale and aspect ratio of the images, making
the model robust to changes in object size and posi-
tioning. These augmentation strategies collectively in-
crease the diversity of the training data, contributing to
improved generalization and performance in real-world
plant recognition tasks.

Network architecture

VanillaNet-5 is designed with a minimalist approach,
emphasizing simplicity and efficiency. The network’s
architecture is composed of several key components:
an initial stem layer that features a 4 × 4 convolution
with a stride of 4 for preliminary feature extraction, fol-
lowed by Batch Normalization and a LeakyReLU acti-
vation function. Subsequently, the stem 2 layer consists
of a 4× 4 convolution and a Series activation function,
also followed by Batch Normalization. The main body
of the model is structured into three repeating stages,
each containing a 1 × 1 convolution, LeakyReLU ac-
tivation, another 1 × 1 convolution, Batch Normaliza-
tion, and a Series activation function, culminating in a
MaxPool layer to reduce the spatial dimensions of the
feature maps. This design aims to reduce model com-
plexity while maintaining high performance.



Table 1: Comparison on PlantDoc. Latency is tested on Nvidia 3090-Ti GPU with batch size of 1.

Model Params(M) FLOPs(G) Latency(ms) Acc(%) F1

MobileNetV3-L 4.24 0.22 1.77 42.797 0.382
Vgg19 139.68 19.63 4.11 33.475 0.216
Resnet50 23.56 4.10 2.01 52.542 0.492
Resnet101 42.56 7.82 3.68 52.119 0.478
Swin-B 86.77 15.46 5.04 34.322 0.188
PVTv2-B0 3.42 0.57 1.90 37.288 0.208
VanillaNet-5 17.34 8.46 1.02 54.237 0.429
VanillaNet-6 51.13 10.12 1.28 47.881 0.392
VanillaNet-8 60.19 13.51 1.61 37.712 0.312
VanillaNet-10 77.20 16.85 1.83 29.661 0.210

Table 2: Ablation study on VanillaNet-5

Model Deep train. Series act. Acc(%) F1

VanillaNet-5
✓ 15.678 0.094

✓ 35.169 0.210
✓ ✓ 54.237 0.429

Deep Train
VanillaNet-5 employs a training strategy that combines
deep training with shallow inference, optimizing both
performance and computational efficiency. During the
training phase, the network incorporates two convolu-
tional layers with an activation function LeakyReLU.

LeakyReLU(x) =

{
x if x ⩾ 0

λ× x else
(1)

To adaptively tune the model’s learning dynamics, we
define a parameter λ, representing the negative slope of
the LeakyReLU activation, as a function of the current
training epoch e and the total number of deep training
epochs E. Specifically, λ = e

E , allowing λ to gradu-
ally increase as training progresses. This dynamic ad-
justment encourages a smoother learning curve by bal-
ancing the network’s responsiveness to negative inputs
throughout the training process.

At the end of the training phase, the two convolu-
tional layers, along with their learned weights and bi-
ases, can be merged into a single convolutional layer.
This merging process simplifies the network structure
for inference, significantly reducing the computational
overhead while maintaining the accuracy achieved dur-
ing deep training. As a result, VanillaNet-5 achieves
an efficient deployment model suitable for resource-
constrained environments, without compromising on its
capacity to learn complex data representations.

Series activation
Additionally, VanillaNet-5 introduces a Series activa-
tion function, which involves stacking multiple activa-
tion functions in parallel to significantly boost the net-
work’s non-linear expressive power. This approach al-
lows the network to learn more complex representa-
tions during training. In the inference phase, the model

simplifies the use of activation functions to facilitate
faster and more efficient inference, making it suitable
for deployment in resource-constrained environments.
This design philosophy enables VanillaNet-5 to achieve
a balance between performance and efficiency, demon-
strating its potential for real-world applications.

In the context of neural networks, consider a single
activation function applied to an input x, denoted by
A(x), which may correspond to standard functions such
as ReLU or Tanh. The concept of stacking instances of
A(x) in parallel can be mathematically represented as:

As(x) =

n∑
i=1

aiA(x+ bi) (2)

Where n denotes the number of stacked activation func-
tions, and ai and birepresent the scale and bias param-
eters of each activation, respectively. These parameters
are introduced to prevent simple accumulation effects
and ensure better control over the activation outputs.

Experiments
This section presents the experimental results of the
proposed palnt disease identification model on the
Plantdoc dataset. Ablation study is provided to inves-
tigate effectiveness of each component of the proposed
model.

Experimental Setup and Evaluation Indicators
The experiments were conducted on an NVIDIA
GeForce RTX 3090 Ti GPU with Ubuntu 20.04, using
PyTorch 1.12. The system features a 12th i9-12900K
CPU and 32GB of RAM, providing adequate resources
for large datasets and complex models.

The experiments use the accuracy rate (Acc) as an
evaluation index, which indicates the ratio of the num-
ber of correctly recognized samples to the total number



of samples, and the specific formula is shown in Eq.
(3). In addition, this paper uses the F1 score as a com-
plementary metric, which combines precision (P) and
recall (R) into a single value, providing a balanced mea-
sure of a model’s performance.

Acc =
TP + TN

TP + TN + FP + FN
(3)

P =
TP

TP + FP
(4)

R =
TP

TP + FN
(5)

F1 = 2× P ×R

P +R
(6)

where TP is the number of true positives, TN is the
number of true negatives, FP is the number of false
positives, and FN is the number of false negatives.

Plantdoc dataset
The PlantDoc dataset is a highly valuable resource for
visual plant disease detection, making it particularly
suitable for real-world applications. With 2,598 im-
ages across 13 plant species and 17 disease classes,
the dataset has been meticulously annotated, requiring
around 300 hours of human effort. Unlike more con-
trolled, laboratory-based datasets, PlantDoc emphasizes
real-world conditions by providing images captured in
diverse field environments. This characteristic offers a
more accurate representation of plant disease in prac-
tical, outdoor settings, where variables such as light-
ing, weather, and background noise can influence the
appearance of plant diseases. By using this dataset, we
ensure that our model is better equipped to handle the
challenges of real-world deployment, where conditions
often vary significantly from those in controlled exper-
iments. Figure 2 shows four images from the PlantDoc
dataset, highlighting its diversity and relevance for field
applications.

Comparison with other networks
This section compares the performance of different
variants of VanillaNet with other CNNs and ViTs
on the PlantDoc dataset, where none of the mod-
els used pre-trained weights. Among the VanillaNet
variants, VanillaNet-5 performs the best, achieving
54.237% accuracy and an F1 score of 0.429. It strikes
a good balance between performance and computa-
tional efficiency, with 17.34 million parameters, 8.46
GFLOPs, and a latency of 1.02 ms, outperforming both
MobileNetV3-L and ResNet50.

As the depth of VanillaNet increases, performance
declines. VanillaNet-6 achieves 47.881% accuracy,
VanillaNet-8 reaches 37.712%, and VanillaNet-10 per-
forms the worst with 29.661% accuracy. These results
suggest that deeper models may suffer from overfitting
or diminishing returns on this dataset, and their perfor-
mance might also be impacted by higher latencies.

In comparison with other CNNs and ViTs,
VanillaNet-5 offers competitive performance with
fewer parameters than ResNet50 (23.56M parameters)
and other deeper models, while also maintaining a
lower latency (1.02 ms vs. 2.01 ms for ResNet50).
This makes VanillaNet-5 an efficient choice for plant
recognition tasks, particularly when computational
resources and inference time are constraints.

Ablation study
The ablation study evaluates the impact of deep training
and series activation on VanillaNet-5’s performance. As
shown in Table 2, when only series activation was used,
the model achieved poor performance with 15.678% ac-
curacy and an F1 score of 0.094. Using deep training
alone improved the performance to 35.169% accuracy
and an F1 score of 0.210. However, the best results were
obtained when both deep training and series activation
were applied together, reaching 54.237% accuracy and
an F1 score of 0.429. These results confirm that combin-
ing both strategies significantly improves the model’s
performance, demonstrating their importance for effec-
tive plant recognition.

Conclusion
In this paper, we proposed VanillaNet-5, a lightweight
and efficient model for plant disease identification, de-
signed to operate effectively in resource-constrained
environments. Experimental results on the PlantDoc
dataset demonstrated that VanillaNet-5 achieved com-
petitive performance, with an accuracy of 54.237% and
an F1 score of 0.429, outperforming other models in
both accuracy and computational efficiency. The ab-
lation study highlighted the importance of combining
deep training and series activation in optimizing model
performance. This work provides a practical solution
for automated plant disease detection, offering a bal-
ance between performance and resource efficiency, and
paving the way for future advancements in smart agri-
culture.
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