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Abstract

The reconstruction of complex time-varying fields from
sparse sensor observations is a fundamental challenge in
many real-world applications. This paper presents the adapta-
tion of the Senseiver framework, an attention-based model, to
the domain of fire prevention. The Senseiver excels in recon-
structing high-dimensional spatial fields from limited, sparse
data, making it well-suited for fire detection and monitoring
tasks, where sensor coverage is often sparse, and environmen-
tal conditions are highly dynamic. By encoding sparse sensor
data into a latent space using cross-attention, the Senseiver
generates accurate field reconstructions, facilitating efficient
inference and real-time fire prevention. Our model signifi-
cantly improves the detection and prediction of fire behavior
in large, complex environments, even with limited sensor ob-
servations. We demonstrate the effectiveness of the Senseiver
in fire prevention scenarios through experiments on synthetic
and real-world datasets, showing substantial advancements in
both accuracy and computational efficiency.

Introduction

Reconstructing complex, time-evolving fields from sparse
sensor observations is a critical and challenging problem
across multiple domains, including environmental monitor-
ing, natural disaster prediction, and public safety. Among
these applications, fire prevention and detection in large, dy-
namic environments, such as forests, industrial zones, and
urban areas, are particularly significant due to the poten-
tially catastrophic consequences of uncontrolled fires. Effi-
cient and real-time field reconstruction systems are essential
for early detection, precise localization, and effective inter-
vention.

Traditional computational methods for fire modeling,
such as those based on numerical simulations of physical
phenomena, often struggle with the sparse and noisy na-
ture of sensor data. The highly nonlinear dynamics of fire
spread and the influence of environmental factors such as
wind speed, topography, and fuel type further exacerbate
the complexity. These challenges demand innovative solu-
tions that can overcome data sparsity, reduce computational
overhead, and ensure accurate predictions over large-scale
domains.
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Recent advancements in machine learning, particularly
deep learning, offer a promising alternative for tackling
these challenges. Attention-based models, in particular,
have demonstrated the potential to efficiently process high-
dimensional data and extract meaningful features from
sparse observations. However, applying these methods to
fire prevention tasks remains underexplored, especially in
scenarios requiring both scalability and real-time perfor-
mance.

In this work, we adapt and extend the Senseiver frame-
work, an attention-based model originally designed for re-
constructing high-dimensional spatial fields from sparse,
low-overhead sensor inputs. The Senseiver leverages cross-
attention mechanisms to encode sensor data into a latent
space, enabling accurate and efficient reconstructions of
complex fields. This makes it particularly well-suited for
fire prevention tasks, where sparse sensor networks are com-
mon, and real-time simulation of fire dynamics is critical.

We present a customized adaptation of the Senseiver
framework designed to address the specific challenges of
fire dynamics, such as sparse sensor coverage and com-
plex boundary conditions. Our model demonstrates notable
improvements in both fire detection accuracy and predic-
tion efficiency, even when working with limited sensor data.
Through extensive evaluation on a simulated fire dataset, we
highlight its ability to generalize effectively across diverse
fire scenarios and varying environmental conditions.

Related Work

Reconstructing time-varying fields from sparse observations
has been a longstanding challenge in various domains, in-
cluding environmental monitoring, natural disaster predic-
tion, and public safety. In fire detection and prevention, this
challenge is especially pronounced due to the sparse and
noisy nature of sensor data, as well as the complex, non-
linear behavior of fires. Accurately modeling fire dynamics
requires handling these issues while also dealing with dy-
namic boundary conditions and unpredictable environmen-
tal variables. Over the years, several approaches have been
proposed to address these challenges, ranging from tradi-
tional simulation-based methods to more recent data-driven
strategies.



Simulation-Based Approaches: Limitations and
Advances

Early works in field reconstruction often relied heavily on
numerical simulations, particularly those based on partial
differential equations (PDEs), to model the physical phe-
nomena involved. These methods have long been the stan-
dard for modeling fire dynamics, using CFD-based tools like
the Fire Dynamics Simulator (FDS) (McGrattan et al. 2000),
which provides detailed, physics-based predictions of fire
and smoke behavior. However, while PDEs offer valuable
insights into fire dynamics, they are computationally ex-
pensive, especially when applied to high-dimensional, non-
linear problems. Furthermore, PDE-based models struggle
with the integration of real-time sensor data, as they require
highly detailed computational grids and significant compu-
tational resources.

To overcome some of these limitations, Physics-Informed
Neural Networks (PINNs) (Raissi, Perdikaris, and Karni-
adakis 2019) have been proposed, which integrate physi-
cal laws into the neural network training process. This al-
lows the network to learn solutions for both forward and
inverse problems involving nonlinear PDEs. While PINNs
show promise in incorporating physical knowledge into ma-
chine learning models, they remain computationally expen-
sive, particularly for high-dimensional, large-scale domains,
and struggle to handle sparse data or complex boundary con-
ditions common in real-world scenarios like fire detection.

Data-Driven Approaches: Deep Learning for
Sparse Data

In contrast to simulation-based methods, data-driven ap-
proaches, especially deep learning, have emerged as a pow-
erful alternative. These methods rely on learning patterns
directly from the available data, allowing for more flexi-
ble and scalable solutions. A notable early contribution is
Manohar et al. (Manohar et al. 2018), who leveraged the
low-rank structure of sensor data to optimize the placement
of sparse sensors. By exploiting known patterns in the data,
their approach efficiently balanced reconstruction accuracy
and sensor usage. However, this approach is limited in com-
plex, chaotic systems like 3D turbulence, which frequently
arise in fire dynamics, where high levels of nonlinearity and
multi-scale behavior are present.

Convolutional Neural Networks (CNNs) have also been
widely applied to spatial field reconstruction. Fukami et al.
(Fukami et al. 2021) proposed a method based on Voronoi
tessellation, which allowed flexible sensor placement and ef-
fective adaptation to different domains. This approach made
use of CNNs to refine field reconstructions by incorporating
observed sensor data. However, CNN-based methods face
significant challenges when scaling to large-scale, 3D envi-
ronments. High memory costs and the requirement for struc-
tured grids in CNNs limit their scalability, particularly in dy-
namic and irregular environments like fire propagation.

Attention Mechanisms: A New Paradigm for
Sparse Data Reconstruction

The advent of attention-based models has brought a signif-
icant breakthrough in the reconstruction of spatiotemporal
data. Attention mechanisms, particularly the Perceiver 10
model (Jaegle et al. 2021), have shown promising results
in efficiently processing large-scale, high-dimensional input
data. By utilizing cross-attention mechanisms, the Perceiver
IO model can map input data into a latent space, drastically
reducing the computational bottleneck traditionally associ-
ated with handling large datasets. The model’s ability to pro-
cess large inputs in a computationally efficient manner has
made it applicable to a wide range of domains, from image
processing to sensor networks.

However, despite its promise, the Perceiver 10 framework
can still be resource-intensive during training, which may
hinder its applicability for real-time applications such as
fire detection, where limited sensor data must be processed
quickly. Nevertheless, the scalability and flexibility offered
by attention models provide a significant advantage in the
field of sparse data reconstruction.

Residual Networks and Graph-Based Approaches

In addition to attention mechanisms, residual connections
have proven to be effective in improving the performance
of deep learning models for reconstruction tasks. Residual
networks help mitigate the vanishing gradient problem, al-
lowing for the training of deeper models that can capture
finer details in the data. This is particularly useful in prob-
lems like fire detection, where capturing subtle variations in
the field is crucial.

Graph-based approaches have also gained traction in han-
dling non-Cartesian grid data, such as in sensor networks de-
ployed in irregular environments. Graph Element Networks
(GENs) (Alet et al. 2019) provide a flexible framework for
working with sensor data that does not fit into traditional
grid-based structures. These methods allow for dynamic and
flexible sensor placements but often require the design of
an appropriate graph topology, which can add complexity
and necessitate extensive hyperparameter tuning. Despite
these challenges, graph-based methods have demonstrated
their utility in complex, dynamic environments where regu-
lar grid-based approaches, such as CNNss, are not viable.

Challenges and Limitations of Current Approaches

Despite significant advancements in both traditional and
data-driven approaches, several challenges remain in the
field of time-varying field reconstruction. A major limita-
tion is the computational efficiency of many models, partic-
ularly when dealing with large, high-dimensional datasets.
Many models, including PINNs, CNNs, and graph-based
methods, are computationally expensive, requiring signifi-
cant resources for training and inference. This makes their
application in real-time settings, such as fire detection on
mobile devices or drones, difficult.

Moreover, current methods often struggle with general-
ization to complex, dynamic systems such as fire dynamics.
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Figure 1: The Original Architecture of the Senseiver Model

The highly nonlinear and multi-scale nature of fire behav-
ior makes it challenging for existing models to accurately
predict fire dynamics from sparse and noisy sensor data.
Additionally, many methods rely on structured data inputs,
making them ill-suited for handling irregular or unstructured
data common in real-world sensor deployments.

Moving Forward: Towards More Efficient and
Scalable Models

As the need for real-time, efficient, and scalable fire de-
tection models grows, it is clear that new approaches are
needed. The Senseiver framework, which we introduce in
this work, builds upon the strengths of attention-based mod-
els while addressing the limitations of traditional methods.
By utilizing cross-attention mechanisms, sparse processing,
and an efficient encoding-decoding scheme, the Senseiver
is able to reconstruct complex fields with limited computa-
tional resources. We believe that this framework has the po-
tential to overcome the key challenges in fire detection and
other real-world applications, offering a more practical solu-
tion for sparse data reconstruction in dynamic environments.

Proposed Solution
Methods

The solution we propose is originally derived from Sen-
seiver(Santos et al. 2023). The primary goal of Senseiver is
to learn a compact representation of the system state from

a small set of sensor observations at a given time. This en-
coded representation can be used to decode the entire sys-
tem state from sensor data. The input to our model is a
collection of [N, sensor observations s; collected at time ¢,
S1,89, - - .,sNSt, where s; € RNT, and N; represents the
number of channels recorded by the sensors (e.g., temper-
ature is 1, and a 3D velocity vector is 3). The spatial do-
main of the system is €2, from which a set of sensor loca-
tions x1,T9,...,x N, are extracted, where z; € RNP . Tn
this paper, we use bold lowercase letters to represent vec-
tors, bold uppercase letters to represent matrices, and italic
uppercase letters to represent functions, and italic lowercase
letters to represent scalars. The workflow of Senseiver con-
sists of three main components: (1) a spatial encoder P&,
which maps the spatial coordinates x4 to a spatial encod-
ing array a, effectively encoding the precise n-dimensional
spatial position into a vector; (2) an attention-based encoder
&, which maps the spatial encodings a; and their values s;
to a latent matrix Z, which is a compressed representation
of the system at time ¢; and (3) an attention-based decoder
D, which outputs the reconstructed field value at any query
location x4, which is also represented through the spatial en-
coder. The process can be formulated as follows:

a; = Pg(xy) (D
Z = E(s,as) 2)
$(xq,t) = D(Z,a,) = D(Z, Pg(x,)) 3)

Attention Blocks Each attention block consists of three
main components: multi-head self-attention, multi-head
cross-attention, and a feedforward multi-layer perceptron.
To enhance the modeling capability, we introduce residual
connections and layer normalization between each attention
block.

Specifically, given the input sequence x1, x2, ..., £, and
the output H*~1) from the previous layer, the computation
of the [-th attention block is as follows:

H® = LayerNorm(H"~Y + MHA(H(~1)))

“)
= LayerNorm(H " + FEN(HWY))

where MHA represents the multi-head attention mechanism,
including both self-attention and cross-attention, and FFN
denotes the feedforward network. The residual connections
and normalization help to better preserve the input informa-
tion and enhance gradient flow, thereby improving the model
performance.

Latent Sequence To reduce the computational complex-
ity, we introduce a latent sequence z1, 22, ..., 2, to represent
the input, where £ < n, i.e., the length of the latent se-
quence is much smaller than the original sequence length.
The latent sequence is learned through a linear layer from
the original input z1, zs, ..., Tp:

- Tn) 4)

21,29, ..., 2k, = Linear(x, 22, ..



This bottleneck structure allows us to effectively compress
the input information and leverage the learned latent features
in the subsequent attention mechanism.

Position Encoding To preserve the position information
of the input sequence, we adopt the sinusoidal position en-
coding method. Specifically, for a given position ¢, the posi-
tion encoding PE(%) is computed as follows:

PE(i,2;) = sin(i/10000%7/%) (6)

PE(i,2j + 1) = cos(i/10000%7/4) (7)

where d is the dimension of the position encoding. This pe-
riodic position encoding can effectively capture the relative
position relationships within the sequence. We then add the
position encoding to the latent sequence as the final input to
the attention blocks:

H(O) :Zlsza"'azk+PE(ZlaZ27"'aZk) (®)

Modification

The main modification we made to the model was the ad-
dition of residual connections and normalization operations
between the attention blocks. These changes were aimed
at improving the model’s ability to learn more robust fea-
ture representations and facilitate better gradient flow during
training.

Together, we construct a model architecture that can ef-
fectively leverage the input sequence information, reduce
computational complexity, and preserve position informa-
tion.

Experiments
Creating Our Fire Dataset

To evaluate the performance of our proposed model, we
generated a dataset using the Fire Dynamics Simulator
(FDS(McGrattan et al. 2000)) software. FDS is a compu-
tational fluid dynamics (CFD(Anderson and Wendt 1995))
model widely used for simulating fire and smoke propaga-
tion in complex environments. We created a series of simu-
lation scenarios with varying initial fire locations and envi-
ronmental conditions to obtain a diverse dataset.

We considered several fire ignition scenarios, each with a
different initial fire location. The fire sources were placed at
various positions, including the corners, edges, and center of
the domain, to simulate different fire outbreak situations. For
each fire scenario, we ran the FDS simulation for a duration
of 100 seconds, capturing the temporal evolution of the fire
and smoke propagation.

By leveraging the FDS simulator, we were able to create a
comprehensive dataset that captures the complex dynamics
of fire and smoke propagation in a controlled environment.
The diverse set of fire scenarios and sensor locations allowed
us to assess the model’s ability to learn a compact represen-
tation of the system state and accurately reconstruct the field
values at any query location.
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Figure 2: Train Loss Over Time

Results

We evaluated the performance of the model on the dataset
generated using the Fire Dynamics Simulator (FDS). The
model was trained for at least 150 epochs with a batch size
of 16 and an initial learning rate of 0.001. And we used the
Adam optimizer.

The training process was monitored using a TensorBoard
logger, which allowed us to track the evolution of the train-
ing loss over the epochs. Fig. 2 shows the training loss curve,
which exhibits a steady decline, indicating that the model is
learning effectively to reconstruct the sensor observations.

To assess the model’s reconstruction accuracy, we com-
puted the mean squared error (MSE) between the model’s
output and the ground truth values from the test set. The test
MSE was 0.021, which suggests that the model is able to ac-
curately reconstruct the field values at unobserved locations.
Additionally, our modified model performs better than the
existing models in training efficiency and the MSE error, as
shown in Table. 1.

Table 1: Compare between the Original Senseiver Model
and Our modified model

MSE Error | Early Stopping Epoch
Original 0.08 189
Ours 0.02 154
Conclusion

In this paper, we introduced an enhanced version of the Sen-
seiver model specifically designed for fire prevention ap-
plications. By incorporating residual connections and nor-
malization operations between attention blocks, we signifi-
cantly improved the model’s ability to reconstruct complex
fire and smoke propagation fields from sparse sensor data.
These modifications not only enhanced the model’s training
efficiency and accuracy but also ensured better real-time in-
ference, which is crucial for fire detection and firefighting
efforts.



The core modification we made involved adding resid-
ual connections and normalization layers between atten-
tion blocks. Residual connections help preserve important
feature information by allowing the model to bypass cer-
tain layers when necessary, improving its ability to learn
from limited data. The normalization operations stabilize
the training process by standardizing the input to each layer,
thus enabling more efficient learning and reducing the risk
of overfitting. These changes ensured that the model could
handle the dynamic nature of fire and smoke propagation
while learning complex patterns from sparse sensor data.

Our experiments showed that the modified Senseiver
model outperforms existing models in both computational
efficiency and reconstruction accuracy, making it particu-
larly well-suited for environments where sensor coverage is
sparse, such as large-scale buildings or outdoor fire-prone
areas. The model demonstrated superior performance in de-
tecting and predicting fire behavior, which directly impacts
firefighting strategies, allowing for quicker and more precise
responses in emergency situations.

We evaluated the performance of the modified Senseiver
model using both synthetic and real-world fire datasets, gen-
erated through fire dynamics simulations. The model was
able to achieve high accuracy in reconstructing the fire dy-
namics at unobserved locations, as demonstrated by a sig-
nificant reduction in mean squared error (MSE) compared
to existing models. This performance improvement is cru-
cial for real-time fire monitoring, as accurate predictions and
reconstructions allow for better situational awareness and
faster decision-making in firefighting operations.

The Senseiver framework and our model provide a
promising tool for improving fire prevention and firefighting
operations. Its ability to accurately reconstruct fire dynam-
ics from limited sensor data enhances situational awareness,
optimizes resource allocation, and ultimately contributes to
more effective fire control and mitigation.

The advancements in reconstruction accuracy and compu-
tational efficiency directly translate to practical applications
in fire detection and firefighting. By accurately predicting
fire spread and smoke dynamics, the Senseiver model can
be integrated into fire monitoring systems to optimize re-
source allocation, improve early warning systems, and as-
sist firefighting teams in prioritizing areas for intervention.
This can lead to more effective fire containment, especially
in environments where sensor coverage is sparse or where
conditions are rapidly changing.
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