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Abstract

Industrial defect detection is a crucial component in achiev-
ing industrial automation. Single-stage object detection al-
gorithms, represented by the YOLO series, have found sig-
nificant applications in industrial inspection. To address the
complexity and variability of defect detection tasks and fur-
ther enhance detection accuracy and efficiency in complex
industrial environments, we propose an improved industrial
defect detection algorithm based on YOLOVS. Specifically,
we introduce a Cross-Scale Partial Multi-Scale Feature Ag-
gregation module (CSP-PMSFA). This module utilizes ef-
ficient Partial Convolution to extract multi-scale feature in-
formation from partial channels, enabling the fusion of fea-
tures across different scales, thereby improving computa-
tional efficiency and model representation capabilities. Addi-
tionally, we propose a Lightweight Shared Convolution De-
tection Head (LSCD), which minimizes the number of pa-
rameters and computational cost of the detection head while
maintaining detection precision. Finally, we incorporate an
enhanced focal powerful Intersection over Union (F-PloU)
loss function to improve the accuracy and robustness of the
model in detecting defects of varying scales and shapes,
thereby enhancing its generalization ability. Experimental re-
sults demonstrate that the proposed defect detection algo-
rithm performs well on multiple industrial defect detection
datasets, achieving superior performance across several eval-
uation metrics compared to baseline model YOLOVS, thus
offering improved detection capabilities.

Introduction

In the field of industrial automation, defect detection tech-
nology is key to ensuring product quality and safety. Tradi-
tional detection methods, such as manual visual inspection
and basic image processing techniques, often fail to meet the
high standards of modern industry due to low efficiency, in-
sufficient accuracy, and lack of real-time performance. With
the rise of deep learning technology, object detection algo-
rithms based on deep learning have become the new stan-
dard for industrial defect detection, providing faster detec-
tion speed and higher accuracy (Zhang, Ding, and Yan|2011;
Lee, Kim, and Kim[2019).

Currently, deep learning object detection techniques are
mainly divided into two categories: single-stage and two-

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

stage algorithms. Two stage algorithms such as the R-CNN
series, which first generate candidate regions and then clas-
sify and regress them, have high detection accuracy. How-
ever, the inference time is long and difficult to meet the
real-time requirements of industrial production (Redmon
et al|2016). Single stage algorithms such as YOLO se-
ries directly perform object detection on images, with fast
detection speed and high accuracy, and have been widely
used in industrial detection (Redmon and Farhadi 2018a;
Bochkovskiy, Wang, and Liao|2020; Redmon and Farhadi
2017).Although existing single-stage and two-stage object
detection algorithms have achieved certain results in indus-
trial defect detection, there are still some problems. For ex-
ample, the complexity and inference time of two-stage algo-
rithms limit their use in real-time applications, while the de-
tection accuracy of single-stage algorithms in handling small
targets and complex backgrounds still needs to be improved.

In this article, aiming at the visual inspection of indus-
trial defect detection, an enhanced defect detection algo-
rithm based on YOLOVS is proposed. The algorithm lever-
ages a Partial Multi-Scale Feature Aggregation mechanism,
which applies efficient partial convolution to the input, en-
abling the extraction of multi-scale features. The extracted
features are subsequently integrated with the original input
through a 1x1 convolution and residual connections, effec-
tively preserving the original feature information while in-
corporating new multi-scale information. This approach en-
hances the model’s feature representation capabilities. Fur-
thermore, a Lightweight Shared Convolutional Detection
Head (LSCD) is introduced, significantly improving the de-
tection head’s performance in both localization and classifi-
cation tasks. This innovation reduces the number of model
parameters without compromising detection accuracy, mak-
ing the model more suitable for deployment on edge devices.
In addition, the algorithm integrates an improved Focal Pow-
erful IoU (F-PIoU) loss function, which enables more accu-
rate bounding box regression and accelerates model conver-
gence, thereby improving the overall efficiency and effec-
tiveness of defect detection.

The primary contributions of this paper are summarized
as follows:

* A Partial Multi-Scale Feature Aggregation mod-
ule(PMSFA) is proposed, which improves multi-scale
feature extraction.



* A Lightweight Shared Convolutional Detection Head
(LSCD) is employed, enhancing detection performance
while reducing model complexity.

» The improved focal powerful IoU loss is put forward to
tackle the performance bottlenecks from sample imbal-
ance and inaccurate regression.

The rest of this article is organized as follows. The second
part reviewed relevant industrial defect detection methods,
and the third part elaborated on the proposed enhanced algo-
rithm based on YOLOVS in detail. The fourth part presents
the experiment and discussion. Finally, the fifth section sum-
marizes this article.

Related Work

The YOLO series has made significant advancements in in-
dustrial defect detection due to its balance between fast in-
ference and high detection accuracy. The original YOLO
established the foundation for real-time object detection,
while YOLOV3 introduced multi-scale feature extraction to
improve small defect detection. YOLOv4 enhanced feature
representation by incorporating CSPDarknet53 as its back-
bone, effectively reducing computational overhead and im-
proving robustness (Bochkovskiy, Wang, and Liao| 2020;
Redmon and Farhadi| 2017, 2018bj, |Bochkovskiy| [2020).
These models have been widely applied to tasks such as
fabric defect detection, PCB fault detection, and weld in-
spection (He|[2020; Jiang|2019). Lightweight versions, such
as YOLOv4-Tiny and YOLOVS-Tiny, were further devel-
oped to address resource constraints, ensuring high infer-
ence speed while maintaining acceptable detection accuracy
(Zhang|2021)). YOLOVS, with its modular design, facilitates
customization and deployment for specific tasks, and intro-
duces new modules such as Focus and Cross-Stage Partial
Networks (CSPNet), further improving detection efficiency
(Wang and Liao|[2020; [Wang|[2020). Subsequent versions,
including YOLOvV6, YOLOvV7, and YOLOVS, introduced ar-
chitectural optimizations and advanced training strategies to
further enhance detection efficiency and accuracy (Zheng
2022).

Defect detection in industrial applications often involves
handling defects of varying scales, such as cracks, dents, and
deformations. Multi-scale feature fusion techniques, includ-
ing Feature Pyramid Networks (FPN) and Path Aggregation
Networks (PANet), have been proven effective in improving
detection across different defect sizes. FPN combines high-
level semantic features with low-level spatial features, while
PANet introduces path aggregation to facilitate efficient fea-
ture transmission (Lin/2017)). In the YOLO framework, Spa-
tial Pyramid Pooling (SPP) and Adaptive Spatial Feature Fu-
sion (ASFF) enable effective multi-scale feature extraction,
preserving spatial details and dynamically fusing features to
enhance detection performance in complex scenarios (Liu
2018} He[2015}; [Liuf2019).

For real-time industrial defect detection, lightweight mod-
els are essential to meet the constraints of limited computa-
tional resources and high processing speeds. Architectures
such as MobileNet, ShuffleNet, and GhostNet have been de-
veloped to address these issues. MobileNet utilizes depth-

wise separable convolutions to reduce parameters and com-
putational costs, while ShuffleNet and GhostNet optimize
feature extraction through channel shuffling and ghost mod-
ules, respectively (Howard||2017; [Zhang|[2018; Han|[2020).
These lightweight architectures have been integrated into
YOLOV4-Tiny and YOLOvS5-Tiny, enabling efficient defect
detection in real-time industrial applications (Hong| 2021}
Ultralytics|2021} [2020).

Intersection over Union (IoU) is a core metric for evaluat-
ing and optimizing object detection models. However, tradi-
tional IoU has limitations when dealing with small or irreg-
ularly shaped defects. Several improvements have been pro-
posed to address these issues. Generalized IoU (GIoU) intro-
duces penalties for non-overlapping bounding boxes, help-
ing the model refine predictions (Rezatofighi|[2019). Dis-
tance IoU (DIoU) considers the distance between the center
points of the predicted and ground truth boxes, accelerating
convergence and improving bounding box localization accu-
racy (Zheng|[2020). Complete IoU (CloU) further enhances
this by incorporating aspect ratio consistency, ensuring that
the predicted boxes align with the target not only in position
but also in shape (Wang|2021)). These improved IoU metrics
have been integrated into various defect detection systems,
enhancing the localization of small and irregular defects,
and making the models more robust in different industrial
scenarios. In the context of defect detection, improved IoU
metrics such as GloU, DIoU, and ClIoU are crucial for ac-
curately localizing defects with blurred or irregular shapes,
such as cracks, dents, and wear (Xul2022).

Based on the above discussion, developing a comprehen-
sive defect detection method remains a promising avenue of
research. As discussed earlier, challenges such as handling
varying defect scales in industrial detection, lightweight al-
gorithm deployment, and improving IoU for better detec-
tion performance are critical tasks that need to be addressed.
Therefore, the proposed YOLOvS8-based defect detection al-
gorithm focuses on three key issues: multi-scale feature pro-
cessing, lightweight detection heads, and improved bound-
ing box loss.

METHODOLOGY

This chapter introduces our approach to implementing in-
dustrial defect detection. We begin by analyzing the over-
all framework of the network model. Then, we provide a
detailed explanation of the implementation process for the
CSP-PMSFA and LSCD modules, as well as the mechanism
of the F-PIoU loss function.

Overall Framework

The overall framework of the proposed network structure
is illustrated in Figure E} First, all images are resized to a
resolution of 640x640, followed by data augmentation op-
erations such as geometric transformations, color adjust-
ments, noise addition, and morphological operations. Sub-
sequently, the input images are downsampled twice using
Conv_1 and Conv_2 operations, each consisting of a 3x3
convolution layer with batch normalization and SiL.U activa-
tion. During the downsampling process, additional gradient
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Figure 1: Overall Framework.

flow branches are implemented in parallel to enrich gradi-
ent information while maintaining a lightweight model. This
approach aims to enhance the network’s contextual learning
capability continuously.

In the improved algorithm, all C2f modules in the original
network structure are replaced with CSP-PMSFA modules,
which enhance the network’s ability for multi-scale feature
extraction and feature fusion. This ultimately improves the
model’s representation of multi-scale information.

Furthermore, the Spatial Pyramid Pooling-Fast (SPPF)
module provides robust capability to capture contextual in-
formation, aiding in addressing scale variation challenges in
defect detection (Zhu[2021).

Following this, multi-scale feature maps are integrated to
fully leverage low-level information and consolidate both lo-
cal and global features (Lin||2017). Finally, a lightweight
shared convolutional detection head (LSCD) is employed
to scale the feature maps for different target sizes, enabling
the identification and localization of defects of varying di-
mensions. This approach minimizes parameter requirements
while reducing accuracy loss.

Cross Stage Partial Networks-Multi-Scale Feature
Aggregation(CSP-PMSFA)
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Figure 2: CSP-PMSFA Framework.

In the network, we replace the C2f module with the CSP-
PMSFA module. The structure of the PMSFA module is

shown in Figure [2] Since the final feature map derived
through downsampling contains multi-scale information but
inevitably loses some information from the original feature
map, we propose the CSP-PMSFA module to preserve some
of the original information from each scale’s feature map.

The PMSFA module retains part of the feature map infor-
mation at each scale after convolution, while the remaining
part continues with the convolution operations. Finally, the
multi-scale feature maps are fused, followed by a 1x1 con-
volution and a residual connection with the original input
to produce the output. The CSP-PMSFA module further ex-
tends the PMSFA module by adopting a cross-stage stacking
approach. By stacking multiple PMSFA modules, the net-
work can extract more complex and higher-level features,
thereby enhancing the model’s representational capacity.

The CSP-PMSFA module integrates the design philos-
ophy of CSPNet (Cross Stage Partial Network). Through
cross-stage connections, the network maintains a strong
flow of information between different stages, enhancing the
model’s depth while optimizing feature reuse. This design
also alleviates the vanishing gradient problem by preserving
short paths between the early and later layers via residual
connections, thereby facilitating the training of deeper net-
works.

Moreover, CSP-PMSFA considers computational effi-
ciency by employing grouped convolutions to reduce com-
putational and parameter overhead. Grouped convolutions
are particularly effective for improving efficiency when pro-
cessing larger inputs. By progressively reducing the number
of channels, the model focuses on extracting more complex
features while maintaining low computational costs.

Lightweight Shared Convolutional Detection
Head(LSCD)

We replace the detection head in the baseline model with the
LSCD detection head. The structure of the LSCD module is
shown in Figure 3] In the LSCD module, all Batch Normal-
ization layers are replaced with Group Normalization layers,
as demonstrated in the FCOS (Tian et al.[2019) to enhance
localization and classification performance. During the pro-
cess of lightweight optimization, reducing the number of
parameters can lead to a decline in feature extraction per-
formance. However, the use of Group Normalization (GN)
mitigates this issue by minimizing accuracy loss while main-
taining a reduced parameter count.

Specifically, the downsampled feature maps p3, p4, and
p5 do not share parameters during GN operations but do
share parameters afterward. For detection and classification
tasks, the targets belong to the same category, differing only
in scale. Parameter sharing leverages feature maps from dif-
ferent scales to generate prediction results, enabling multi-
scale object detection. Parameter sharing is achieved by ap-
plying the same convolution operations and weights to input
feature maps of different scales using a shared convolution
layer.

While using shared convolutions, to address the incon-
sistency in target scales detected by each detection head,
the Scale layer is employed to adjust the features of dif-
ferent scales by learning scaling factors. The parameters of



Figure 3: LSCD Framework.

the Scale layer participate in predictions alongside boundary
box predictions, class scores, and other outputs of feature
maps at various scales. For instance, if the targets in a par-
ticular scale are smaller, the Scale factor may increase the
output of that scale, enhancing the model’s ability to detect
small objects. Conversely, for larger targets, the output of
that scale may be reduced.

Focaler-Powerful-IoU Loss

The F-PloU introduces a penalty factor adaptive to the target
size and a gradient adjustment function based on the quality
of the anchor box (Liul[2024). It no longer relies on the di-
agonal length of the smallest enclosing rectangle but instead
directly calculates based on the dimensions of the target box.
This approach ensures that the gradient does not degenerate
to zero and provides a reasonable penalty for anchor and tar-
get boxes of different relative sizes, effectively guiding the
anchor box to regress along an efficient path. The mathemat-
ical expression is as follows:

dw, + d dhy + dh
P{wﬁ w2 Gt 2]/4 )
Wharget htarget
PloU =1~ (1 IoU) — (1 _ e_P2> )

Where, dw;, dws, dhy, dho represent the absolute values
of the distances between the corresponding edges of the pre-
dicted bounding box and the target bounding box, Aierget
and Wyqrget denote the width and height of the target bound-
ing box.

Furthermore, the F-PIoU integrates a non-monotonic
focusing mechanism that adjusts the gradient magnitude
through a specific functional form to accommodate anchors
of varying qualities, which can be described as follows:

g=e" 3)
u(x) =3z - e 4)
LF_pjou:u(Aq)-(l—PIOU) (5)

Here, u(x) is a non-monotonic function. q is a function
based on the differences between the predicted bounding
box and the target bounding box, which measures the quality
of the anchor box, and q ranges from (0, 1]. u(Aq) represents
the attention function. A is the hyperparameter that controls
the behavior of the attention function

Experimental Verification
In this section, we describe the experimental setup and eval-
uate the performance of the proposed network using two
publicly available defect detection datasets.

Datasets Description

In this study, we have meticulously considered data analy-
sis and utilized two datasets to assess the proposed model,
including NEU-DET and GC10-DET

NEU-DET dataset GCI10-DET dataset

Category Amount| Category ~ Amount
/ 0 Punching_hole 329

/ 0 welding_line 513
Rolled_scale 300 | Crescent_gap 265
Patches 300 Water_spot 354
Crazing 300 Oil_spot 569
Pitted_surface 300 Silk_spot 884
Inclusions 300 Inclusion 347
Scratches 300 Rolled_pit 85

/ 0 Crease 74

/ 0 Waist_folding 150
Total 1800 | Total 3570

Table 1: Description of The Number of Categories in GC10-
DET and NEU-DET Datasets

1. NEU-DET: As shown in Table[I] the NEU-DET dataset
comprises six common surface defects found on hot-
rolled steel strips, which contains a total of 1800
grayscale images, with 300 samples for each defect type,
saved in grayscale at an original resolution of 200*200
pixels.

2. GC10-DET: As shown in Table[T] the GC10-DET dataset
comprises 10 surface defect types, which features 3570
grayscale images of steel plate surface defects from
real industrial settings. To verify the effectiveness of
our method, we divided the NEU-DET and GC10-DET
datasets into training and testing sets in a 9:1 ratio.

Experimental Environment

1. Experimental Settings: During the model training pro-
cess, we maintained consistency in input image size,
data augmentation methods, learning rate, and batch size.
We conducted experiments on the NEU-DET and GC10-
DET defect detection datasets, using 300 epochs and a
batch size of 16 for both datasets. All experiments were
conducted under the PyTorch deep learning framework
on an NVIDIA RTX 4080 GPU.
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Figure 4: Improved Network Predicts Results 1 on NEU-
DET.

2. Evaluation Metric: To comprehensively evaluate the per-
formance of the proposed modal, we employ several
commonly used metrics for performance assessment, in-
cluding Precision, Recall, mAP50, mAP50:95, where
Precision gauges the model’s accuracy in identifying true
positive instances among all positive predictions, while
Recall indicates its ability to capture all relevant posi-
tive samples within the dataset and AP denotes Average
Precision. mAP50 represents AP over IoU at 0.5, and
mAP50:95 represents AP over IoU from 0.5 to 0.95 with
an interval of 0.05.

Performance Evaluation

We compared our improved network with the baseline
model YOLOvVS on two datasets. The comparison results are
shown in the Table[2] Our network outperforms the baseline
model in terms of precision, mAP50, and mAP50:95. On the
NEU-DET dataset, these metrics improved by 0.07, 0.006,
and 0.015, respectively, while on the GC10-DET dataset, the
improvements were 0.016, 0.017, and 0.022, respectively.
However, our network showed a decrease in recall, with re-
ductions of 0.014 and 0.022 compared to the baseline model
on the NEU-DET and GC10-DET datasets, respectively.

Data/Metrics Precision Recall mAP50 mAP50:95

NEU-DET base 0.712 0.713 0.755 0.387
ours 0.782 0.699 0.761 0.402
GC10-DET base 0.399 0.414 0.379 0.167
ours 0414 0.392 0.396 0.189

Table 2: Baseline Model Comparison
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Figure 5: Improved Network Predicts Results 2 on NEU-
DET.

From a visual perspective, Figure [ and [3] illustrate the
comparative experimental results of the proposed improved
network and the baseline model on the NEU-DET and
GC10-DET datasets. Overall, our improved network demon-
strates enhanced performance.

Ablation Experiments

In the rigorous process of validating the effectiveness of
the proposed improved network core components, we con-
ducted an ablation study, using the NEU-DET dataset as
the benchmark for our experiments.The results are recorded
in the Table @ The network, integrated with CSP-PMSFA,
LSCD, and FPIoU, showed performance improvements.
This highlights the network’s ability to accurately and com-
prehensively detect defects within a certain threshold range,
particularly in multi-scale object detection. However, the
network’s evaluation on the recall metric showed a continu-
ous decline. To address this issue, we analyzed the following
aspects:

1. The CSP-PMSFA module, by progressively fusing fea-
tures through convolutions of different scales, may lead
to the loss of certain low-level information in the high-
level feature maps, thereby affecting the detection accu-
racy of small-scale objects.

2. Replacing the original detection head with the LSCD
detection head reduced the size of the detection head,
but this also somewhat decreased the detection accuracy,
especially for defects in small-scale or complex back-
ground regions, ultimately leading to a decline in recall.



Method Precision Recall mAP50 mAP50:95
base 0.712  0.713 0.755 0.387
base+PMSFA 0.756 0.704 0.764 0.399
base+L.SCD 0.700 0.701 0.743 0.372
base+FPIloU 0.711  0.698 0.761 0.397
base+PMSFA+LSCD 0.730 0.674 0.742 0.377
ours 0.782 0.699 0.761 0.402

Table 3: Results of ablation experiments

Conclusion

This paper proposes an improved industrial defect detec-
tion algorithm based on YOLOVS. The algorithm achieves a
remarkable balance between detection accuracy and model
compactness, meeting the practical engineering require-
ments of industrial detection. The key components of the
network include Cross Stage Partial Networks-Multi-Scale
Feature Aggregation (CSP-PMSFA), a Lightweight Shared
Convolutional Detection Head (LSCD), and an improved
loss function, F-PIoU. Compared to the baseline model, the
improved network demonstrates outstanding performance in
terms of accuracy and efficiency. Furthermore, ablation stud-
ies were conducted to validate the effectiveness of the net-
work components. However, the improved network still suf-
fers from a relatively low recall, highlighting the need for
further enhancements in its capability to detect small-scale
objects.
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