
Stain Normalization for Whole Slide Image Classification Based on Multiple
Instance Learning

Runchen Zhu, Sujie Liu, Lin Zhao, Qi Chen, Shurong Yang
Xiamen University, China

24520241154769 class for Insititute of Information
23020241154426 class for Insititute of AI

23020241154364 class for Insititute of Information
23020241154375 class for Insititute of Information
23020241154361 class for Insititute of Information

Abstract

Whole Slide Imaging (WSI) refers to the technology that
digitizes entire tissue slides to create high-resolution digi-
tal images. This allows pathologists to view, analyze, and
store slides on computers, enhancing accessibility and facili-
tating remote diagnosis.The high resolution of WSIs and the
variability of morphological features present significant chal-
lenges, complicating the large-scale annotation of data for
high-performance applications.In this study, we compare the
performance of models pre-trained on natural images with
those specifically trained on pathological images for clas-
sification tasks. We assess various multi-instance learning
(MIL) approaches to evaluate their effectiveness in handling
the unique challenges posed by pathological data. Addition-
ally, we conduct tests on a multi-institutional dataset to ex-
amine the generalizability of our models. To further enhance
classification results, we explore staining normalization tech-
niques, aiming to mitigate variability in staining across sam-
ples. Our findings indicate that specialized pre-training and
effective normalization can significantly improve classifica-
tion accuracy in pathological image analysis.

Introduction
With the increasing incidence of cancer, digital pathology
has gradually become an important means of tumor detec-
tion. Whole Slide Image (WSI) is a technology that digitizes
entire pathology slides at extremely high resolutions, pro-
viding rich pathological information that helps pathologists
analyze tissue samples more efficiently and is widely used
in the field of medical pathology. However, the huge size
and complexity of WSI pose challenges for image compu-
tational analysis. These challenges include efficient process-
ing of large amounts of data, high demands on computing
resources, and the need for high accuracy in classification
tasks (Campanella et al. 2019). Traditional image classifi-
cation techniques, such as Convolutional Neural Networks
(CNNs), divide WSI into fixed-size patches for classification
and then aggregate the results, which ignores the global spa-
tial information of WSI (Litjens et al. 2017). The newly pro-
posed Uni model, when pre-trained on large-scale pathologi-
cal images, is expected to yield improved results. This model
is designed to leverage the vast amount of data available in

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

pathology, allowing it to learn more relevant features spe-
cific to pathological images.The potential of this approach
highlights the importance of tailored pre-training in achiev-
ing superior performance in pathology image analysis.

Methods based on Multiple Instance Learning (MIL),
such as Cluster-constrained Attention Multiple Instance
Learning (CLAM) (Lu et al. 2020) and DeepMIL(Ilse, Tom-
czak, and Welling 2018b), have effectively improved the
classification performance of WSI images. Yunlong Zhang
et al. (Zhang et al. 2024) introduced self-attention mecha-
nisms and multi-head attention, enabling the model to cap-
ture global information on a larger scale, improving the ac-
curacy of classification and the interpretability of the model.

However, we have observed that these methods show sig-
nificant differences in classification performance on data
from different institutions. We suspect this may be due to
the model’s difficulty in generalizing across the variations
between datasets from different sources.This study aims to
compare the performance of various large models and dif-
ferent multi-instance learning methods in pathological im-
age classification. Additionally, it seeks to demonstrate the
significant impact of staining normalization on improving
classification accuracy. By systematically evaluating these
approaches, the research highlights the importance of model
selection and preprocessing techniques in enhancing the ef-
fectiveness of pathological image analysis. The findings are
expected to provide valuable insights for optimizing classi-
fication performance in this field.

Related Work
Traditional CNN-based Methods
Due to the extremely high resolution of Whole Slide Images
(WSIs), directly processing the entire slide image requires
substantial computational resources. Therefore, a common
practice is to divide the WSI into multiple smaller patches
(e.g., 512x512 pixels), which are significantly smaller than
the entire slide but still contain sufficient tissue information
for analysis. Each small image patch is input into a pre-
trained CNN model to extract features from the patch, and
then each patch is classified independently. Since tumor ar-
eas in WSIs may span multiple patches, some form of post-
processing is needed to integrate the classification results of
individual patches to generate a consistent classification for



the entire slide.
CNNs typically process local information, so these meth-

ods may fail to capture global context when tumor features
are distributed over larger spatial scales. Additionally, in
pathology images, the ratio of tumor areas to normal areas
may be very low, leading to a severe imbalance of positive
and negative samples in the training data, which can affect
the model’s performance.

Mahendra Khened et al.(Khened et al. 2020) combined
multiple Fully Convolutional Networks (FCN) architec-
tures, including DenseNet-121, Inception-ResNet-V2, and
DeepLabV3Plus, to propose an Ensemble Segmentation
Model, a deep learning method. By using overlapping and
oversampling techniques on the image patches involved
in model training when processing WSIs in patches, they
addressed the class imbalance problem and improved the
model’s ability to recognize tumor areas. They enhanced the
model’s generalization capability for different cancer types
and staining variations by training multiple models from dif-
ferent data subsets and then integrating their predictions.

A General-purpose Self-supervised Model For
Pathology
UNI,a general-purpose self-supervised model for pathol-
ogy(Chen et al. 2024), pretrained using more than 100
million images from over 100,000 diagnostic H&E-stained
WSIs (more than 77 TB of data) across 20 major tis-
sue types. The model was evaluated on 34 representative
CPath tasks of varying diagnostic difficulty. In addition to
outperforming previous state-of-the-art models, demonstrat-
ing new modeling capabilities in CPath such as resolution-
agnostic tissue classification, slide classification using few-
shot class prototypes, and disease subtyping generalization
in classifying up to 108 cancer types in the OncoTree classi-
fication system. UNI advances unsupervised representation
learning at scale in CPath in terms of both pretraining data
and downstream evaluation, enabling data-efficient artificial
intelligence models that can generalize and transfer to a wide
range of diagnostically challenging tasks and clinical work-
flows in anatomic pathology.

Multiple Instance Learning
Ming Y. Lu et al. (Lu et al. 2020) pointed out the limitations
of the aggregation functions (such as max pooling) used
in traditional MIL methods and constructed an MIL frame-
work based on attention as an aggregation function, CLAM
(CLustering-constrained Attention Multiple instance learn-
ing), which has shown superior performance in multiple
WSI analysis tasks. Hossein Jafarinia et al. (Jafarinia et al.
2024) proposed a new WSI classification framework named
Snuffy, based on the MIL-pooling method with sparse trans-
formers, which adopted self-supervised pre-training. Com-
pared to the weakly supervised CLAM method, the Snuffy
framework achieved better performance on multiple open
datasets.Some MIL methods use attention mechanism to
solve problem. This allows the model to dynamically fo-
cus on more valuable input data rather than treating all in-
put data equally, thereby enhancing the model’s ability to

handle complex data. Jiawen Li et al. (Li et al. 2024b)
designed a dynamic graph representation algorithm based
on knowledge-aware attention mechanisms, which divides
WSIs into multiple patches, each patch considered as a node
in the graph, selects k similar patches as neighbors, and con-
structs directed edges. This attention mechanism captures
the correlation between patches by learning the joint atten-
tion scores of each neighbor and edge, and uses these inter-
actions to update node features, thereby improving the accu-
racy of WSI classification.

In the Multiple Instance Learning (MIL) framework, the
attention mechanism can help the model assign weights to
each instance, highlighting the most critical areas for di-
agnosis. Since attention mechanisms tend to focus on a
small number of discriminative instances, which can lead
to overfitting, Yunlong Zhang et al.(Zhang et al. 2024) in-
troduced Multiple Branch Attention (MBA) to capture more
discriminative and diverse instances, effectively alleviating
the issue of concentrated attention values in WSI classi-
fication and enhancing the model’s generalization ability.
Common MIL algorithms include ABMIL(Ilse, Tomczak,
and Welling 2018a), DSMIL(Li, Li, and Eliceiri 2021), and
TransMIL(Shao et al. 2021), all of which have been widely
used in various domains for improving model performance.

Transfer Learning and Pre-trained Models
In WSI classification, it is often difficult to obtain a large
amount of annotated data. Transfer learning can leverage the
knowledge that pre-trained models have learned, reducing
dependence on annotated data and thus improving data ef-
ficiency. Additionally, these models usually have good gen-
eralization capabilities and can effectively classify different
WSI datasets and pathological types.

Jiaxiang Gou et al. (Gou et al. 2024) used a visual lan-
guage model (VLMs) called CONCH, specifically designed
for pathological image analysis, as a pre-trained model to
enhance the performance of WSI classification tasks. Hao
Li et al. (Li et al. 2024a)used a ResNet-based pre-trained
image encoder to extract image features from WSIs and a
BioClinicalBERT, pre-trained on biomedical text, as a text
encoder to understand professional terms and concepts in
pathology reports and extract text features. The combination
of these two enabled the model to more accurately capture
pathological features of WSIs.

Normalization Methods
Normalization techniques play a crucial role in natural im-
age processing by reducing variations caused by different
lighting conditions, camera settings, and environmental fac-
tors. For instance, Histogram equalization enhances image
contrast by redistributing pixel intensity values, making fea-
tures more distinguishable(Huang et al. 2020).

Applying stain normalization to WSI (whole slide im-
age) classification could be a valuable approach to address-
ing inconsistencies in staining procedures across different
institutions.Staining standardization can significantly im-
prove the robustness of the model (Tellez et al. 2018).How-
ever, there is relatively little discussion on how different



Figure 1: WSI segmentation and patching.

multi-instance learning (MIL) methods and feature extrac-
tion models perform in conjunction with stain normaliza-
tion. Understanding the interaction between these factors
could provide deeper insights into optimizing model perfor-
mance, especially in the context of histopathology.

Proposed Solution
Workflow Overview
Data Preprocessing Due to the extremely high resolution
of WSIs, often exceeding billions of pixels, and the limited
availability of medical datasets, the preprocessing workflow
for computational pathology typically follows a structured
approach which shows in Figure 1 to address these chal-
lenges effectively.

The process begins with the removal of irrelevant back-
ground regions to focus computational resources on mean-
ingful tissue areas. WSIs are downsampled to a lower mag-
nification level (mmp = 20x) to expedite processing. Back-
ground removal is achieved through segmentation tech-
niques color thresholding in the HSV color space, result-
ing in a binary mask that highlights tissue regions. This step
significantly reduces the size of the area requiring further
processing.

Subsequently, the tissue regions identified in the binary
mask are segmented to exclude noise and artifacts, ensuring
the extracted regions are both relevant and high quality. The
segmentation process refines the tissue area boundaries and
eliminates small regions that may not contain diagnostically
significant information.

Finally, the segmented tissue regions are divided into
smaller, uniform patches (e.g., 512×512 pixels) using a slid-
ing window approach. Given the inherent sparsity of di-
agnostically relevant regions in WSIs, patches containing
excessive background are excluded. This ensures that only
patches with sufficient tissue content are retained, maximiz-
ing the utility of the limited medical dataset.

Feature Extraction After obtaining patches of fixed size
(512×512 pixels) from WSIs, feature extraction which
shows in figure 2 is performed using CNN-based and ViT-
based models. These models are designed to generate com-
pact and informative feature representations for each patch.

CNN-based models we use ResNet50, are employed to
capture local spatial patterns within the patches. These mod-
els leverage hierarchical feature extraction, progressively
learning high-level representations through convolutional
layers. The output of the penultimate layer of the CNN is

Figure 2: Feature Extraction.

Figure 3: Downstream Task.

used as the feature vector, which is standardized to a 1024-
dimensional representation.

In parallel, ViT-based models we use UNI utilize self-
attention mechanisms to capture global context and long-
range dependencies within the patches. By dividing each
patch into smaller tokens and applying multi-head self-
attention layers, ViTs learn comprehensive feature represen-
tations that encode both local and global information. Sim-
ilar to CNNs, the output of a designated intermediate layer
is extracted as a 1024-dimensional feature vector. But only
UNI is fine-tuned on domain-specific medical data to adapt
to the characteristics of pathology images.

Stain Normalization Also due to significant variability in
staining protocols across laboratories and institutions, WSIs
often exhibit inconsistent color appearances. These varia-
tions arise from differences in staining reagents, processing
methods, and imaging equipment, making it challenging for
models to generalize across datasets from different centers.

Stain normalization techniques are employed to address
this issue by standardizing the color distribution of WSIs to
a consistent reference style. By aligning staining variations,
these techniques help reduce domain-specific biases and en-
sure a unified representation of histological patterns. This
standardization not only improves the visual consistency of
the data but also enhances the model’s ability to focus on
tissue morphology and other diagnostically relevant features
rather than being influenced by color discrepancies.

Incorporating stain normalization into the preprocessing
pipeline establishes a common standard for training and test-
ing data, enabling models to achieve better performance and
generalizability in computational pathology tasks.

Downstream Task
The extracted features are utilized for downstream tasks
which shows in Figure 3 through a multi-instance learn-



ing (MIL) framework, which is particularly well-suited for
whole slide image analysis due to the infeasibility of pixel-
level annotations. MIL treats each WSI as a bag of in-
stances (patches), where only the bag-level label is available,
enabling learning from weakly labeled data while lever-
aging the extracted patch-level features. There is a sin-
gle binary label Y associated with the bag. Furthermore,
we assume that individual labels exist for the instances
within a bag, i.e., y1, . . . , yK and yk ∈ {0, 1},for k =
1, . . . ,K,however,there is no access to those labels and they
remain unknown during training. We can re-write the as-
sumptions of the MIL problem in the following form:

Y =

{
0, iff

∑
k yk = 0,

1, otherwise.
(1)

In this study, we compare three multi-instance learn-
ing (MIL) methods: CLAM, ABMIL, and TransMIL, all
of which have shown excellent performance across various
tasks. CLAM (Class Activation Mapping) is known for its
ability to focus on relevant regions within a whole slide im-
age by applying attention mechanisms, which helps in iden-
tifying key areas of pathology slides for accurate classifica-
tion. ABMIL (Attention-based MIL) enhances this approach
by incorporating both instance-level and class-level atten-
tion, leading to more fine-grained and robust feature ex-
traction. TransMIL, which utilizes a transformer-based ar-
chitecture, models the global relationships between image
patches, providing a comprehensive view of the whole slide
image.the downstream task involves the classification of soft
tissue sarcomas using a multi-center dataset.

And the downstream task consists of two objectives: (1)
classification into six major categories of soft tissue sar-
coma, representing broad diagnostic classes, and (2) subtyp-
ing within liposarcomas into four finer-grained categories.
By employing MIL, the framework effectively addresses
the challenges posed by label scarcity, large-scale data,
and multi-center variability, facilitating robust and accurate
multi-class and subtyping predictions for soft tissue sarco-
mas.

Experiments
Datasets
In our study, we use data from four different centers, two
of which are publicly available datasets: TCGA and TCIA.
The other two are proprietary datasets from private hospi-
tals. In total, the study includes 1,500 whole slide images
(WSI), which correspond to approximately 4.5 million im-
age patches, and each patch has 1024 features.

Environment Setting
We implement our code by the deep learning framework Py-
Torch 2.3.1 with Python 3.10. Hardware support is shown as
Table 1

Training and Test
For model training, in order to improve the reliability of
solubility prediction, we use K-fold approach for cross-
validation, in which k can be used as a hyperparameter to

CPU Intel(R) Xeon(R) Gold 6133
CPU @ 2.50GHz

GPU NVIDIA GeForce RTX 3090
CUDA Version 12.2
Operating System Ubuntu 20.04.6 LTS
Driver Version 535.146.02

Table 1: Hardware Support.

adjust. In the current experiment, the value of k is set to
5, that is, the data (specific from one hospital) is divided
into 5 subsets, one of which will be used as the val set and
the other 4 subsets as the training set to get the best model
weights. For model testing, we evaluated the performance of
the trained models on data from three other centers, assess-
ing their generalization capability on external datasets.

We set the batch size and learning rate to 1 and 1e-3, sep-
arately. The weight decay is 1e-3 and the total number of
epochs is set to 50. However, we set early stopping whose
patience is 10 to avoid overfitting. Cross entropy loss func-
tion is performed to evaluate the optimization.

Performance Evaluation
In this study, we evaluated the performance of our models
on the multi-class classification task using three key metrics:
accuracy (ACC), area under the curve (AUC), and F1 score.
Accuracy provided an overall assessment of the model’s
ability to correctly classify instances, giving a general sense
of its performance across all classes. However, since our
dataset includes imbalances between classes, accuracy alone
may not fully capture the model’s effectiveness.

AUC, on the other hand, offered a more nuanced evalua-
tion of the model’s discriminatory power. It measures how
well the model differentiates between different classes, and
is particularly valuable when class distribution is uneven. A
higher AUC indicates that the model can effectively distin-
guish between categories, even when some classes are less
represented in the data.

And the F1 score provided a balanced view by combin-
ing both precision and recall, which is essential in multi-
class tasks where certain classes may be more challenging
to classify. The F1 score is especially useful for assessing
the model’s performance in terms of both minimizing false
positives and false negatives across all classes.

Results
In this study, we trained models using an internal dataset
comprising 581 WSIs for multi-class (six-class) and 173
WSIs for subtype (four-class) classification tasks. To eval-
uate the impact of stain normalization, we conducted ex-
periments comparing model performance with and without
this preprocessing step. Using five-fold cross-validation, the
models without stain normalization achieved an average ac-
curacy of 0.768 on the six-class classification task, whereas
models utilizing stain normalization demonstrated an im-
proved average accuracy of 0.806. Similarly, for the sub-
type four-class classification task, the models without stain



Model Method ACC[cls] AUC[cls] F1-score[cls] ACC[sub] AUC[sub] F1-score[sub]

ResNet50

CLAM 0.631 0.813 0.627 0.602 0.793 0.589
AB-MIL 0.649 0.826 0.635 0.614 0.802 0.593

Trans-MIL 0.653 0.831 0.637 0.622 0.811 0.597
CLAM+ST 0.661 0.825 0.643 0.624 0.811 0.601

AB-MIL+ST 0.672 0.830 0.653 0.635 0.820 0.614
Trans-MIL+ST 0.681 0.837 0.660 0.643 0.824 0.628

UNI

CLAM 0.679 0.832 0.655 0.638 0.827 0.617
AB-MIL 0.683 0.854 0.667 0.646 0.828 0.623

Trans-MIL 0.681 0.832 0.657 0.649 0.828 0.626
CLAM+ST 0.692 0.870 0.673 0.658 0.832 0.652

AB-MIL+ST 0.711 0.885 0.689 0.667 0.845 0.659
Trans-MIL+ST 0.703 0.873 0.678 0.671 0.849 0.662

Table 2: Test result for downstreamtask

normalization reached an average accuracy of 0.732, while
those with stain normalization improved to an average ac-
curacy of 0.783. These results indicate that even within data
from the same center, significant staining differences can ex-
ist, highlighting the importance of stain normalization for
reducing such variability.

The test results are presented in Table 2, where the left
three columns correspond to the accuracy, AUC, and F1
scores for the six-class classification task, and the right three
columns show the corresponding results for the subtype clas-
sification task. It is evident that the Uni model, used for fea-
ture extraction, significantly outperforms the ResNet model,
with a performance gap of approximately 0.02 to 0.05 across
all metrics. Moreover, the application of stain normalization
(ST) led to a noticeable improvement in test performance,
boosting accuracy, AUC, and F1 scores by about 0.03 on av-
erage. Notably, the AB-MIL+ST and TransMIL+ST models
achieved classification performance exceeding 0.7, demon-
strating strong potential in both tasks. additionally, it is
worth noting that the overall performance on the subtype
classification task was lower than that on the six-class task.
This discrepancy can be attributed to the smaller amount of
training data available for the subtype classification, which
may have limited the model’s ability to fully capture the un-
derlying patterns.

Conclusion
In conclusion, our study demonstrates that the Uni model,
which was pre-trained specifically on pathological images,
significantly outperforms the ResNet50 model, which was
transferred from natural image tasks. This indicates the im-
portance of domain-specific pretraining for pathology image
classification, as features learned from natural images may
not fully capture the unique characteristics of pathological
tissue. Specifically, the Uni model was able to better adapt
to the complex visual features in pathology images, leading
to improved classification performance.

Furthermore, when comparing different MIL methods,
we found that AB-MIL and TransMIL consistently outper-
formed CLAM in the classification of soft tissue sarco-

mas. This suggests that both AB-MIL and TransMIL are
better suited to handle the complex and variable nature of
pathological data, allowing them to achieve higher accuracy
and robustness in identifying sarcoma subtypes. The perfor-
mance gap between these MIL methods highlights the po-
tential for leveraging more advanced MIL approaches to im-
prove classification outcomes in pathology.

Another crucial finding of this study is the significant im-
pact of stain normalization on model performance. We ob-
served that the application of stain normalization led to a
noticeable improvement in accuracy, AUC, and F1-scores
across all tasks. This emphasizes the importance of address-
ing staining variability, even when training data originates
from the same center. The reduction in staining-induced dis-
crepancies enables the models to focus more on intrinsic
tissue features, thus improving classification accuracy and
model generalization.

Overall, these findings underline the value of domain-
specific feature extraction, advanced MIL methods, and
stain normalization in enhancing the performance of com-
putational pathology models. The insights from this study
could contribute to the development of more robust and ac-
curate models for pathology image classification, particu-
larly in the context of soft tissue sarcoma.
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