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Abstract

Image fusion aims to integrate multiple modalities of images
into a single modality, thereby achieving complementary in-
formation and better adapting to downstream tasks such as
segmentation and detection. Existing image fusion methods
predominantly focus on visual information, often neglecting
the crucial role that semantic information at the textual level
can play in guiding the deep fusion of images. To address this,
we propose a novel framework—Text-Guided Image Fusion
(TGIF)—that leverages textual guidance for general image
fusion tasks. Specifically, TGIF extracts visual information
from images and employs large language models to gener-
ate corresponding textual descriptions. These descriptions are
then used to obtain textual features, which guide the fusion
process through cross-attention mechanisms, thereby enhanc-
ing information complementarity during the fusion. We will
conduct extensive experiments on various image fusion tasks
to validate the effectiveness of our framework, including both
qualitative and quantitative analyses.

Introduction
Image fusion aims to enhance the visual quality of images
and offer more accurate and reliable information for diverse
applications (Zhang 2021). Multimodal image fusion is cru-
cial in computer vision (Zhang et al. 2021), like infrared-
visible (Zhao et al. 2023b), medical (James and Dasarathy
2014), multi-exposure (Ma et al. 2019b), and multi-focus
image fusion (Zhang and Ma 2021). However, current im-
age fusion overly depends on visual features, neglecting
deeper semantic layers.While some advanced methods have
attempted to incorporate downstream tasks such as semantic
segmentation (Tang et al. 2022a) and object detection (Zhao
et al. 2023a), these approaches are still mainly confined to
superficial semantics derived from visual-level features, fail-
ing to tap into the more complex textual semantics that im-
ages can convey. Consequently, a key challenge that remains
is how to effectively leverage deeper semantic features that
extend beyond the visual information present in the images,
which is a critical area in need of further research.

Vision Language Models (VLM), trained on image-text
pairs, can align visual and language features for multi-
modal fusion. For example, models like CLIP (Radford et al.
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2021) and GPT-4 (Achiam et al. 2023) have strong capa-
bilities. We propose the Text-Guided Image Fusion (TGIF)
model, which has four stages: vision features extraction, text
features extraction, text-guided vision features fusion, and
generation of the fused image. This approach incorporates
VLMs into image fusion, leveraging textual semantic under-
standing to guide visual feature fusion.

Overall, our study addresses the problem that existing
image fusion techniques do not fully utilize deep seman-
tic information, and innovatively proposes an image fusion
paradigm based on visual language models. Using a large
language model to guide the fusion process based on the tex-
tual description of the source image, we can achieve a more
comprehensive understanding of the image content.

Related work
Multimodal Image Fusion Methods.
Multimodal Image Fusion Methods Image fusion has drawn
much attention recently. In the deep learning era, the main
image fusion methods can be grouped into four categories:
CNN models (Zhang et al. 2020b), GAN models (Ma
et al. 2020), AE-based models (Li and Wu 2018), and
Transformer-based models (Zhao et al. 2023b). These meth-
ods often use simple fusion rules. CNNs have limitations in
extracting global features. GANs like FusionGAN (Ma et al.
2019a) and DDcGAN (Ma et al. 2020) show good perfor-
mance but have training instability and potential texture dis-
tortion. AE-based models need a fusion rule. Transformer-
based methods like IFT (Vs et al. 2022) and CDDFuse (Zhao
et al. 2023b) combine CNNs with Transformer architec-
tures, and SwinFusion (Ma et al. 2022) uses a unique at-
tention mechanism. Recently, diffusion-based image fusion
has emerged, such as DDFM (Zhao et al. 2023c).

Vision-Language Model.
Visual language multimodal learning has become a hot re-
search topic. Vision-language models like BLIP (Li et al.
2023), DALL-E (Ramesh et al. 2022), and GPT4 (Achiam
et al. 2023) perform well in downstream tasks. BLIP bridges
visual and language models, and GPT4 has strong general
performance. These models provide external knowledge for
image captioning, and we are inspired to introduce a vision-
language model into image fusion to enable text to guide the



process effectively.

Method
In this paper, we have a pair of input images, which can be
infrared visible, medical, multi-exposure, or multi-focus im-
ages. The algorithm ultimately outputs a fused image. In this
section, we will provide a comprehensive description of our
TFIG algorithm, explaining its workflow and design details.

Figure 1: Frame diagram.

Workflow Overview
Brief and detailed workflows are illustrated in Figure 1 and
Figure 2.The Image Fusion paradigm TGIF (text-guided Im-
age Fusion) aims to enhance the effect of image fusion
through Text guidance, ensuring that the final fused im-
age can better retain the key information and semantic fea-
tures of the source image. TGIF’s workflow consists of three
closely linked modules: a visual encoder, a text encoder, and
a text-guided visual feature fusion module.

Text-Guided Image Fusion
Component I: Vision feature extraction. This module
uses an encoder based on the Transformer architecture
for visual feature extraction. The encoder is composed of
stacked Transformer blocks, and its self-attention mecha-
nism can capture long-distance dependencies between im-
age regions, having an advantage in processing image data.
In the workflow, paired source images are input into the en-
coder. Starting from the pixel level, features are gradually
extracted through Transformer blocks. In the Transformer
block, the self-attention mechanism calculates the degree of
association between positions, highlighting key feature ar-
eas. As the feature information is passed through multiple
blocks, the image feature representation is gradually refined,
and finally, a feature vector containing the core visual fea-
tures is output.

Component II: Text feature extraction. To obtain accu-
rate and comprehensive text features, this module considers
multiple input information, including the original image, its

Figure 2: Detailed Procedure.

segmentation map, detection map, and necessary artificial
prompts. The original image provides the visual scene con-
tent, the segmentation map determines the boundaries of ob-
jects or regions, the detection map gives the category and po-
sition information of objects, and the artificial prompts sup-
plement details. These information help a subsequent large
model to generate text describing the image.The process of
generating data is shown in Figure 3. The generated text is
processed by the pre-trained BLIP2 model. BLIP2 converts
the text from the natural language space to the feature space
and encodes it into a feature vector form suitable for guiding
image fusion. During the training process, the BLIP2 model
is frozen to ensure stability and consistency.

Component III: Text-Guided Vision Feature Fusion.
This module first preprocesses the text features of the source
image pair. Specifically, it splices the text features into a
unified vector to integrate the text description information
and provide a coherent and comprehensive text guidance
for subsequent fusion. Then, an adapter is used to process
the spliced text features to achieve the alignment of the
text feature space and the image feature space. The adapter
can automatically learn and adjust parameters according to
the input text features and image features, making them in
the same semantic dimension. After the text features are
aligned, they perform cross-attention operations with the im-
age features. The text features act as query vectors, and the
image features act as key and value vectors. By calculating
the attention weights, the text features guide the image fea-
ture extraction, highlighting relevant regions and features.
This operation is repeated multiple times to make the im-
age features fully absorb the semantic information in the text
features and improve the fusion quality. Under the guidance
of the cross-attention mechanism, the source image pair re-
spectively performs cross-attention for feature fusion, com-



Figure 3: Visualization of the dataset creation process and representative data displays.

bining the advantageous features of the two images.The spe-
cific process of cross-attention is shown in Figure 4 .Finally,
the fused features are processed by a decoder, which decodes
the fused features into the final fused image. The structure
and parameters of the decoder are designed according to the
specific task and model architecture, and its role is to convert
the fused features into an image form conforming to visual
perception.

Figure 4: Cross attention.

Experiment
In this section, we will demonstrate the performance of
TGIF on various image fusion tasks, showcasing its supe-
riority.

Loss Function. For the total training loss, we set it as:

Ltotal = Lint + α1Lgrad + α2LSSIM, (1)

where α1, α2 are tuning parameters. In the IVF task, fol-
lowing the setting in Zhao et al. (Zhao et al. 2023b),
Lint = 1

HW ∥IF −max(I1, I2)∥1, and Lgrad =
1

HW ∥|∇IF | −max(|∇I1|, |∇I2|)∥1.∇ indicates the So-
bel gradient operator. α1 and α2 are set to 20 and 0,
respectively. MIF task does not need fine-tuning train-
ing, therefore it has no loss function. For MFF and
MEF tasks, inspired by Liu et al. (Liu et al. 2023),
we set Lint = 1

HW ∥IF −mean(I1, I2)∥1,Lgrad =
1

HW ∥|∇IF | −max(|∇I1|, |∇I2|)∥1, and LSSIM = 2 −
SSIM(I1, IF ) − SSIM(I2, IF ).{α1, α2 } are set to
{300,1} and {500,1} in MFF and MEF tasks respectively,
in order to ensure the magnitude comparable in each term.

Training Details. A machine with a NVIDIA GeForce
RTX 4090 GPUs is utilized for our experiments. We train
the network for 300 epochs using the Adam optimizer, with
an initial learning rate of 1e-4 and decreasing by a factor of
0.5 every 50 epochs. The Adam optimization strategy is em-
ployed with the batchsize set as 2. We incorporate Restormer
blocks in both languageguided vision encoder V (·) and vi-
sion feature decoder D(·), with each block having 8 atten-
tion heads and a dimensionality of 64. M and N, representing
the number of blocks in V (·) and D(·), and set to 2 and 3,
respectively.

Metrics. We employ six quantitative metrics to assess the
fusion outcomes: entropy(EN), standard deviation(SD), spa-
tial frequency(SF), average gradient(AG), visual informa-
tion fidelity(VIF) and QAB/F . Higher metric values indi-
cate superior quality in the fused image.Further information
is available in Ma et al. (Ma, Ma, and Li 2019).

Infrared and Visible Image Fusion
Setup. Infrared-visible fusion experiments are conducted on
the MSRS (Tang et al. 2022b), 1083 image pairs in MSRS
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Figure 5: Visualization comparison of the fusion results in
the infrared-visible image fusion task.

Table 1: Quantitative results of IVF.This table presents the
quantitative performance evaluation of different methods on
the MSRS Infrared-Visible Fusion dataset.

EN SD SF AG VIF Qabf
DEF 6.46 37.63 8.60 2.80 0.77 0.54

CDDF 6.70 43.39 11.56 3.74 1.05 0.69
DDFM 6.19 29.26 7.44 2.51 0.73 0.48
Ours 6.62 42.00 11.53 3.64 0.83 0.67
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Figure 6: Visualization comparison of the fusion results in
the medical image fusion task.

Table 2: Quantitative results of MIF.This table presents the
quantitative performance evaluation of different methods on
the Harvard Medical Image Fusion dataset.

EN SD SF AG VIF Qabf
DEF 3.90 54.77 16.87 4.30 0.62 0.57
U2F 3.56 49.95 19.70 4.98 0.47 0.53

MSGF 4.06 75.01 20.34 5.09 0.49 0.50
Ours 4.45 65.26 23.35 5.16 0.78 0.76

Overexposure Underexposure Defusion

MGDN DIFnet Ours

Figure 7: Visualization comparison of the fusion results in
the multi-exposure image fusion task.

Table 3: Quantitative results of MEF.This table presents the
quantitative performance evaluation of different methods on
the SICE Multi-exposure Image Fusion dataset.

EN SD SF AG VIF Qabf
DEF 6.87 44.73 14.28 4.04 0.87 0.57

MGDN 6.94 43.69 15.04 4.59 0.88 0.64
DIFN 6.56 35.76 11.86 3.09 0.46 0.50
Ours 6.82 54.06 19.80 5.24 1.49 0.78
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Figure 8: Visualization comparison of the fusion results and
error maps in the multi-focus image fusion task.

Table 4: Quantitative results of MFF.This table presents the
quantitative performance evaluation of different methods on
the RealMFF Multi-focus Image Fusion dataset.

EN SD SF AG VIF Qabf
DEF 7.09 54.42 11.24 4.08 0.98 0.69

MGDN 7.09 54.24 15.15 5.24 1.07 0.75
ZMFF 6.99 51.15 13.93 4.95 0.94 0.70
Ours 7.14 56.64 15.52 5.34 1.54 0.74



Table 5: Ablation experiments results

Configurations Metrics
Detection Segment GPT EN SD SF AG VIF Qabf

w/o text 6.36 40.89 11.03 3.52 0.61 0.53
w/o Segment ✓ ✓ 6.45 41.31 11.19 3.66 0.71 0.61
w/o Detection ✓ ✓ 6.48 41.23 11.23 3.63 0.73 0.59

Ours ✓ ✓ ✓ 6.62 42.00 11.53 3.64 0.83 0.67

are for training and 361 pairs are for testing. We evalu-
ated TGIF against various state-of-the-art(SOTA) methods
including DeFusion, CDDFuse and DDFM.

Comparison with SOTA Methods. In Figure 5, TGIF
successfully integrated the thermal radiation information
with the detailed texture features. Leveraging textual fea-
tures and knowledge, the fusion process enhanced the vis-
ibility of objects in low-light environments, making tex-
tures and contours clearer, and reducing artifacts. For the
quantitative results in Table 1, our method showcases ex-
ceptional performance in almost all metrics, confirming its
adaptability for various environmental scenarios and object
categories. Hence, TGIF is proven to well maintain the com-
pleteness and richness of the information from source im-
ages, and generate results that conform to human visual per-
ception.

Medical Image Fusion
Setup. we engage the Harvard Medical dataset (Johnson and
Becker), which consisted of 50 pairs of MRI-CT, MRI-PET,
and MRI-SPECT images,to evaluate the generalizability of
our model.Notably, we employ the model trained on the IVF
experiments and conducted a generalization test on the Har-
vard Medical dataset without any fine-tuning. The competi-
tors include DeFusion , U2Fusion,and MsgFusion.

Comparison with SOTA Methods. In terms of visual
perception and quantitative analysis (Figure 6 and Table 2),
TGIF has shown outstanding accuracy in extracting cross-
modal structural highlights and detailed texture features, ef-
fectively integrating source information into the fused im-
ages. These achievements surpass even those of fusion mod-
els specifically fine-tuned via medical image pairs.

Multi-exposure Image Fusion
Setup.We conduct MEF experiments on the SICE. We uti-
lized 499 pairs from SICE dataset for training, while 90 pairs
from SICE for testing. Our comparison methods encompass
DIFNet,U2Fusion and DeFusion.

Comparison with SOTA Methods. Both quantitative
and qualitative results in Table 3 and Figure 7 demonstrate
the effectiveness of TGIF, which adeptly handles multi-
ple images with varying exposures, expanding the dynamic
range while simultaneously improving image quality and en-
hancing contrast.

Multi-focus Image Fusion
Setup. MFF experiments are conducted using
RealMFF (Zhang et al. 2020a). 639 image pairs from

RealMFF are employed for training. Comparative methods
encompass DeFusion,ZMFF and MGDN.

Comparison with SOTA Methods. As illustrated in Fig-
ure 8, benefiting from textual descriptions, TGIF excels in
identifying clear regions within multi-focus image pairs,
ensuring sharp foreground and background elements. The
quantitative results in Table 4 further underscore the excel-
lence of our methodology.

Ablation Studies
To explore the effectiveness of each module in our proposed
method, using the infrared-visible fusion task as an example,
we conduct ablation studies on the test dataset of MSRS. The
results are presented in Table 5.

Textual Guidance. In Exp. I, we removed the guidance
through segmentation and detection prompts and only used
the initial text for fusion.

Semantic Prompts. Then, in Exp. II-III, the original im-
ages, segmentation prompts and detection prompts were in-
put into GPT respectively. Different text prompts were ob-
tained, and these descriptions would be used as the text in-
puts for image fusion.

In conclusion, ablation experiments demonstrate that rely-
ing on the comprehensive information from different grains
of captions and the powerful summarization capability of
GPT, our experimental setup achieved optimal fusion per-
formance, validating the rationality of our TGIF setting.

Conclusion
Our method provides a new perspective for the image fu-
sion task by combining visual and language models. Future
research may further explore how to introduce 3D into the
multimodal image fusion process. After all, 3D can bring
more perceptual effects and three - dimensional structural
information that cannot be shown on a two - dimensional
plane, which can further improve the quality of image fu-
sion.
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