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Abstract

Text-to-speech (TTS) systems have made significant ad-
vancements with the application of deep learning, producing
speech that is increasingly natural and expressive. However,
challenges persist in the areas of personalization and improv-
ing synthesis clarity, particularly in few-shot learning scenar-
ios. This study focuses on GPT-SoVITS, a novel model de-
signed for few-shot text-to-speech and voice cloning, GPT-
SoVITS allows fine-tuning with just one minute of training
data, significantly enhancing the realism and speaker simi-
larity of the generated speech. Despite these advancements,
the model faces limitations when synthesizing longer sen-
tences, with issues such as audio loss and low clarity. This
study explores methods to address these issues by improving
the model architecture and training processes, with the goal
of significantly enhancing overall performance.

Introduction

Text-to-speech (TTS) aims to synthesize intelligible and nat-
ural speech (Tan et al. 2021). The emergence of deep learn-
ing has revolutionized the field of speech synthesis, lead-
ing to the development of highly sophisticated TTS systems.
Traditional TTS approaches often struggled with natural-
ness and expressiveness, limiting their application in human-
computer interactions (van den Oord et al. 2016). Recent in-
novations, particularly in voice cloning technologies, have
paved the way for more personalized and context-aware
speech synthesis (Chen et al. 2021) (Yan et al. 2021). Voice
cloning allows for the reproduction of a specific speaker’s
voice, capturing unique characteristics such as tone, pitch,
and emotional inflections.

The GPT-SoVITS model addresses these challenges
through its unique features: few-shot text-to-speech (TTS)
and cross-lingual support. Few-shot TTS allows for fine-
tuning the model with just one minute of training data, sig-
nificantly enhancing voice similarity and realism. This is
particularly beneficial in scenarios where obtaining exten-
sive voice samples is impractical (Wang et al. 2023). How-
ever, while GPT-SoVITS demonstrates great potential, it still
faces challenges with longer sentences, where issues such as
audio loss and low clarity may occur, affecting the quality of
the output. If this problem can be effectively solved, it will
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greatly increase the ability of GPT-SoVITS to solve complex
sentences.

In this paper, we first review the relevant literature on
text-to-speech (TTS) and voice cloning technologies, high-
lighting the limitations of existing systems. We then out-
line our proposed method, detailing the architecture of the
GPT-SoVITS model and the training process used. Next, we
present feasible solutions to some current issues and con-
duct experiments aimed at generating more personalized and
naturally sounding speech.The findings of this research will
contribute to the ongoing development of TTS systems that
can seamlessly adapt to individual user preferences.

Related Work
Traditional and Neural Network-Based TTS

Early text-to-speech (TTS) systems relied on concatena-
tive methods or statistical parametric models. Concatenative
TTS, such as the system proposed in Hunt and Black (Hunt
and Black 1996), involved piecing together pre-recorded
speech units to form words and sentences, which often re-
sulted in synthesized speech lacking in naturalness, espe-
cially when generating prosody and emotional expressions.
Statistical parametric models, including Hidden Markov
Models (Zen, Tokuda, and Black 2009), provided more flex-
ibility in generating speech but suffered from a “muffled” or
“robotic” sound.

The emergence of deep learning has significantly im-
proved speech synthesis, especially in terms of natural-
ness and expressiveness(Kong, Kim, and Bae 2020). Neu-
ral network-based models, such as Tacotron (Wang et al.
2017) and Tacotron 2 (Shen et al. 2018), have replaced tra-
ditional methods by learning the mapping from text to mel-
spectrograms, which are then converted into audio wave-
forms using neural vocoders like WaveNet (van den Oord
et al. 2016). These models allow for more flexible and
natural-sounding speech synthesis, capable of dynamically
adjusting pitch, duration, and intensity.

Few-shot learning has gained traction in TTS due to
the difficulty of obtaining large amounts of labeled speech
data for individual speakers. VITS combines variational au-
toencoders and normalizing flows to generate high-quality
speech from limited data. Similarly, AdaSpeech (Chen et al.
2021)introduces adaptive mechanisms to enhance speech



naturalness and consistency when trained on few-shot data.
These approaches are particularly useful in applications such
as personalized voice assistants, where large amounts of
speech data for each user are impractical.

Voice Cloning with Deep Learning

Voice cloning technology has advanced significantly with
the use of deep learning(Arik et al. 2018). A neural network-
based system for TTS synthesis (Jia et al. 2019) introduced
a speaker encoder capable of generating a voice embed-
ding from a small amount of data, enabling high-quality
voice cloning with minimal input. Other systems, such as
AdaSpeech (Chen et al. 2021) (Yan et al. 2021), have pushed
the boundaries of cross-lingual voice cloning, allowing mod-
els to generalize across languages that were not present in
the training data. This is essential in multilingual contexts
where TTS systems need to support multiple languages.

VALL-E

VALL-E is a TTS system based on Neural Codec Language
Modeling (Wang et al. 2023). Its design consists of three
main modules: Phoneme Conversion, Audio Codec Encoder
and Neural Codec Language Modeling. The system takes
two inputs: a text prompt and an acoustic prompt (a 3-
second audio recording of the target voice). The phoneme
conversion module processes the text input into phoneme
representations, while the audio codec encoder encodes the
acoustic prompt into discrete acoustic tokens. These inputs
are then passed into the core module—Neural Codec Lan-
guage Modeling, which employs a pre-trained Transformer
model to learn the semantic relationship between the speech
and text inputs, generating personalized acoustic token se-
quences. Finally, the audio codec decoder converts the gen-
erated acoustic tokens into high-quality personalized speech.

VALL-E has been pre-trained on a large-scale speech cor-
pus, allowing it to generalize well to a wide range of voices
and languages with minimal data.The system excels not only
in voice cloning but also in emotional speech synthesis and
style adaptation, making it a versatile tool for a variety of
speech tasks. Furthermore, VALL-E achieves near real-time
synthesis, providing high-quality results with low latency.
This positions VALL-E as a competitive option for applica-
tions such as virtual assistants, audiobooks, and accessibility
tools, where high-fidelity, personalized speech is required.

Figure 1 demonstrates how VALL-E integrates text and
voice prompts to achieve efficient and personalized speech
synthesis.

GPT-SoVITS

Building on these advancements, the GPT-SoVITS model
introduces a few-shot learning paradigm combined with
cross-lingual capabilities. Few-shot learning enables the
model to be fine-tuned with just one minute of speaker data,
significantly improving voice cloning efficiency and realism.
GPT-SoVITS also expands cross-lingual support, covering
English, Japanese, Korean, Cantonese, and Chinese, making
it a versatile solution for multilingual applications. However,
challenges remain in synthesizing longer sentences, where
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Figure 1: The architecture of VALL-E, illustrating its main
components: Phoneme Conversion, Audio Codec Encoder,
Neural Codec Language Modeling, and Audio Codec De-
coder

the model can suffer from audio dropouts and reduced intel-
ligibility.
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Figure 2: The workflow of GPT-SoVITS

Figure 2 demonstrates the GPT-SoVITS model for TTS
utilizes a dual-input approach. A low-quality reference audio
clip (around 5 seconds) is used to extract the target speaker’s
timbre through ASR or manual transcription, generating ref-
erence text and tokens. Simultaneously, source speaker in-
put, such as target text, is combined with reference tokens
containing timbre and semantic information via a GPT-like
architecture. This process outputs speech that matches the
target speaker’s characteristics while preserving the seman-
tic content of the input.

Proposed Solution
Preprocessing Models with the Initial Dataset

To enhance the quality and generalization ability of the
model, multiple preprocessing strategies are employed on
the same dataset.

Denoising Models To improve the quality of the speech
data and ensure that the model learns from clean, noise-free
inputs, several denoising strategies are employed during the
preprocessing phase.UVRS5 is used as the initial step for pre-
processing the audio materials. It enhances the quality by



effectively removing various types of unwanted noise and
artifacts, preparing the speech signals for further processing.

To handle reverberation, the MDX-Net model is em-
ployed. It is particularly effective for dual-channel rever-
beration removal, offering superior performance in elimi-
nating room echoes and environmental reverberation from
multi-microphone recordings. However, it is worth noting
that MDX-Net is not suitable for single-channel reverbera-
tion removal.

Two models DeEcho-Aggressive and DeEcho-DeReverb
are utilized to remove echo.The DeEcho-Aggressive model
is designed to aggressively suppress echoes, making it
ideal for environments with significant echo. On the other
hand, DeEcho-DeReverb performs additional reverberation
removal, capable of handling single-channel echoes ef-
fectively. While DeEcho-DeReverb excels at eliminating
single-channel reverberation, it struggles to fully clean re-
verberation caused by high-frequency plate-like reflections,
commonly present in challenging acoustic conditions.

Slice Selection Strategy In order to enhance the quality
and relevance of the training data, we applied two distinct
slicing strategies to the initial data. The first strategy in-
volves directly slicing the denoised audio data without fur-
ther processing. This method ensures a straightforward ap-
proach to segmenting the audio into manageable pieces, al-
lowing for easy use in model training.

The second strategy, however, takes a more refined ap-
proach. After denoising the audio, we perform an additional
filtering and selection process to retain only the highest qual-
ity segments. This step involves evaluating the audio slices
for clarity and relevance, and approximately 20% of the
original dataset is kept for training(Chen et al. 2019). This
filtered subset represents the most informative and noise-
free portions of the audio, ensuring that the model is trained
on high-quality data, which is expected to improve perfor-
mance and reduce the impact of less useful or noisy samples.

Additionally, all other slicing parameters, such as the
threshold, minimum length, minimum interval, hop size,
and maximum mute retention, remain consistent across both
strategies. This ensures that the only difference between the
two approaches is the quality control applied in the second
strategy. By maintaining uniformity in all other parameters,
we can attribute any improvements in model performance
directly to the quality of the selected slices rather than dif-
ferences in preprocessing configurations.

Data Augmentation with the Same Processing Method
For data augmentation, we prepared six initial speech seg-
ments with durations of 10, 20, 30, 40, 50, and 60 min-
utes. Each segment was constructed by incrementally adding
10 minutes of new raw audio to the preceding one, ensur-
ing that all samples are based on a continuously expanding
dataset(Lakhotia et al. 2021). With different slicing strate-
gies applied to these segments, a total of 12 distinct datasets
were generated for comparative analysis. This approach al-
lows for evaluating the impact of varying data sizes and
slicing methods on model performance(Chung et al. 2019),
while maintaining consistent processing techniques across
all datasets.

Hyperparameter Tuning

In the hyperparameter tuning process, different configura-
tions were explored to facilitate comparison between mod-
els. For the SoVITS model, the learning rate weight for the
text module was tested to assess the impact of the parameter
on performance. Similarly, for the GPT model, adjustments
were made to the total training duration and the activation
of DPO(Direct Preference Optimization) training, in order
to evaluate their effects on the model’s output. These hyper-
parameter adjustments were made to compare the models’
effectiveness under different settings, providing insights into
the optimal configurations for each approach.

Fusion Strategy

The various strategies outlined above lead to the creation
of several distinct SOVITS and GPT models. The ultimate
output of the inference process is generated through the fu-
sion of these models. The purpose of exploring different fu-
sion strategies is to investigate how the combination of these
models can enhance overall performance. By experimenting
with various fusion methods, we aim to identify the optimal
approach that maximizes the quality and effectiveness of the
final model, ensuring improved synthesis results.

Model Evaluation

We evaluate all the different models generated in the final
phase. Each model generates X sentences, with each sen-
tence having Y variations, resulting in a total of X x Y
speech samples. These samples are randomly shuffled and
scored. Let s; ; denote the score for the j-th variation of the
i-th sentence. The evaluation score for each model is com-
puted as follows:

1 X v
Q= %y 225
=1 j=1

where @ is the overall evaluation metric, representing the
model’s performance, and s; ; are the individual scores for
each sample. The average score across all generated sam-
ples is used to determine the final performance metric of the
model.

After computing the scores for all models, we rank them
based on their Q; values. A higher score indicates better
performance, encompassing clarity, completeness, and voice
similarity(Adigwe et al. 2018). The models are sorted in de-
scending order, and the rank of the k-th model is determined
as follows:

Rank (k) = argsort (Q1,Q2,- .., Qk)

where Qi is the evaluation score of the k-th model, and
the models are ranked in decreasing order of their scores.
The model with the highest 5 will have rank 1, and the
model with the lowest @}, will have rank K.

Process Design

The overall Proposed Solution process design is shown in
Figure 3.
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Figure 3: Proposed solution process design

Experiments

In real-world scenarios, the collected raw voice data is of-
ten imperfect and contains various imperfections. To ensure
a fair comparison in our experiments, we selected voice ma-
terials that included noise, distortion, echoes, and fluctua-
tions in volume. This approach ensures that the experiment
reflects more realistic conditions and prevents high-quality
data from skewing the comparative evaluation of the mod-
els.

In this section, we present the results of our experiments
designed to evaluate the effectiveness of the GPT-SoVITS
model under various configurations and preprocessing meth-
ods.

Experiment Setup

To increase the contrast in our experiments, we selected six
initial speech recordings (01 to 06) and combined them into
two datasets: 01-02 and 01-06, with durations of 20 minutes
and 60 minutes, respectively. These two datasets were pro-
cessed using two slicing strategies: Direct Slicing and Se-
lective Slicing, where only approximately 20% of the origi-
nal length was retained in the selective slicing strategy. This
resulted in four sliced datasets:

¢ 01-02 (20min) Direct Slicing
¢ 01-02 (20min) Selective Slicing

* 01-06 (60min) Direct Slicing
* 01-06 (60min) Selective Slicing

The SoVITS model training phase was conducted for 8
epochs, with the text module learning rate weights set to 0.4
and 0.28, resulting in 8 different SOVITS model parameter
files.

For the GPT model training phase, a total of 15 epochs
were performed with DPO(Direct Preference Optimization)
either enabled or disabled, generating 8 GPT model param-
eter files.

Experimental results and analysis

In the fusion phase, the SoVITS and GPT models were com-
bined. For each model combination, 5 sentences were gen-
erated, and each sentence was generated twice, yielding a
total of 640 speech samples.These samples were scored on a
scale of 60-100, in integer values.The scores should follow
a normal distribution centered around 80 to better compare
experimental results.

The final evaluation of these 64 models involved aver-
aging the 640 scores for each model, resulting in a qual-
ity score (Q value) for each model. The models were then
ranked based on their Q values.

The experimental results and analysis are as follows:

* The SoVITS model trained on 01-02 (20min) using the
selective slicing strategy and combined with the GPT
model trained on 01-06 (60min) using the selective slic-
ing strategy with both DPO disabled, received the highest
scores.

* The SoVITS model trained on 01-06 (60min) using the
direct slicing strategy, combined with the GPT model
trained on 01-02 (20min) using the direct slicing strat-
egy, received the lowest scores.

¢ For other combinations, models trained with the selec-
tive slicing strategy generally received higher scores than
those trained with the direct slicing strategy. Even though
only about 20% of the original dataset remains, selective
slicing strategy effectively improves the performance of
the model, whether in training the SOVITS model or the
GPT model.

* When the training dataset was 01-02 (20min), enabling
DPO training significantly improved the model perfor-
mance regardless of the slicing strategy. However, when
trained on 01-06 (60min), DPO training introduced more
noise in the model outputs, indicating that DPO training
improved scores for models trained on shorter datasets
but performed poorly on longer datasets.

* The text learning rate weight had little to no impact on
the overall model scores.

* Increasing the dataset length during SoVITS model train-
ing did not improve model performance. In fact, as the
dataset length increased, the model learned more noise
features from the dataset, leading to worse output results.

* Increasing the dataset length during GPT model training
effectively improved model performance. GPT models



trained on longer datasets performed better on these sen-
tences, reducing issues like missing or unclear speech in
the output.
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Figure 4: Average Q Values for 64 Combinations

Figure 4 displays the bar chart of the average Q values
for each model (Q1-Q64), ranked from highest to lowest.
The chart highlights the performance variation across mod-
els, with the y-axis limited to a range of 60 to 90 for clarity.
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Figure 5: Box Plot for 64 Model Combinations

Figure 5 illustrates the distribution of scores for each
model combination in the form of a box plot. Each box plot
represents the score distribution of a specific model, show-
ing the median (red line), mean score(orange triangle), quar-
tiles, and potential outliers (light grey points). The scores are
displayed on the x-axis, while the model labels (Q1-Q64) are

shown on the y-axis. The x-axis range is set from 60 to 100
to focus on the score range of interest, and the box plots are
designed with a sky blue fill and black borders. Outliers are
defined as data points that fall outside the range:

range(k) =[Sk — 1.5 x IQRy, T, + 1.5 x IQRy]

where S is the first quartile (lower quartile), 7" is the third
quartile (upper quartile), and /QR = T'— S is the interquar-
tile range. These outliers represent data points that are sig-
nificantly different from the main distribution of the scores,
indicating either exceptionally high or low performance in
certain model combinations.

Conclusion

In this study, we introduced the GPT-SoVITS model, which
addresses key challenges in text to speech synthesis and
voice cloning, particularly in few shot learning scenarios.
Through a series of experiments, we demonstrated that re-
fining the model architecture and improving the preprocess-
ing strategies can mitigate some of these issues. The re-
sults highlight the importance of the quality of the original
dataset. Discarding or modifying some of the low-quality
or invalid content not only reduces unnecessary training
time but also significantly improves model performance
and demonstrate that GPT-SoVITS can be a valuable tool
for personalized voice cloning in challenging conditions.
Thereby demonstrating that GPT-SoVITS can be a valu-
able tool for personalized voice cloning in challenging con-
ditions. Further analysis revealed that DPO training led to
improved outcomes for models trained on smaller datasets.
These insights could facilitate the synthesis of longer sen-
tences via the GPT-SoVITS model.
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