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Abstract

Text-to-Speech (TTS) systems have seen widespread applica-
tion across various fields and have attracted increasing atten-
tion. However, traditional TTS models often focus on gener-
ating neutral speech, neglecting the personalized characteris-
tics of the speaker. On the other hand, despite the emergence
of many high-performance models in recent years, Chinese
speech synthesis has not received sufficient attention in this
development. To address this issue, we propose a two-stage
model: (i)we use x-vectors to extract speaker-specific fea-
ture vectors from reference audio and then input these fea-
ture vectors, along with the paired text, into the pre-trained
SpeechT5 model to generate the Mel spectrogram of the tar-
get audio. (ii) we employ HiFi-GAN to convert the gener-
ated Mel-spectrogram into high-fidelity Chinese audio sig-
nals. Experimental results show that our model achieves a
Mean Opinion Score(MOS) of 3.17, with audio quality and
fidelity approaching that of the current state-of-the-art multi-
speaker TTS systems.

Introduction
Multi-speaker TTS, which is sometimes referred to as
speech clone in specific contexts, is designed to synthesize
speech from input text while retaining the voice characteris-
tics of the speaker given in a reference speech. TTS models
have fundamentally transformed the field of Natural Lan-
guage Processing (NLP), enabling the conversion of writ-
ten text into synthetic speech that closely resembles human
voice[15, 17]. In this process, it is essential not only to en-
sure the fluency of the synthesized voice but also to make
the generated speech as similar as possible in quality and
style to the real voice [14]. In recent years, the TTS industry
has made significant strides and now plays a critical role in
various applications, including voice assistants, audiobooks,
and accessibility features[8]. It is worth noting that multi-
speaker TTS is not just a technology but also a new cul-
tural and artistic practice. It provides users with personalized
systems [16], helps language learners mimic specific voice
styles to improve pronunciation and speaking skills [18], and
can also be used to clone the voices of deceased relatives or
historical figures. Additionally, multi-speaker TTS provides
new data and methods for related research, contributing to
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the further development of speech recognition and synthesis
technologies.

With the strengthening of deep learning and pre-training
technologies in multi-speaker TTS [5, 9], various efficient
synthesis algorithms have emerged, significantly advancing
the progress of multi-speaker TTS. For instance, Tacotron,
as an end-to-end model for generating text-to-speech, can
directly convert characters into speech [28]. FastSpeech is
a new feedforward network based on Transformer that can
parallelly generate mel spectrograms, significantly enhanc-
ing the generation speed of mel spectrograms [21]. More-
over, Parallel WaveGAN, using generative adversarial net-
works (GANs), effectively captures the time-frequency dis-
tribution of real speech waveforms by jointly optimizing
multi-resolution spectrograms and adversarial loss func-
tions, allowing for real-time synthesis of high-quality speech
[29]. It is worth mentioning that SPEAR-TTS [10] only re-
quires a minimal amount of parallel data for training, and
can synthesize speech using voice samples as short as 3 sec-
onds, maintaining the voice characteristics of speakers not
seen before. Vall-E [26] using discrete codes derived from an
off-the-shelf neural audio codec model, and sets a new sota
in speech naturalness and speaker similarity. These techno-
logical advancements have led to significant improvements
in both the speed and quality of multi-speaker TTS. Re-
cently, GPT-soVITS[22] has emerged as a significant mile-
stone, facilitating the generation of high-quality and high-
fidelity speech synthesis, while also showcasing few-shot
learning capabilities. GPT-soVITS is a decoder-only model
that starts with an auto-regressive process, generating ref-
erence audio from transcription while embedding speaker
features into the latent space. The model then processes the
target text and produces the corresponding target audio, re-
flecting the desired timbre.

Although previous researchers have contributed signifi-
cantly to creating multi-speaker TTS models, they still faces
several challenges and issues. For example, accurately ex-
tracting voice features such as timbre, pitch, and speech
rate remains a difficult task [1]. Achieving high-quality
multi-speaker TTS often requires a substantial amount of la-
beled data, and collecting this data is both time-consuming
and costly [23, 4]. Additionally, there are limitations in
emotional expression and voice consistency, and challenges
remain in addressing diversity and naturalness [28, 21,



16].Furthermore, computational resources present another
significant challenge that cannot be overlooked.

To dive into the aforementioned issues, this paper pro-
poses a voice cloning model consisting of three modules:
(i) the x-vectors technology, used to extract speaker-specific
features from reference audio; (ii) a pre-trained SpeechT5
model for generating spectrograms from text; (iii) a HiFi-
GAN model for converting the generated spectrograms into
natural waveforms. The x-vector method, as a feature ex-
traction approach, can effectively extract speaker character-
istics, maintaining good generalization ability even with in-
sufficient sample sizes, and showing excellent performance
in handling noise [23]. Simultaneously, HiFi-GAN offers
fast synthesis speeds and allows for controlling the style and
emotion of synthesized speech by adjusting input parame-
ters, thus generating high-quality, natural-sounding speech
[13]. SpeechT5 utilizes unlabeled speech and text data for
pre-training, significantly enhancing the model’s perfor-
mance in various application scenarios, accurately generat-
ing speech content and improving the quality of speech syn-
thesis [2].

Specifically, the proposed voice cloning model consists
of three steps: First, to synthesize the voice of a specific
speaker, the speaker’s reference speech must be encoded
separately to provide prior information. The embedding fea-
ture representation of the speaker can be obtained using the
x-vectors technology, which utilizes a Time-Delay Neural
Network(TDNN) to map the extracted acoustic features into
a high-dimensional space, generating fixed-length feature
vectors that effectively represent the speaker’s voice char-
acteristics. Second, the paired input text and the speaker
feature representation obtained in the first step are jointly
fed into the SpeechT5 model, which learns the complex
relationships between linguistic content and acoustic fea-
tures, and generates a spectrogram containing both textual
information and the speaker’s voice characteristics. Third,
the generated spectrogram is input into the vocoder — the
HiFi-GAN model, which reconstructs a high-quality speech
waveform from the Mel spectrogram, while preserving the
target speaker’s voice features.Finally, we evaluate the per-
formance of the proposed model using the MOS and com-
pare our model with GPT-soVITS.

The main contributions of this paper can be summarized
as follows:

• A two-stage model constructed using a cascade approach
is proposed, combining multiple technologies such as x-
vectors, SpeechT5, and HiFi-GAN, to enhance the qual-
ity of multi-speaker TTS and achieve high-quality, per-
sonalized, and natural speech synthesis.

• By fine-tuning the English model on a Chinese dataset,
the model expands its knowledge scope and enhances its
ability to accommodate speech with varying languages,
pronunciations, and speaking speeds, thus improving its
application in Chinese speech synthesis.

• Our model achieves a MOS of 3.17, which approaches
the performance of the current state-of-the-art multi-
speaker TTS models in Chinese tasks of 3.92.

Related Work
In this study, we try to improve the effectiveness of voice
cloning of Chinese from multiple perspectives. In the fol-
lowing, we review relevant research and previous efforts in
these areas.

Cross-modal Mapping Between Speech and Text
Cross-modal mapping between speech and text is a critical
component in speech synthesis, particularly in the context
of voice cloning. While traditional text-to-speech (TTS) sys-
tems aim to generate natural-sounding speech from textual
input, voice cloning involves a more complex mapping. It
not only synthesizes speech but also replicates the unique
voice characteristics of the speaker.

Several studies have explored this mapping to improve
the accuracy and naturalness of synthesized speech. For
instance, Tacotron [28] introduced a sequence-to-sequence
model that converts linguistic features, such as phonemes,
into mel-spectrograms, which are subsequently used to gen-
erate speech waveforms. Subsequent research, including
techniques like pretraining the speech decoder in TTS via
autoregressive mel-spectrogram prediction [7] and methods
for masking and reconstructing mel-spectrograms [6], has
further refined these approaches to improve the alignment
between text and speech.

Although the above studies have made a series of
progress, the inherently complex tones and syntactic struc-
tures of Chinese make cross-modal mapping more compli-
cated, and there is still a long way to go. In our work, we
addressed this issue by leveraging the tokenizer from a large-
scale pre-trained model that is natively designed to support
Chinese.

Disentangling speech content and timbre
Voice cloning systems typically aim to synthesize both intel-
ligible speech content and the unique voice characteristics
(timbre) of a specific individual. In traditional speech syn-
thesis models, these two elements are often fused, resulting
in a less flexible and rigid voice output. The lack of clear
separation between content and timbre can limit the expres-
siveness and personalization of the synthesized voice.

In this work, we explore the disentangling of speech con-
tent and timbre in the context of Chinese voice cloning. Our
approach seeks to ensure that the timbre remains faithful to
the original speaker, while allowing for flexible manipula-
tion of the speech content. This separation enhances the flex-
ibility of voice cloning systems and is particularly valuable
for applications such as personalized speech assistants and
dubbing, where it is crucial to preserve the speaker’s iden-
tity across diverse speech contexts.

Multi-speaker Pre-trained Model
In recent years, pre-trained models have achieved significant
success in various speech processing tasks, including voice
cloning. These models leverage large-scale, diverse datasets
to capture a wide range of speaker-specific features, en-
abling them to generalize effectively to new, unseen speakers
with minimal fine-tuning.



Multi-speaker pre-trained models typically utilize speaker
embeddings that encode the unique characteristics of indi-
vidual speakers. These embeddings are learned during the
pre-training phase and can be fine-tuned on smaller, domain-
specific datasets to adapt the model to new speakers. This
approach greatly reduces the amount of training data re-
quired for voice cloning, making it feasible to generate high-
quality synthetic voices for a broad array of speakers, even
when data is limited.

Our work leverages this concept to enhance multi-speaker
TTS for Chinese speakers.

Multi-speaker TTS with Fine-tuning Techniques
Multi-speaker text-to-speech (TTS) systems leverage
speaker embeddings to condition the speech generation
process, enabling the model to learn the distinctive char-
acteristics of each speaker’s voice without the need for
large amounts of speaker-specific data. This is particularly
advantageous in scenarios where training data for individual
speakers is limited or when the goal is to develop a system
capable of synthesizing a wide variety of voices from a
relatively small set of training examples.

Fine-tuning techniques, where pre-trained models are
adapted to new speakers or new conditions, have proven
to be highly effective in this domain. One such example is
the FastSpeech 2[20] with speaker conditioning, which has
demonstrated that a fine-tuning strategy can allow a model
to efficiently adapt to unseen speakers while retaining high
synthesis quality.

This is particularly useful for languages such as Chi-
nese where high-quality speech data is scarce, as collecting
enough speaker-specific data can be very resource-intensive.
In our work, we explore the potential of fine-tuning a voice
cloning model on a multi-speaker Chinese dataset, enabling
it to accurately capture the nuances of Chinese pronuncia-
tion, rather than synthesizing accented Chinese.

Method
Problem Definition
The voice cloning task can be viewed as a mapping between
the text and the corresponding speech signals of the target
speaker. Let:
• T = {t1, t2, ..., tn} represent the sequence of text to be

synthesized.
• S = {s1, s2, ..., sm} represent speech waveform in the

desired timbre.
• The objective of the speech cloning model is to learn a

mapping f that generates speech sequences S from the
text sequence T , i.e.,

S = f(T ; θ)

where θ represents the reference audio of the target
speaker.

In practice, this task involves both linguistic and speaker-
specific information. While traditional TTS models focus on
generating neutral speech, voice cloning models need to in-
corporate speaker-specific features to produce personalized

speech. These challenges can be addressed through the use
of advanced neural architectures and multi-modal learning.

Speaker Embedding Extraction To synthesize speech
that sounds like a specific target speaker, it is essen-
tial to encode the speaker’s unique vocal traits. This
is typically achieved through the extraction of speaker
embeddings—fixed-length vectors that capture the speaker’s
identity. Speaker embeddings can be obtained using pre-
trained models such as Speaker Recognition Networks or
autoencoders. The embedding vector es is derived from a
small amount of reference speech from the target speaker,
and it represents key features such as voice timbre, pitch,
and other distinctive acoustic patterns.

Formally, given a reference audio clip from the target
speaker, the speaker embedding extraction process can be
defined as:

es = g(audio clip;ϕ)
where g is an embedding function, ϕ represents its parame-
ters, and es is the resulting speaker embedding.

Once the speaker embedding es is computed, it is used
during the synthesis process to condition the generation of
the target speaker’s speech, alongside the text input T . This
allows the model to adjust the prosody, pitch, and other
speaker-specific features, ensuring that the output speech
matches the target speaker’s voice.

Mel Spectrogram Generation The next step in voice
cloning involves generating a time-frequency representation
of the speech, typically in the form of a Mel spectrogram.
The Mel spectrogram is a widely used feature in speech
synthesis tasks, as it effectively represents the speech signal
while reducing dimensionality and preserving perceptually
relevant information.

To generate the Mel spectrogram, the model takes the
paired input T (text or phoneme sequence) and the speaker
embedding es as inputs and processes them through a se-
quence of neural network layers. The model outputs a se-
quence of Mel spectrograms Ŝ = {ŝ1, ŝ2, ..., ŝm} that rep-
resent the target speech signal in a time-frequency domain.

This step can be modeled as:

Ŝ = h(T, es; θ)

where h represents a neural network mapping that generates
the Mel spectrogram, and θ represents the model parameters.

To ensure that the generated spectrogram preserves both
the linguistic content of the input text and the speaker-
specific features, the network typically incorporates both a
sequence-to-sequence architecture and a speaker condition-
ing mechanism. Sequence-to-sequence architectures, such
as Tacotron or Transformer-based models, are commonly
used to map the text input to the Mel spectrogram, while
speaker embeddings are fed into the model through atten-
tion mechanisms or concatenation layers.

Audio Generation Once the Mel spectrogram is gener-
ated, the next step is to convert it back into a speech wave-
form that can be played by a speaker. This step is commonly
referred to as waveform generation or vocoder. The goal is
to reconstruct a high-quality speech waveform from the Mel



Figure 1: Architecture of Our Model

spectrogram while preserving the characteristics of the tar-
get speaker’s voice.

A popular approach for this task is to use a neural vocoder,
such as WaveNet, HiFi-GAN, or WaveGlow. These models
are trained to convert spectrograms into raw audio by learn-
ing the complex mapping between the frequency-domain
representation and the time-domain waveform. In the con-
text of voice cloning, the vocoder takes the Mel spectrogram
Ŝ and outputs the corresponding speech waveform x, i.e.,

x = v(Ŝ;ϕ)

where v is the vocoder model, and ϕ represents its param-
eters. The vocoder is typically trained on a large dataset
of paired Mel spectrograms and waveforms.In modern sys-
tems, the vocoder may also take speaker embeddings as ad-
ditional input to ensure that the output waveform retains the
unique characteristics of the target speaker’s voice. By com-
bining speaker embeddings with the Mel spectrogram, the
vocoder is able to generate a speech waveform that sounds
not only linguistically accurate but also natural and person-
alized.

The overall voice cloning pipeline can therefore be sum-
marized as a multi-stage process, where each stage focuses
on one aspect of speech generation, from text processing
and speaker embedding extraction to Mel spectrogram gen-
eration and waveform synthesis. By jointly optimizing these
components, the system is able to produce high-quality syn-

thetic speech that closely resembles the voice of the target
speaker.

Model Architecture
Our voice cloning model is constructed using a cascade
approach with two key components (Fig 1): a text-to-
spectrogram model and a vocoder that converts the gener-
ated spectrogram into an audible waveform. The two com-
ponents work in tandem to synthesize high-quality, speaker-
specific speech from text input.

Spectrogram Model In the text-to-spectrogram module,
we leverage the SpeechT5, which is different from the SOTA
models [27, 11]. It is a powerful pre-trained multi-modal
model designed for a range of text-to-speech and speech-
related tasks. SpeechT5 is a versatile architecture that learns
joint representations of text and speech, allowing it to better
capture the complex relationships between linguistic content
and speech signals. By pre-training the model on large-scale
multi-modal datasets, SpeechT5 learns to generate high-
quality spectrograms that can be used as an intermediate rep-
resentation for speech synthesis.

The choice of SpeechT5 offers several advantages:
• Generalization across tasks: SpeechT5 is pre-trained on

a variety of speech synthesis tasks, allowing it to gen-
eralize well to different languages, accents, and voice
styles. In particular, SpeechT5 is shown to outperform
other models in the field of voice conversion, which is
similar to voice cloning.

• Robustness to text input variations: The model is capa-
ble of handling diverse input representations, including
raw text, phonetic transcriptions, or even text mixed with
prosody markers (such as pitch or duration).

• Integration of speaker-specific features: By fine-tuning
SpeechT5 on target speaker data, the model can adapt
to generate speech in the target voice, preserving the
speaker’s characteristics such as tone, pitch, and speech
patterns.

The output of this model is a sequence of mel spectrogram
frames, which serves as an intermediate representation of
the speech signal, encoding both the content and the speech
signals relevant to the target speaker.

Vocoder The vocoder is used to convert the generated
spectrogram into a natural waveform. Earlier approaches,
such as Griffin-Lim and WaveNet [25], faced limitations
in terms of speed and quality. Compared to others recent
models like WaveGlow [19] and Parallel WaveGAN [29],
HiFi-GAN [13] excels at generating natural and expressive
speech, particularly with low computational costs, making it
ideal for real-time applications.

HiFi-GAN generates highly realistic speech waveforms
that closely resemble human speech, reducing artifacts and
improving perceptual quality, and for which we apply it for
our task.

The vocoder takes the spectrograms generated by the
Speecht5 model and produces the final audio waveform.
This step ensures that the synthesized speech retains the tar-
get speaker’s voice while sounding natural and fluid.



Experiment
Dataset Details
In adapting our model for Chinese voice cloning task while
enhancing its performance in complex scenarios, we utilized
the Chinese Internet Celebrity Speech Dataset, which pro-
vides a rich and diverse source of voice samples, and is
crucial for training our model to accurately capture the nu-
ances and characteristics of Chinese speech. By leveraging
this dataset, we aim to improve the model’s ability to gen-
erate natural-sounding and contextually appropriate Chinese
cloned speech, thereby ensuring its effectiveness in various
applications.

The dataset contains text-speech pairs of several internet
celebrities, including but not limited to Ding Zhen, Sun Xi-
aochuan, Dian Gun, and Cai Xukun. The audio samples are
sourced from social media, short video platforms, and di-
verse online live streaming services. To enhance the diver-
sity of pronunciations and vocal dynamics, we have also in-
corporated data from Kobe into the training set.

Evaluation Metrics
We adopted the mean opinion score (MOS) to evaluate our
model by native speakers on the randomly selected 20 sen-
tences without overlapping with training data. MOS is a
widely used subjective scoring method in speech synthesis
tasks. In our experiments, evaluators score audio samples
based on aspects such as clarity, naturalness, and speaker re-
ducibility, with higher scores indicating better speech qual-
ity and similarity with the reference speaker. For a certain
model, we average scores on all generated samples to get
the MOS.

Model Implementation
We borrowed the configuration of speechT5[3]. The
encoder-decoder backbone network consists of 12 Trans-
former encoder blocks and 6 Transformer decoder blocks,
where the model dimension is 768, the dimension of FFN is
3,072, and the number of attention heads is 12. The speech-
encoder pre-net includes 7 temporal convolution blocks,
each of which consists of 512 channels, with strides (5, 2,
2, 2, 2, 2, 2) and kernel sizes (10, 3, 3, 3, 3, 2, 2). For text-
encoder pre-net, we use a embedding layer with a dimension
of 768. In addition, we optimized the model with the Adam
optimizer [12] and applied a learning rate warm-up during
the first 8% of updates, gradually increasing it to a maximum
value of 2× 10−4. After reaching the peak, the learning rate
was then linearly decayed for the remaining updates. On this
basis, we fine-tuned the pre-trained model on the Chinese In-
ternet Celebrity Speech Dataset with cross-entropy loss and
attention loss[24]. We used HiFiGAN [13] as the vocoder to
convert the Mel spectrogram into high-quality speech wave-
form.

Results and Analysis
We compare our model with GPT-soVITS, the decoder-only
sota method. GPT-soVITS initiates an auto-regressive model

by generating reference audio from transcription while in-
corporating speaker features into the latent space. Subse-
quently, the model consumes the target text and completes
the following target audio that embodies the desired timbre.

Model MOS

GPT-soVITS 3.92± 0.02
Ours 3.17± 0.03

Table 1: Results of multi-speaker TTS on the Chinese Inter-
net Celebrity Speech Dataset.

Results shown in Table1 indicate that our model is ca-
pable of generating speech while effectively preserving the
reference speaker’s timbral characteristics. Our model also
achieved advancements in several aspects, including delv-
ing into the potential of encoder-decoder architectures for
voice cloning and demonstrating the model’s capability for
cross-lingual transfer, specifically from English to Chinese.

However, out model is still inferior to GPT-SoVITS, sev-
eral observations and conclusions from the experiments are
listed below:

• decoder-only TTS model such as GPT-soVITS tends to
yield better performance over encoder-decoder models.
A reasonable explanation is that in the decoder-only
paradigm, the text is incorporated into computation via
self-attention, preserving more information compared to
the semantic embeddings generated by the encoder. This
approach maintains the integrity of the original text, lead-
ing to a richer representation retaining nuanced details of
the input.

• The baselines in TTS typically apply large-scale, high-
quality datasets covering various domains and contain-
ing millions of training samples. However, due to limited
computational resources, we failed to train our model
on large-scale Chinese TTS corpus such as Common
Voice. Consequently, we can only apply a relatively small
dataset that primarily focuses on speech from specific in-
ternet personalities. While this dataset featuring high per-
sonalization and cultural traits, its scale and diversity still
limits the model performance, and affects model conver-
gence occasionally.

Conclusion

In this study, we introduce a two-phase cascaded frame-
work designed to tackle the challenges associated with high-
quality Chinese multi-speaker text-to-speech (TTS) synthe-
sis. In pushing the limits of capturing the differences be-
tween various languages and cultural preferences, we ap-
plied Chinese Internet Celebrity Speech Dataset to train and
evaluate our model. Experimental results show that the pro-
posed model delivers excellent performance in audio qual-
ity and fidelity, approaching the state-of-the-art of multi-
speaker TTS.
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