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Abstract

Audio watermarking has gained increasing attention due to
the rise of generative audio misuse and growing awareness
of copyright protection. While DNN-based methods show
promise, challenges remain in balancing robustness, imper-
ceptibility, and payload capacity. This study proposes an ap-
proach leveraging dense and residual connections to enhance
performance across these key evaluation metrics, offering a
step forward in addressing existing limitations. Specifically,
our method achieves a high SNR of 28.42 dB under eight
main audio attack scenarios with a watermark capacity of 32
bps, and the BER for watermark extraction is nearly 0%. Its
effectiveness was further validated through thorough compar-
ison with recent state-of-the-art methods and extensive exper-
iments.

Introduction

With the advancement of contemporary technology, the im-
portance of audio as a multimedia broadcasting channel has
become increasingly prominent. Since audio is the main
medium for voice, music, broadcasting, etc., audio copyright
protection is becoming increasingly important for audio cre-
ators. Audio watermarking can help audio owners confirm
the legitimacy of their audio content by integrating copy-
right information, thereby achieving the purpose of copy-
right protection (Seok, Hong, and Kim 2002; Dhar and Kim
2011; Yassine, Bachir, and Aziz 2012).

In addition, due to the rapid development of generative audio
technology (Kreuk et al. 2022; Borsos et al. 2023) and the
public sharing of voice information, some criminals have be-
gun to use generated audio for voice fraud. These incidents
have seriously affected the development of generated audio
and made people worry about the leakage of their voice in-
formation. Therefore, audio users should pay special atten-
tion to verifying the authenticity of their audio. Audio wa-
termarking inserts watermark information, allowing users to
recover these watermarks to identify the source of the audio
and confirm its legitimacy, thereby preventing the abuse of
generated music.

At present, some scholars are studying audio watermarking
methods (Charfeddine et al. 2022) to better solve these prob-
lems. Among them, DeAR (Liu et al. 2023) implemented the
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anti-copying technology of audio watermarking to help au-
dio owners better protect their copyrights, and Liu et al. (Liu
et al. 2019) implemented the protection of patient informa-
tion by using audio watermarks in medical audio. WavMark
(Chen et al. 2023) implemented the first model for embed-
ding watermarks on generated audio datasets by using gen-
erated audio datasets for model training, and achieved excel-
lent performance results. However, audio watermarking re-
search based on deep learning often focuses on enhancing a
single feature while ignoring the performance improvement
of other features. For example, WavMark (Chen et al. 2023)
exhibits good imperceptibility, but poor performance in ex-
traction BER under common attacks; DeAR (Liu et al. 2023)
obtains relatively good anti-recording performance after em-
bedding audio, but weak imperceptibility. To illustrate the
challenge, we draw on a metaphor:

Metaphor: Designing an audio watermarking algorithm is
akin to balancing a scale: one side represents robustness, the
other imperceptibility, while embedding capacity remains
a fixed point of reference. Leveraging deep learning tech-
niques, the algorithm serves as a mediator, striving to har-
monize these competing factors. The goal is to ensure that
imperceptibility and robustness are optimized in tandem,
achieving a well-rounded performance.

Building on this principle, this study introduces a novel au-
dio watermarking technique, which seeks to excel across all
three critical dimensions—embedding capacity, impercepti-
bility, and robustness. The primary contributions of this re-
search are as follows:

1. Inspired by prior studies (Chen et al. 2023; Liu et al.
2023; Zhu et al. 2018), we propose an innovative audio
watermark encoder-decoder framework that integrates
dense and residual connections. This approach achieves
superior watermark embedding and extraction, deliver-
ing an SNR exceeding 28 dB for audio with embedded
watermarks and achieving a 0% bit error rate (BER) in
watermark extraction under no-attack conditions.

2. To strengthen robustness, we incorporate eight conven-
tional audio attack layers into the algorithm. Experimen-
tal results demonstrate that extraction BER remains at
0% under six attack scenarios and below 1.00% under
the remaining scenarios, such as Gaussian noise and low-
pass filtering attacks.
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Figure 1: The Overall Architectures. This diagram shows the main framework of this algorithm, which can be divided into
encoding process and decoding process. Encoding process involves a series of operations on the input audio sequence and the
binary watermark sequence to produce an audio sequence with the embedded watermark. Decoding process, on the other hand,
yields the decoded watermark sequence by decoding the input audio sequence with the encoded watermark.

3. Our method successfully increases the embedding capac-
ity to 40 bps while maintaining strong imperceptibility
and robustness, achieving the highest known embedding
capacity in the field with balanced performance across all
evaluation metrics.

By addressing the challenges of balancing these competing
demands, this study aims to advance the field of audio water-
marking through a powerful and high-performing approach.

Related work

The field of digital watermarking(Hartung and Kutter
1999) study was first formally introduced by Schyndel
R.G(Van Schyndel, Tirkel, and Osborne 1994), who ini-
tially proposed the term in the 1994 IEEE International
Conference on Image Processing. Most of the present
digital watermarking research focuses on image water-
marking(Begum and Uddin 2020; Wan et al. 2022), audio
watermarking(Hua et al. 2016a) and video watermark-
ing(Asikuzzaman and Pickering 2017),(Doerr and Dugelay
2003), and the growth of image watermarking is more rapid.
Audio watermarking (Hua et al. 2016b) is a branch of digital
watermarking (Hartung and Kutter 1999), which refers to
embedding data into audio media. According to the embed-
ding position, audio watermarking can be divided into time
domain watermarking technology and transform domain
watermarking technology. The initial paper (Nejad, Mosleh,
and Heikalabad 2019) proposed a least significant bit (LSB)
audio watermarking algorithm, which realizes the conver-
sion of the scrambled watermark image into a quantum bit
sequence, and then embeds the quantum bit sequence into
the audio signal using the embedding key. Zhong (Zong
et al. 2021) proposed an audio watermarking algorithm
based on nonlinear echo generation, which embeds a time
delay sequence in the audio signal, effectively enhancing
the imperceptibility of the audio after the watermark is
embedded. Due to the lack of concealment of time domain
technology and its susceptibility to damage, in subsequent
research, embedding watermarks in the transform domain
has become more and more common. Aniruddha Kanhe
and Aghila Gnanasekaran (Kanhe and Gnanasekaran 2018)
proposed an audio watermarking scheme based on DCT and
singular value decomposition to embed the watermark into

the low-frequency components of the audio.

Traditional audio watermarking techniques usually embed
the watermark into the selected frequency band coefficients
by applying various transforms to the audio. M. Yamni
(Yamni et al. 2022) proposed a robust audio/speech blind
watermarking algorithm that combines discrete Tchebichef
moment transform (DTMT), linear-nonlinear hybrid
mapped lattice chaotic system (MLNCML) and discrete
wavelet transform (DWT). Zhang (Zhang et al. 2023)
performed discrete wavelet transform (DWT), graph-based
transform (GBT), and singular value decomposition (SVD)
on the audio signal to obtain the transform coefficients,
and then used spread spectrum technology to embed the
watermark into the audio. Although traditional audio
watermarking research has made significant progress, due
to its limitations and the fact that applications often rely on
experience, progress has gradually slowed down in recent
years.

In recent years, audio watermarking technology combined
with DNN has gradually become an important direction in
the field of audio watermarking research. Kosta Pavlovié
(Pavlovi¢ et al. 2022) proposed two adversarial neural
networks as encoder and decoder to embed and extract
watermarks, achieving good overall performance. DeAR
(Liu et al. 2023) designed an audio re-recording watermark
based on deep learning. By introducing a distortion layer
to simulate the re-recording effect, the algorithm can learn
to resist common distortion attacks. SilentCipher (Singh
et al. 2024) combines a threshold based on a psychoacoustic
model to achieve an imperceptible watermark, which effec-
tively enhances the robustness of the watermark algorithm
and the feasibility of professional applications. WavMark
(Chen et al. 2023) proposed an audio watermarking algo-
rithm based on a reversible neural network, which solves
the current problem of watermark positioning in this field,
while achieving an embedding rate of up to 32 bps and
maintaining a high imperceptibility. AudioSeal (San Roman
et al. 2024) is the first audio watermarking technology de-
signed specifically for Al speech local detection, achieving
state-of-the-art performance in terms of robustness and
imperceptibility.



Proposed Solution
Architecture

The algorithm in this paper can be divided into the encoding
process, attack layer, and decoding process. Figure 1 depicts
the overall architecture of the algorithm.

During the encoding process, a Fourier transform is applied
to the audio sequence to obtain an audio matrix. The water-
mark sequence undergoes a linear transformation to stretch
it to the same length as the audio. Then, a Fourier transform
is performed to obtain the watermark matrix. Input the audio
matrix and the watermark matrix into a neural network de-
signed with combined residual connections and dense con-
nections for encoding operations, resulting in the encoded
audio matrix. Perform an inverse Fourier transform on the
audio matrix with the embedded watermark to convert it
from matrix form back into sequence form, thus obtaining
the audio sequence with the embedded.

During the decoding process, a Fourier transform is ap-
plied to the audio embedded with the watermark to obtain
an audio matrix. This matrix is then decoded by the RDN-
constructed decoder, resulting in the extracted watermark
matrix. Subsequently, an inverse Fourier transform and lin-
ear transformation are performed on this watermark matrix
to obtain the extracted watermark sequence.

In addition to the encoding and decoding processes, in order
to enhance the model’s robustness against common attacks,
the algorithm also introduces an attack layer. By adding
common audio attacks to the attack layer, the audio is pro-
cessed to obtain the audio with embedded watermarks that
have been attacked. Then, input it into the subsequent de-
coding process, thereby training the decoder in the decod-
ing process to learn the ability to resist common audio at-
tacks. The attacks introduced by the attack layer include
Gaussian white noise, random cropping, low-pass filtering,
resampling, amplitude scaling, MP3 compression, quantiza-
tion, and echo adding.

Encoder Design

Figure 2: The Network Structure of Encoder.

The Encoder is implemented using a carefully designed neu-
ral network that takes the watermark matrix W and the audio
matrix S (after applying the Short-Time Fourier Transform,
STFT) as inputs to generate the embedded audio matrix S’.

In the design of this deep neural network, the number of
layers is minimized while incorporating dense and residual
connections to enhance performance and efficiency.

Dense connections are employed to enable the network to
learn the features of the data more thoroughly with fewer
layers. As a result, the Encoder consists of only six convo-
lutional blocks. Each of the first five blocks includes a con-
volutional layer, a batch normalization layer, and a Leaky
ReLU activation function, while the final block contains
only a convolutional layer and a Leaky ReLU activation
function.

For the residual connection, the input audio matrix is di-
rectly added to the output of the final layer, a concept also
applied in the DeAR algorithm (Liu et al. 2023). This resid-
ual operation transforms the output of the convolutional
blocks from generating a new audio matrix to calculating
the residual result of the watermark and audio matrix. This
significantly reduces the complexity of the neural network
while effectively improving the imperceptibility of the wa-
termarked audio.

Decoder Design
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Figure 3: The Network Structure of Decoder.

The design of the Decoder is relatively straightforward, uti-
lizing a densely connected neural network to extract the em-
bedded watermark matrix W'’ from the watermarked audio
matrix S’. While the convolution block structure in the De-
coder mirrors that of the Encoder, it incorporates an addi-
tional dense connection mechanism to enhance learning ef-
ficiency.

To ensure the neural network fully captures the embedded
watermark signal encoded in the audio matrix, the water-
marked audio matrix is connected to the input of each sub-
sequent convolution block. This dense connection design en-
ables the network to effectively learn the embedded water-
mark signal, improving performance while reducing the re-
quired number of layers. By leveraging these design prin-
ciples, the Decoder achieves accurate watermark extraction
with a streamlined structure.

Loss Function

For Encoder, the loss function needs to reflect the difference
between the audio signal before embedding and the audio
signal after embedding the watermark. Therefore, this paper
chooses the Mean Square Error (MSE) between the original



Table 1: Compare with Current Leading Method

BER
Model Capacity ~ SNR B
ode [©) [©) No Guassian ~ Random  Low-pass Resamoli Amplitude MP3 antizati Echo
Attack Noise Cropping  Filtering esampiing Scaling Compression Quantization Adding
Pavitmial 022y 2ops 2448 000 0.0 0.00 0.14 025 0.00 0.00 0.00 0.00
DeAR
(Liu et al. 2023) 9bps 26.18 0.00 0.01 0.01 0.94 0.00 0.01 0.03 0.00 \
WavMark
(Chen et al. 2023) 32bps 38.32 0.65 0.30 0.06 0.00 0.00 0.00 0.00 0.72 0.00
Proposed 32bps 28.42 0.00 0.06 0.00 0.11 0.00 0.00 0.00 0.00 0.00

audio matrix and the audio matrix with the embedded wa-
termark to measure this difference. The specific calculation
form ula for the MSE is as follows.

Lencoder = MSE(Sa S/) = %Z (S(l> - S/(Z))2 (D

i=1

For Decoder, its loss function needs to reflect the gap be-
tween the embedded watermark signal and the extracted wa-
termark signal, so in this paper, we choose the Binary Cross
Entropy with Logit Loss (BCE) between the embedded wa-
termark signal and the extracted watermark signal to mea-
sure the gap. The specific formula for the BCE is as follows.

M

BCE(w,w') = —% Z(wilog(wg)—&—(l—wi)log(l—wg))
i=1

(2)

The Decoder not only has audio input without attack, but
also has audio input with attack. So its loss function needs
to calculate the BCE of the original watermark and the ex-
tracted watermarks without attack and under attack. The loss
function of the Decoder is as follows.

Laccoder = pBCE(w,w') + vy BCE(w, @)  (3)
i=1

Since the final joint loss function will be composed of De-

coder and Encoder loss function together, by giving differ-

ent weights to the computed loss thus affecting the final

training effect of the model, the specific formula is shown
inEq. 4.

L(Sv 317 w, w/) = aLencoder + ﬂLdecoder (4)

Experiments

Audio watermarks are measured by imperceptibility, embed-
ding capacity, and robustness. In this paper, SNR is selected
as the imperceptibility evaluation index and BER is selected
as the robustness evaluation index. The embedding capacity
is improved based on the assumption that both have better
indexes.

Comparison with Advanced Work

In terms of embedding capacity, our model achieves 32 bps,
which matches the ideal embedding capacity of WavMark
(Chen et al. 2023). This is significantly higher than the ca-
pacities of DeAR (Liu et al. 2023) (9 bps) and Robust DNN
(Pavlovi¢ et al. 2022) (2 bps), showcasing its advantage in
embedding efficiency. Regarding imperceptibility, the algo-
rithm delivers an SNR of 28.42 dB, ranking second only
to WavMark’s 38.32 dB, while still maintaining high audio
quality. When evaluating robustness, our method achieves a
BER of 0% in the absence of attacks, outperforming Wav-
Mark’s 0.65%. Under eight types of attacks, the BER of
our algorithm remains consistently low, with non-zero val-
ues observed only under Gaussian white noise and low-pass
filtering. In contrast, the robustness of the other algorithms
significantly diminishes, as evidenced by their higher BERs
across various attack scenarios.

These results highlight the balanced performance of our
method, which excels in embedding capacity and robust-
ness while maintaining competitive imperceptibility, setting
it apart as a strong contender in state-of-the-art audio water-
marking.

Performance on Different Datasets

BER vs Attack Type for Different Datasets
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Figure 4: BER under Eight Attack Types for Different
Datasets

Table 2: SNR and Average BER for Different Datasets

To demonstrate the superiority of our proposed method, we Dataset SNR(1) BER(%)()
compared it against top-tier audio watermarking algorithms LibriSpeech  28.42 0.02
published in the last two years. The comparison results are FMp A 3 4'71 0'23

summarized in Table 1.




To verify the generalizability and flexibility of the
model design, we trained it on two different datasets:
FMA(Ji, Luo, and Yang 2020), an audio dataset, and Lib-
riSpeech(Panayotov et al. 2015), a speech dataset. The em-
bedding capacity was fixed at 32 bps for both datasets. The
results are presented in Figure 4 and Table 2.

In Figure 4, the robustness indicators of the two models on
different datasets after training are illustrated. It is evident
that the extraction BER of the model trained on the mu-
sic dataset FMA increases under Gaussian noise and low-
pass filtering attacks, indicating a reduced ability to resist
common audio attacks. This suggests a potential trade-off
between robustness and other performance metrics, which
warrants further exploration.

By examining Table 2, we observe significant differences in
imperceptibility. Specifically, the SNR of the model trained
on the FMA dataset shows a notable improvement, reaching
34.71 dB. This improvement highlights the enhanced audio
quality and imperceptibility of the model. Conversely, the
average BER of the LibriSpeech dataset is lower than that of
the FMA dataset, suggesting that the model trained on Lib-
riSpeech exhibits better robustness across various scenarios.
These results collectively underscore the importance of
dataset selection in shaping model performance, particularly
in balancing robustness and imperceptibility. Further analy-
sis may help identify optimal configurations for specific ap-
plication scenarios.

Behavior under Different Capacity

Comparison of Different BPS for Various Metrics
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Figure 5: Comparison of Different BPS for Various Metrics

In the previous work, the algorithm set the embedding ca-
pacity of the algorithm at 32bps and achieved relatively good
results. In order to better verify the flexibility of the model in
terms of capacity, this paper continues to explore the perfor-
mance of the model under different capacities by changing
the embedding capacity to 16bps, 32bps and 40bps.

In Figure 5, you can see the results of the robustness eval-
uation in different embedding capacities. When the embed-
ding capacity is reduced to 16bps, its extraction BER under
Gaussian noise and low-pass filtering attacks is 0. 11% and
0. 07%, respectively, and the extraction BER under other at-
tacks is 0%, indicating that the model with an embedding
capacity of 16bps also has good robustness. As the embed-

ding capacity increases, the BER gradually decreases, but
the decrease is small. When the embedding capacity is in-
creased to 40bps, the extracted Ber under Gaussian noise
and low-pass filtering is reduced to 0.04% and 0.02%, and
the robustness is improved compared with the low-capacity
model. It can be seen that with the increase of embedding
capacity, the imperceptibility of the method proposed in this
paper decreases, but the robustness to attacks is improved.

Conclusion

In this study, we proposed an audio watermarking algorithm
designed to achieve a balanced trade-off among embedding
capacity, imperceptibility, and robustness. The algorithm in-
tegrates residual connections and dense connections while
introducing eight types of attacks to enhance watermark em-
bedding and extraction capabilities. Unlike many existing
approaches, which primarily focus on improving a single as-
pect, our method emphasizes balanced optimization across
all three key performance indicators. This focus necessitates
careful consideration in the design of the framework and net-
work structure.

Furthermore, we conducted a comparative analysis against
state-of-the-art audio watermarking algorithms. The experi-
mental results suggest that our algorithm demonstrates com-
petitive advantages, achieving better overall performance
compared to existing methods. By training the model on dif-
ferent datasets, including the music dataset FMA (Ji, Luo,
and Yang 2020) and the speech dataset LibriSpeech (Panay-
otov et al. 2015), we observed consistently strong results.
Additionally, we evaluated the algorithm’s performance un-
der varying embedding capacities and found that even at
40 bps, the model maintains excellent imperceptibility and
robustness. This indicates that our method holds potential
as a high-capacity audio watermarking solution with well-
balanced performance across critical metrics.
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