
UAV Path Planning Based on Point Cloud Deep Reinforcement Learning

Yi Yang 1, Zheng Xie 2, Junhao Huang 3, Hanlei Li 4, Jiarun Gan 5

136920241153271 class for Institute of AI
236920241153266 class for Institute of AI
336920241153214 class for Institute of AI
436920241153227 class for Institute of AI
536920241153203 class for Institute of AI

Abstract
This project focuses on developing an autonomous driv-
ing algorithm for unmanned aerial vehicles (UAVs) based
on Deep Reinforcement Learning (DRL), aimed at address-
ing the challenges of autonomous navigation and decision-
making in complex environments. Traditional UAVs rely on
predefined paths, which limits their effectiveness in dynamic
and unknown situations. By incorporating deep reinforce-
ment learning, our research will enable UAVs to learn in
real-time and optimize their flight strategies, effectively navi-
gating obstacles, weather changes, and dynamic targets. At
the core of this study is a novel path planning algorithm,
PPO-PointNet, based on deep reinforcement learning. This
approach leverages a pre-trained PointNet model to extract
three-dimensional features from point cloud data and inte-
grates them into the Proximal Policy Optimization (PPO)
framework. This enhancement improves the agent’s percep-
tion capabilities, allowing the UAV to autonomously learn
and adapt. Through interaction with the environment, the
UAV will gradually discover optimal strategies, thereby en-
hancing its flexibility and intelligence in real-time decision-
making. Through the implementation of this project, we aim
to provide innovative insights into UAV autonomous flight
technology, promoting its intelligent development in various
complex tasks.

Introduction
Drone piloting refers to the process of controlling un-
manned aerial vehicles (UAVs) during flight, with the goal
of accomplishing specific tasks in various environments,
such as aerial photography, package delivery, and surveil-
lance.(Shakhatreh et al. 2019; Elmeseiry, Alshaer, and Is-
mail 2021) One of the key technologies involved is drone
path planning, which aims to design an optimal flight route
from the starting point to the destination(Zhao et al. 2020),
ensuring the shortest time, minimal energy consumption, or
maximum safety. Path planning must take into account ob-
stacles that the drone may encounter during flight, such as
buildings, trees, or other drones(Cai et al. 2020). Specifi-
cally, the integration of drone piloting and path planning is
reflected in several key aspects:
• Autonomous Flight Control: The drone generates the op-

timal path from start to finish using path planning algo-

Copyright © 2024, Yi Yang, Zheng Xie, Junhao Huang, Hanlei Li
and Jiarun Gan.All rights reserved.

rithms that consider factors such as flight time, energy
consumption, and obstacle locations.(Kwak and Sung
2018) The flight control system then adjusts the drone’s
attitude and speed in real-time to ensure it follows the
planned route stably, even in the face of changing exter-
nal conditions like wind speed and airflow.(Gugan and
Haque 2023)

• Dynamic Obstacle Avoidance: The system can continu-
ously gather real-time environmental data—such as ob-
stacle positions and weather conditions—using sensors
like LIDAR and cameras(Liu et al. 2017). Based on this
data, path planning algorithms can dynamically adjust
the flight path to avoid potential collisions and hazards,
enhancing flight safety. The drone can quickly respond
and change its course to navigate around unpredictable
obstacles.

• Feedback Mechanism: As the drone flies, it constantly
monitors environmental changes and relays information
back to the path planning system. (Zhang, Zhang, and
Low 2021)This feedback allows for real-time optimiza-
tion to address sudden environmental changes and unex-
pected situations, ensuring safety and efficiency in flight
operations. (Xiang et al. 2023)For example, if a new ob-
stacle is detected, the system can immediately recalculate
the path and guide the drone to adjust its route safely.

• Integration of Intelligent Algorithms: The integration of
intelligent algorithms, such as reinforcement learning,
can further enhance the intelligence of path planning.
This allows the drone to adaptively navigate complex
environments, better responding to changes and chal-
lenges.(Azar et al. 2021)By analyzing historical data, the
system can learn and optimize future path selections,
improving overall flight efficiency and safety(Nishitani
et al. 2015).

Through this combination, drones can efficiently follow pre-
determined paths while also responding in real-time to vari-
ous challenges, enabling a wider range of applications, such
as logistics delivery, environmental monitoring, agricultural
spraying, and search and rescue operations. This intelligent
development will empower drones to play increasingly im-
portant roles in diverse scenarios, enhancing operational ef-
ficiency, reducing labor costs, and driving progress and in-
novation in the industry.



Figure 1: network structure

Related Work
Based on the environmental information obtained by robots
during movement, path planning can generally be divided
into two stages: global planning and local planning(Wang
et al. 2017). Kuanqi Cai et al. proposed a navigation frame-
work specifically designed for robots, which includes both a
global path planner and a local path planner. The global path
planner is primarily responsible for planning a collision-free
path from the starting point to the target point. This process
only involves static global mapping, resulting in static global
paths that do not consider dynamic situations. In contrast,
the local path planner incorporates dynamic information to
optimize the segmentation of the global path.

There is substantial research on global path planning, with
classical algorithms based on graph search, including Dijk-
stra’s algorithm, A* algorithm, Depth First Search (DFS),
and Breadth First Search (BFS). Over the past few decades,
Dijkstra’s and A* algorithms have been extensively studied
and have been widely applied in real-world robotic appli-
cations through ROS (Robot Operating System)(?), demon-
strating their effectiveness. These heuristic search strategies
perform well in relatively simple two-dimensional environ-
ments, but they impose a significant computational burden
when implemented in large-scale or high-dimensional envi-
ronments.

To enhance computational efficiency and avoid local op-
tima, researchers have proposed intelligent algorithms based
on biomimicry to simulate the evolutionary behaviors of in-
sects. These generally include Genetic Algorithms (GA),
Ant Colony Optimization (ACO), and Particle Swarm Op-
timization (PSO). For instance, Wang et al. introduced
a Genetic Algorithm-Particle Swarm Optimization (OGA-
PSO) method to tackle the challenge of finding the short-
est collision-free path for robots during path planning(Wang
et al. 2016). Liu et al. integrated artificial potential fields
and geometric local optimization techniques with the Ant
Colony Algorithm to explore globally optimal paths(Liu
et al. 2017).

The focus of local path planning is to utilize the envi-
ronmental information around the robot to generate a local
path. Given the real-time variations in sensor data within a
dynamic environment, local path planning is extensively uti-

lized. Nishitanti et al. proposed an X-Y-T space motion plan-
ning approach to evade obstacles, taking into account their
orientation and personal domains(Nishitani et al. 2015).
However, the computational efficiency is significantly influ-
enced by the grid size of the navigation map. Additionally, as
an enhancement of the A* algorithm, the Timed A* method
anticipates the trajectories of human obstacles through the
use of a social cost function(van Hasselt, Guez, and Silver
2015). Although local path planning algorithms have higher
efficiency and practicality, a notable disadvantage is that lo-
cal planners may get trapped in local minima.

To achieve optimal paths and avoid the local minimum
issue, various approaches such as the artificial potential
field method(Le Gouguec et al. 2017), fuzzy logic algo-
rithms, simulated annealing algorithms, and particle algo-
rithms have been proposed. However, these techniques often
overlook the relative motion between agents and dynamic
objects, making it challenging to determine the motion tra-
jectories of dynamic objects in certain situations.

With the development and popularization of deep learn-
ing (DL) and reinforcement learning (RL), they have shown
better performance in addressing complex nonlinear prob-
lems. The complexity of these problems typically refers to
uncertainty, ambiguity, and incompleteness(Cai et al. 2017).
Google DeepMind’s introduction of the Deep Q-Network
(DQN) represents a breakthrough(Mnih et al. 2013), utiliz-
ing a replay buffer to reuse old data and improve efficiency.
However, the influence of noise on the estimation of state-
action values (Q) limits its robustness. Consequently, Dou-
ble DQN and Dueling DQN were developed to address is-
sues caused by noise. Double DQN employs another net-
work to evaluate the Q value estimates in DQN to reduce
noise, while Dueling DQN uses the advantage value (A
value) to obtain better Q values, significantly reducing noise.
However, the implementation of these algorithms can be
computationally expensive.

As a result, gradient methods are directly used to op-
timize the strategies for generating optimal behavior. The
policy gradient method is relatively stable in terms of net-
work convergence but lacks efficiency in convergence speed.
The actor-critic architecture improves convergence speed,
but this improvement often requires sacrificing convergence



Figure 2: Simulation scene

stability, making it difficult for the network to converge in
early training. Subsequently, Trust Region Policy Optimiza-
tion (TRPO)(Schulman et al. 2015) and Proximal Policy Op-
timization (PPO)(Schulman et al. 2017) were introduced to
address these shortcomings. In PPO, the concepts of ”ad-
vantage” and adaptive penalties are introduced to enhance
convergence speed and stability(Mnih et al. 2013). PPO is a
well-known continuous control algorithm that outperforms
traditional path planning algorithms when dealing with com-
plex nonlinear problems. Furthermore, PPO has the advan-
tages of easy implementation and fewer reusable hyperpa-
rameters. As an advantage-based actor-critic algorithm, PPO
aims to maintain conservativeness in policy updates.

This paper intends to train the agent based on the PPO
algorithm. By utilizing Kullback-Leibler divergence and a
truncated surrogate function, multiple update steps in a tra-
jectory can be performed without concerns about policy
changes, making it particularly suitable for the AirSim sim-
ulation environment.

Recent advancements in 3D data acquisition have sparked
significant interest in understanding point clouds.

With the emergence of PointNet(Charles et al. 2017) and
PointNet++(Qi et al. 2017), it has become feasible to use
deep convolutional neural networks (CNNs) to process un-
structured point cloud data. Following the introduction of
”PointNets,” numerous point-based networks have been de-
veloped, many of which focus on creating new complex
modules for extracting local structures, such as the pseudo-
grid convolution in KPConv(Thomas et al. 2019) and the
self-attention layers in Point Transformer(Zhao et al. 2020).
These novel methods have significantly outperformed Point-
Net++ across various tasks, suggesting that the PointNet++

architecture may be too simplistic to effectively learn com-
plex representations of point clouds.

However, point clouds possess numerous advantages in
3D data acquisition that 2D data cannot match. For in-
stance, point clouds consist of a collection of 3D coordinate
points that can accurately represent the surfaces and geomet-
ric shapes of objects. This high-fidelity 3D representation
is particularly well-suited for capturing complex and irreg-
ular shapes. Moreover, point cloud data can be integrated
with RGB images, depth sensors, and other sensor data
to form a more comprehensive environmental model, pro-
viding rich feature information. Leveraging these strengths,
point clouds demonstrate unique value in applications such
as robotics and autonomous driving.

Proposed Solution
Proximal policy optimization is a model-free off-policy be-
havior evaluation algorithm introduced by OpenAI. It uti-
lizes the Clipped Surrogate function as the optimization ob-
jective. PPO is characterized by easy implementation and
can achieve results comparable to other policy algorithms by
adjusting fewer parameters. The core of PPO is to employ a
method called Importance Sampling, which transforms the
on-policy training process in policy gradient into off-policy
training, that is, from online learning to offline learning. In
experiments, the training speed and effect are significantly
improved compared with the policy gradient, thus becoming
one of the commonly used algorithms for continuous control
problems. It is formally described as follows:

LCPI(θ) = Êt

[
πθ(at|st)

πθold (at|st)
Ât

]
= Et

[
rt(θ)Ât

]
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Figure 3: Scene Rewards - Comparison of Time Steps during Training

LCLIP (θ) = Et

[
min

(
rt(θ)Ât, clip (rt(θ), 1− ϵ, 1 + ϵ) Ât

)]
Here, Ât represents the generalized advantage function.

According to whether the advantage is positive or negative,
the hyperparameter ϵ is used to adjust the clipping ratio be-
tween 1 − ϵ and 1 + ϵ. It is generally believed that the key
innovation of PPO superior to TRPO lies in its ratio clipping
mechanism being superior to the KL divergence.

Point clouds are an essential type of geometric data struc-
ture. Due to their irregular format, most researchers believe
that such data must be converted into regular 3D voxel grids
or image sets. However, this approach can result in large data
sizes and associated complications. To address this issue, we
first employ a point cloud segmentation network to sepa-
rate the targets of interest from the irrelevant background.
We then input the segmented 3D point cloud data into the
PointNet neural network, which serves as both the Actor
and Critic network within our PPO framework. This method
allows for direct processing of point clouds while fully re-
specting the order invariance of the input points.

The PPO-based reinforcement learning model is imple-
mented through an agent that obtains observations from the
AirSim Drone Racing Lab simulation environment, specifi-
cally the 3D point cloud state generated by the LiDAR sen-
sor mounted on the drone. We designed a neural network
architecture called PointNet to extract 3D features from the
point clouds. This network extracts these features to train
the policy, enabling the drone to perform actions in the en-
vironment, such as flying through race gates and receiving
rewards.

Meanwhile, point cloud data, as an essential part of the
environmental model, is crucial for UAV decision-making.
However, the original point cloud data is often affected by
noise. To improve the accuracy and effectiveness of path

planning, an advanced point cloud denoising method is in-
troduced.

This method constructs a new paradigm based on the dis-
tribution characteristics of noisy point clouds. A noise-free
point cloud can be regarded as a collection of samples from
a 3D distribution supported by 2D manifolds. When affected
by noise, its distribution becomes a convolution form of the
original distribution and the noise model. Under certain as-
sumptions of the noise model, the mode of this convolution
result corresponds to the underlying clean surface and has a
higher probability than the surrounding space. Therefore, the
denoising process can be achieved by performing a gradient
ascent operation on the relevant log-probability function to
move the noisy points towards the mode.

To implement this denoising method, a specialized neu-
ral network architecture is designed to estimate the score of
the input noisy point cloud distribution, that is, the gradient
of the log-probability function. This network consists of a
feature extraction unit and a score estimation unit. The fea-
ture extraction unit is composed of a series of densely con-
nected dynamic graph convolutional layers, which can ex-
tract multi-scale, local and non-local features for each point,
and the dense connection can produce features with rich con-
textual information. The score estimation unit is parameter-
ized according to the point’s features and takes the 3D coor-
dinates near the point as input and outputs a score.

In the network training process, a corresponding objective
function is set. Given the input noisy point cloud and the cor-
responding noise-free point cloud, a method for calculating
the score of a point in 3D space is defined. The train.

Reward design is a significant area of research in rein-
forcement learning. Manual reward engineering is a com-
mon technique in developing such systems.

Our agent needs to pass through gates without colliding
with them, so we retrieve the gate locations in the environ-
ment through API calls and sort them based on their relative



positions. We calculate the L2 distance between the mid-
point of each gate and the drone, providing rewards based
on the L2 distance to the next gate the drone needs to pass.
For the distance between the drone and the gate frame, we
designed a specialized potential field reward function. Ad-
ditionally, we established a maximum distance threshold; if
the distance exceeds this threshold, the game ends. A timer
tracks the duration of each game, with a limit set at 300 sec-
onds.

In the early stages of training, we observed that the agent
sometimes collided with obstacles and became stuck, lead-
ing to poor data quality for subsequent training and sig-
nificantly prolonging convergence time. Therefore, relying
solely on the timer to determine game termination proved
insufficient. To address this, we recorded both the elapsed
time and the number of collisions, resetting the training en-
vironment whenever a collision was detected.

By using PointNet (the structure is shown as 1) to extract
3D features and train the PPO policy, we adopt a faster and
more robust approach that effectively minimizes the impact
of minor perturbations to input points, as well as issues re-
lated to point insertion or deletion.

Experiments
The AirSim Drone Racing Lab is a simulation framework
for the rapid prototyping of autonomous algorithms and sup-
ports the use of machine learning for research. Its purpose is
to reduce the risk of drones flying in the real world. This
framework can generate racetracks in multiple realistic en-
vironments, arrange drone races, attach some doorframe ob-
stacles, and allow multiple sensor modes and different cam-
era models. In this paper, a rival drone equipped with the
baseline algorithm provided by the framework itself is used
in a simulated environment, which helps us in the training
and evaluation process. At the same time, it is also easy to
import 3D models, such as drones, door frames, and ran-
domization domain obstacles. During the training process,
we can obtain most of the drone information through the
API, which allows us to obtain the current score, progress,
and time penalty. The current environmental state and 3D
point cloud are input into the network training strategy,
which is used to control the drone to pass through the gate.

Our environment is selected as an open football field with
a total of twelve square door frames. As shown in Figure 2
The drone should start from the starting point, go through all
the door frames counterclockwise, and complete as quickly
as possible without colliding with the opponent drone and
the door frame.

We set the maximum step size in each episode to 30, cal-
culate the total reward value to update the policy after 2 *
maximum step size each time, and update the policy for 40
epochs in one PPO update. We set the starting std for action
distribution (Multivariate Normal) to 0.6 and decay the std
linearly to 0.05. The minimum std is set to 0.1, which is used
to limit the scope of action exploration. The clip parameter
for PPO is set to 0.2, and a higher discount factor for contin-
uous actions γ = 0.99 is retained. Finally, the learning rates
of the actor network and the critic network are both set to
10−4.

Our goal is to hope that the agent can pass through the
checkpoint of 12 gates within a given time limit and com-
plete it as quickly as possible while avoiding collisions to
the greatest extent. As shown in Figure 3, We found that the
agent began to approach the performance of a real human
operator after sufficient training time. After 15,000 steps
in the simulation, the agent began to partially complete 12
checkpoints. According to our optimized reward engineer-
ing, our agent reached the level of work done by U. Ates
(Ates 2020) and others, and the training time required was
greatly reduced.

Conclusion
Unmanned aerial vehicles (UAVs) are becoming increas-
ingly significant. However, existing algorithms frequently
suffer from drawbacks such as lack of flexibility, high com-
putational burden, and susceptibility to falling into local
minimum traps. This paper proposes a novel algorithm that
combines PPO and PointNet. By using the Clipped Surro-
gate mechanism to limit the magnitude of the policy gradi-
ent update and integrating our manually set reward project,
the time spent on agent training is significantly reduced.

Experiments demonstrate that only approximately 15,000
rounds of training are required for the agent to achieve a
level close to that of a real human operator. Future work will
focus on exploring how to enable agents to reach a good
performance level with a small amount of training in more
complex environments.
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