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Abstract

Multi-object tracking is a fundamental task in the field of
computer vision, aiming to predict the trajectories of objects
in video sequences. The Refering MOT task, building upon
traditional MOT, uses natural language to guide models in
predicting trajectories solely for the objects of interest, lever-
aging the complementary information between language and
vision modalities for more precise guidance. Previous ap-
proaches integrated text modules into trackers, typically us-
ing text features to guide the generation of visual features.
However, these methods often overlook other clues during the
tracking process, such as motion and appearance cues, which
also play crucial roles in multi-object tracking, particularly
in complex tracking scenarios. In this study, we introduce
a multi-cue fusion mechanism into the process of language-
guided visual feature generation. Unlike earlier MOT meth-
ods, we employ an early fusion approach to improve per-
formance in the association stage, avoiding complex heuris-
tic post-processing methods. Experimental results demon-
strate that our approach, using a simple fusion method, out-
performs previous state-of-the-art methods on the Refering-
KITTI dataset, achieving 46.988 and 14.514 for HOTA and
MOTA metrics, respectively.

Introduction

In the realm of computer vision, multiple object tracking
stands as a foundational task of paramount importance. It
is designed to concurrently handle identity confirmation
and tracking tasks within videos. The practical applica-tions
of MOT, such as in autonomous driving, surveillance, and
video analysis, underscore its critical role in everyday sce-
narios. Presently, the core of most MOT models lies in
the extraction of visual features for object localization and
tracking. While early tracking methodologies relied on man-
ually crafted visual features to delineate distinct iden-tity
information, contemporary approaches pivot towards utiliz-
ing deep neural networks for discerning visual features to
discriminate identities. However, the exclusive reliance on
visual features for identity discrimination and tracking grap-
ples with pronounced challenges in intricate settings marked
by dense occlusions and motion blur.

To elevate the precision of MOT models, the prevalent
methodology entails the utilization of high-precision object
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detection models to extract Region of Interest (Rol) infor-
mation within each frame. Thereafter, a visual model is en-
gaged to glean visual features for individual Rols, facili-
tating object associations crucial for tracking. The linchpin
for achieving high-precision tracking, assuming the object
detection model captures all targets necessitating tracking,
lies in the extraction of robust visual features and the en-
actment of precise association processes. Nevertheless, this
approach falls short in addressing the challenges that MOT
encounters in complex scenarios.

Propelled by the strides in multimodal technologies, nu-
merous studies have homed in on integrating language
modality information into visual tasks, showcasing prom-
ising capabilities and bolstered generalization abilities. No-
tably, in select literature(Awais et al. 2023; Du et al. 2022;
Srivatsan, Naseer, and Nandakumar 2023), language de-
scriptions have been validated for furnishing supplementary
information to the visual modality during the association
phase, there-by fortifying the feature set for multiple object
tracking.

Previous works have simply integrated textual modules
into existing trackers by taking visual features extracted
from the backbone as input and generating new visual fea-
tures guided by language information. This simplistic inte-
gration approach only yields marginal improvements, over-
looking many crucial tracking cues. Consequently, even
with language-guided assistance, negative performance out-
comes may arise, especially in complex scenarios. Tradi-
tional multi-object tracking algorithms commonly employ
multi-cue fusion techniques to enhance tracking perfor-
mance, often fusing semantic, appearance, and motion cues.
However, in language-guided scenarios, typically only se-
mantic cues are utilized while appearance and motion cues
are disregarded. Yet, these cues can offer richer informa-
tion to enhance tracking performance throughout the track-
ing process.

The synergistic interaction between semantic and motion
cues is evident due to the strong correlation between motion
patterns and category information. Instances corresponding
to semantically similar categories typically exhibit similar
motion patterns. If a model learns a certain motion pat-
tern during training, this knowledge can be directly gener-
alized to semantically related categories to address complex
scenarios. Appearance cues are widely considered a nec-



essary condition for precise tracking(Li et al. 2023). Our
approach integrates semantic, appearance, and motion cues
through fusion embedding into the matching process. This
integration method starkly contrasts with traditional multi-
cue fusion methods, as conventional approaches often rely
on heuristic-based fusion in later stages.

We conducted extensive experiments on the Refer-KITTI
dataset to evaluate our approach. The results demonstrate
that our method outperforms previous solutions.Specifically,
our method achieves a 5.4% higher HOTA, 49.8% higher
MOTA, and 6.4% higher IDF1 compared to the previous
state-of-the-art method iKUN(Du et al. 2024).

Related work
Multi Object Tracking

In the realm of multi-object tracking algorithms, the pre-
dominant paradigm is tracking-by-detection. In this frame-
work, objects in each frame are initially identified by an ob-
ject detection model, followed by an association al-gorithm
that correlates objects and trajectories across frames. Conse-
quently, the majority of algorithms concen-trate on the asso-
ciation phase. SORT(Bewley et al. 2016) uti-lizes Kalman
filtering for motion modeling and employs Intersection
over Union (IoU) for association. Expanding upon SORT,
DeepSORT(Wojke, Bewley, and Paulus 2017) integrates
convolutional neural networks to extract appearance fea-
tures of objects. Additionally, ByteTrack(Zhang et al. 2022)
and Strong-SORT(Du et al. 2023) extend more robust as-
sociation rules and post-processing strategies. Evidently,
these algo-rithms rely solely on a single visual modality
for associat-ing objects and trajectories. Their performance
sharply de-clines when handling complex scenarios like oc-
clusions and motion blur.

Due to the powerful modeling capabilities of the Trans-
former architecture, an increasing number of end-to-end
trackers are being built using the Transformer architecture.
These models(Zeng et al. 2022; Zhang, Wang, and Zhang
2023; Yu et al. 2023) utilize the interaction between ob-
ject information and global image information within the
transformer modules to obtain more comprehensive correla-
tions, re-sulting in enhanced performance. However, track-
ers based on the Transformer architecture still exhibit rela-
tively poor target localization and tracking performance in
dense scenes.

Refering Tracking

In recent years, single-object tracking has garnered signifi-
cant attention, with an increasing number of studies incor-
porating the language modality into single-object tracking
algorithms. By leveraging the complementary relationship
between language and visual modalities, these algorithms
aim to enhance tracking robustness, most of which are based
on Transformer architectures. JointNLT(Zhou et al. 2023)
directly embeds language descriptions, templates, and tex-
tual images into a Transformer encoder for associ-ation
modeling. OVLM(Zhang et al. 2023) introduces a memory
token selection mechanism to filter redundant to-kens using
textual information. (Botach, Zheltonozhskii, and Baskin

2022) proposes a multimodal module that decodes instance-
level features into different modal sequences for tracking.
MMTrack(Zheng et al. 2023) converts language descrip-
tions and bounding boxes into discrete tokens, transform-
ing the referring track task into a token generation task.
iKUN(Du et al. 2024) presents a knowledge fusion mod-
ule that integrates information from text and image streams
to guide the generation of more robust visual fea-tures for
tracking.

In recent time, an increasing number of MOT approach-es
are referencing the practices of single-object tracking, uti-
lizing language modalities to guide the generation of vi-
sual features for tracking objects of interest. OVTrack(Li
et al. 2023) leverages features generated by CLIP’s im-
age and text encoders as supervisory signals to guide the
tracking model in producing similar visual and textual fea-
tures, thereby achieving more robust tracking performance.
LaMOT(Li et al. 2024a) introduces a paradigm where vi-
sual and language modalities mutually guide the selection
of features for feature enhancement. TransRMOT(Wu et al.
2023) integrates language modalities for simple fusion based
on the end-to-end mod-el MOTR(Zeng et al. 2022). Tem-
pRMOT(Zhang et al. 2024) treats all targets as queries,
merging visual and textual features through a cross-attention
mechanism to track queries of interest based on the fusion
results. LG-MOT(Li et al. 2024b) employs graph neural net-
works for object association, uti-lizing multi-granularity lan-
guage descriptions to align lan-guage features at different
granularities with node and edge embeddings of the graph,
optimizing the association effect. Due to the complementary
relationship between language and visual modalities, these
algorithms have all shown promising results.

Method

We first provide an overview(figure 1) of the method we pro-
pose, followed by detailed explanations on how we acquire
semantic, motion, and appearance cues and then integrate
them. Our method is based on the iKUN(Du et al. 2024) ar-
chitecture, a two-stage tracker. In the first stage, the detector
provides Rol regions as candidate objects and trajectories.
In the second stage, the CLIP(Radford et al. 2021) architec-
ture is used to extract visual features for each Rol region.
Simultaneously, text information is employed to generate
text embeddings as guiding information to produce visual
embeddings. These visual embeddings are then utilized for
association matching. The fusion of multiple cues occurs in
the second stage, before the generation of visual embeddings
guided by language. Semantic, appearance, and motion cues
are generated by corresponding output head and participate
in the subsequent language-guided process.

Semantic Head

In the iKUN architecture, visual semantic information is nat-
urally extracted. In the original iKUN model, the CLIP im-
age encoder is used to extract visual features for each Rol.
Thanks to the powerful image-text matching capability of
CLIP, it can be assumed that the extracted visual features
contain the semantic information of each Rol. However, due
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Figure 1: Pipeline of our method:The detector takes input images and outputs candidate Rol. Then the Rol regions and the
global image input extract global embedding E ;4. and local embedding Ej,.,; through the visual flow. Ej,.,; is fused into
a fused embedding s, by the Multi-Cues Fusion module, incorporating information from multiple cues. Fyjopq; and Ery e
pass through the iKUN architecture, while the Textual Model extracts textual prompts to obtain textual feature f;.,; inputted
into iKUN for language guidance, resulting in guided visual feature f,;s;on. In the diagram, MHA represents Multi-Head
Attention mechanism, and CA represents Cross Attention mechanism.

to the complexity of the CLIP model, directly using the
CLIP encoder to extract semantic cues can lead to high com-
putational costs. Therefore, we adopt knowledge distillation
to obtain semantic cues.Specifically, we input the proposals
provided by the detector into a simple convolutional neural
network for adaptive classification. The classification head
is distilled by the CLIP image encoder to output semantic
embeddings aligned with CLIP. Subsequently, we add a five-
layer MLP to map the semantic embeddings and obtain the
final semantic cues, denoted as F¢p,.

Location Head

The Location Head is responsible for assisting in extract-
ing motion cues. In traditional multi-object tracking, motion
cues rely on Kalman filtering under the linear motion as-
sumption. However, such an assumption is not always valid
in all scenarios. Therefore, our work avoids using Kalman
filtering as the sole method for extracting motion cues. Con-
sidering that motion cues contain information such as the in-
stance’s motion speed, direction, and acceleration, for com-
putational convenience, we divide the acquisition of motion
cues into two parts. The first part involves obtaining posi-
tional embeddings through the instance’s location informa-
tion, while the second part utilizes attention mechanisms
both inter-frame and intra-frame to interact and obtain the
final motion cues. Such cues do not rely on the linear mo-
tion assumption but instead derive motion information from
the instance’s positional changes. In this section, we only
discuss the acquisition of positional embeddings.

The Location Head receives bounding boxes from the
detector as input. To ensure the stability and accuracy of
model training, it is necessary to scale all bounding boxes
to a unified scale. For a given image of size [H, W], for
each bounding box (z1, Y1, Z2, y2), we compute the normal-
ized bounding box coordinates based on these two dimen-
sions. The process involves first shifting the original coordi-
nates to relative coordinates with respect to the image center.
We obtain the image center coordinates as (Cy, Cy), where
Cy = W/2 and C,;, = H/2. To ensure scale consistency,
we additionally introduce a scaling factor, typically set as
s = 0.7-max(H, W). The normalized coordinates are then
expressed as follows:
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The normalized coordinates are input into the Location Head
to obtain the positional embedding Ej,..In our work, we
have constructed a simple five-layer MLP, which shares a
similar architecture with the MLP used in the Semantic
Head, differing only in the input dimensions.

Appearance Head

The Appearance Head is utilized for extracting appearance
cues. In our work, we employ ResNet50 as the backbone
network for appearance cue extraction. Each Rol provided
by the detector is used as input, and the output serves as vi-
sual embeddings optimized for the association phase. Apart
from utilizing the backbone network to extract visual em-
beddings, the appearance head includes an additional fully



connected layer. This layer maps the visual embeddings to
the appearance cue space, yielding appearance cues FEy,
consistent with other cue dimensions.

Multi-cues Fusion

Before proceeding with language guidance, we represent
each object in a frame with rich contextual cues rather than
relying on singular feature representations. Hence, the three
cues mentioned earlier, semantic cues Fg,,, positional em-
bedding E),., and appearance cues I, are fused to ob-
tain an initial visual representation. These embeddings en-
capsulate various aspects of an instance’s information, en-
abling more precise matching in subsequent language guid-
ance and alignment processes by leveraging not only cate-
gory information but also contextual information from ap-
pearance features and spatial positions. For convenience, we
need to merge the extracted cue information into a unified
space. Due to the unique nature of motion cues, we must
preserve the original shape of positional cues. Therefore, our
fusion process employs a simple yet effective additive oper-
ation as follows:

E;‘us = E;em + E;OC + El

app
Here, E}us represents the fused feature corresponding to the
i-th instance in the frame. This approach ensures the incor-
poration of all three cues and, due to the nature of the addi-
tive operation, allows positional information to directly par-
ticipate in subsequent intra-frame and inter-frame attention
mechanism calculations.

Inter-Frame Cross-Attention

In the original iKUN architecture, the language-guided pro-
cess is achieved through three different multimodal feature
fusion mechanisms. By taking global features, local fea-
tures, and textual features of images as input, the architec-
ture generates new visual features. Among the three fusion
mechanisms proposed in the original text, both global fea-
tures and local features undergo computations using self-
attention mechanisms, which can be seen as facilitating
intra-frame information interaction. However, the iKUN ar-
chitecture lacks an inter-frame attention mechanism, opt-
ing instead for a simple average pooling method to aggre-
gate temporal information between frames. This approach
is considered crude. In our work, we employ an inter-frame
cross-attention mechanism to extract temporal information
between frames.Specifically, after intra-frame interactions,
the model utilizes cross-attention mechanisms to simultane-
ously process reference frames and key frames, enabling the
model to capture richer temporal information. This practice
is common in the field of multi-object tracking. The specific
calculations involved are as follows:

T
CAxr(Qr,Kr,Vg) =0 <QMX/ZER) Vr

T
CArk (Qr, Kk, Vi) =0 <%\/§K> Vi

Where Qg and Qg are query vectors from the key frame
and reference frame respectively, Kr and K are key vec-
tors from the reference frame and key frame respectively,

and Vi and Vi are value vectors from the reference frame
and key frame respectively. The symbol o denotes the soft-
max operation. This step is crucial for the model’s ability to
stably track objects over time, enabling the model to com-
prehend the most relevant features of objects during tempo-
ral changes.

Experiment

Evaluation Metrics

Following existing MOT models, we employ IDF1,HOTA,
MOTA,and IDSW as metrics for evaluating model perfor-
mance. IDF1 prioritizes the duration of tracking a specific
object, primarily assessing tracking continuity and reidenti-
fication accuracy. HOTA measures the accuracy of detection
and association. IDSW represents the total numberof iden-
tity switches, while MOTA focuses more on evaluating de-
tection accuracy.

Benchmark

We evaluated our approach on the Refer-KITTI dataset.
Refer-KITTT is currently the only dataset designed for refer-
ing multi-object tracking. This dataset is an extension of the
KITTI dataset, where each video sequence in KITTI is asso-
ciated with one or more textual descriptions. We utilized 15
videos with 80 distinct descriptions for training and 3 videos
with 63 different descriptions for testing. Our method was
assessed using validation metrics on this dataset.In compar-
ison, we use iKUN as our baseline model, and additionally,
our method is compared with some traditional trackers and
Refering MOT trackers.

Implementation Details

In our experiments, we adopted YOLOVS as our detec-
tor. For the language-guided architecture, we employed the
CLIP-RNS50 image encoder as the teacher model for Se-
mantic Head distillation. The feature dimensions were set to
C, = 2048, C; = C = 1024, with a window size of T = 8
and a stride of 4. Additionally, the CLIP-RN50 text encoder
was borrowed to serve as the text module. The parameters
of the text module were frozen throughout the entire training
process to ensure the stability of text feature extraction.Both
the Semantic Head and Location Head contained a five-layer
MLP architecture, followed by GroupNorm and ReL.U acti-
vations after the final layer. Our model was trained for 100
epochs on a platform equipped with two RTX 2080Ti GPUs.
The learning rate was set to le-5 and a cosine annealing
strategy was employed for decay.

Comparison with State-of-the-Art

Table 1 presents the performance of our method compared
to the current state-of-the-art models in Refering MOT and
traditional trackers on the Refer-KITTI benchmark. Most
methods utilize Yolov8(Varghese and Sambath 2024) as the
detector, with the Refering MOT methods including iKUN
and TransRMOT, while traditional trackers are represented
by ByteTrack. Due to the convenience of the iKUN archi-
tecture, we combine the iKUN model with another tradi-
tional tracker, DeepSort, where DeepSort provides the can-



Method | Detector | HOTA | DetA | AssA | DetRe | DetPr | AssRe | AssPr | MOTA | IDF1

ByteTrack(Zhang et al. 2022) Yolov8 2249 | 13.17 | 40.62 | 16.13 | 36.61 | 46.09 | 73.39 -7.52 23.72
TransRMOT(Wu et al. 2023) Yolov8 38.06 | 29.28 | 50.83 | 40.20 | 47.36 | 55.43 | 81.36 9.03 46.40
Deepsort(Wojke, Bewley, and Paulus 2017)+iKUN Yolov8 4246 | 31.64 | 57.56 | 46.03 | 46.32 | 63.48 | 77.66 12.5 52.57
iKUN(Du et al. 2024) Yolov8 44.56 | 32.05 | 6248 | 48.53 | 44.76 | 70.52 | 76.66 9.69 55.40

Ours Yolov8 46.99 | 3490 | 63.99 | 53.21 | 46.30 | 72.18 | 77.06 14.51 | 58.95

iKUN* DeformableDETR | 48.84 | 35.74 | 66.8 51.97 | 52.25 | 7295 | 87.09 12.26 | 54.05

Table 1: The comparison with SOTA and traditional trackers.All trackers were trained on Refer-KITTI.

Method | HOTA | AssA | MOTA | IDF1

Full Model 46.99 | 63.99 | 14.51 | 58.95
Without Appearance Cue | 44.87 | 62.46 | 11.53 | 56.58
Without Motoin Cue 45.77 | 62.06 | 12.08 | 57.97
Without Semantic Cue 4492 | 62.44 | 13.80 | 57.64

Table 2: Effectiveness of three cues in the tracking.

didates for the targets and trajectories of iKUN. Addition-
ally, we combine iKUN with the more powerful object
detection performance of the DeformableDETR(Zhu et al.
2020) model to demonstrate the gaps between our method
and these approaches. From the experimental results, our
method achieved 46.99%, 14.51%, and 58.95% on HOTA,
MOTA, and IDF1, respectively. Compared to the original
SOTA models, our method improved by 2.4%, 4.8%, and
3.5% on these metrics. It can be considered that our method
indeed exhibits a significant enhancement over iKUN, espe-
cially with nearly a 50% increase in the MOTA metric, in-
dicating fewer instances of missed detections, false alarms,
and incorrect associations. Particularly noteworthy is that in
comparison to solutions utilizing more powerful detectors,
our approach is closer to iKUN in some metrics and even
surpasses it in certain aspects (such as MOTA and IDF1).
This exemplifies how our method can provide a more robust
tracking solution.

Ablation Study

We conducted comprehensive ablation experiments to val-
idate the effectiveness of the modules we introduced.
Through three sets of distinct experiments, we verified the
efficacy of different cues in the tracking process, with all
results presented in Table 2, where we particularly focus on
the accuracy of associations. Clearly, the performance of our
method varies to different extents when any cue is removed.

When the appearance cue is lacking, there is a significant
decrease in association performance, with AssA dropping
by 1.53 and IDF1 decreasing by 2.37, yet still slightly out-
performing the original iKUN model. This suggests the ne-
cessity of introducing appearance cues to enhance the asso-
ciations between target trajectories and highlights how mo-
tion and semantic cues can also improve matching accuracy
to some extent.The removal of motion cues results in the
most substantial decline in AssA, indicating the importance
of motion cues in the association phase. This confirms our
hypothesis regarding the significance of motion cues. Ad-
ditionally, the decrease in HOTA and MOTA due to the ab-
sence of semantic cues underscores the role of semantic cues
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Figure 2: Qualitative results of our method on Refer-KITTI

in the tracking process.

In conclusion, the fusion of appearance, semantic, and
motion cues can provide a more comprehensive understand-
ing of object information, enabling the model to exhibit a
more stable tracking performance.

Qualitative Results

We visualized some typical results (figure 2) to demonstrate
the tracking effects under different text guidance. The first
text focuses on the location of cars, the second text adds
descriptions of car colors based on the car’s position, and
the third text focuses on the location of people.

Conclusion

In this work, we propose a method for multi-cue fusion in
language-guided multi-object tracking, cleverly combining
semantic, motion, and appearance cues for object associ-
ation. This approach addresses the limitations of Refering
MOT, which relies on single cues for tracking, enabling
the model to leverage richer visual characteristics and con-
textual information to capture complex relationships dur-
ing tracking. By fusing multiple cues early on, we avoid
the need for complex heuristic algorithms for matching in
later stages, simplifying the computational process and en-
hancing tracking accuracy. This method particularly demon-
strates more stable performance in tracking issues within
complex scenes.
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