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Abstract

With the development of edge computing and the use of
limited resources of mobile devices, we intends to build
a lightweight CNN framework using semantic bootstrap
method to process noisy labels in the data set for face recogni-
tion. First, we will introduce a special case of Maxout activa-
tion named Max-feature-Map (MFM) in each convolutional
layer of CNN.MFM is realized by means of competitive re-
lation, which can not only separate noise signal and informa-
tion signal, but also choose the feature between two feature
graphs. In order to make the network prediction more con-
sistent with the noisy labels, the semantic bootstrap method
is used to adapt the training data set with noisy labels. With
MEFM, we designed three lightweight CNN networks. The ex-
perimental results show that the computational cost and stor-
age space of Lightweight CNN can be significantly reduced,
and the training data set with noisy labels can be treated ef-
fectively.

Introduction

Over the past decade, CNNs and deep learning have
proven to be powerful tools in a wide range of visual analysis
and recognition tasks in the field of computer vision. Many
visual tasks, such as image classification, target detection
and face recognition, benefit from the robustness and dis-
criminative representation learned by CNN and obtain satis-
factory results. This improvement is mainly due to the CNNs
from a large number of training data to learn robust face em-
bedding. In recent years, edge computing has gained wide
attention thanks to the development of IoT. However, the
limited computing resources cannot meet the requirements
of the increasingly complex CNN. Therefore, it is necessary
to design a lightweight CNN network. In order to achieve
the optimal accuracy rate, the size of training data set has
been increasing. A number of large face data sets were re-
leased, such as CASIAWebFace, CelebFaces+, VGG face,
UMDPFace, massive Celebrity and VGGFace2.However, ac-
curately recognizing faces remains a challenge for several
reasons. Specifically, these large data sets usually contain a
large number of noise signals, especially if they are auto-
matically collected by image search engines or movies. In
order to solve the problems in face recognition, a variety

Copyright (© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of studies have been carried out(Hu et al. 2017; Wu et al.
2017). Inspired by (Wu et al. 2018), they introduced a nov-
el architecture, max-feature-map (MFM) operation, which
can obtain a compact representation and select feature filter.
Our method includes MFM, small convolution filter and net-
work, and was trained on MS-Celeb-1M dataset. The seman-
tic bootstrap method proposed by (Wu et al. 2018) can au-
tomatically remark the training data through the pre-trained
deep network, and can process the images with noisy labels.
Thanks to these two techniques, we can effectively eliminate
the impact of noise tags on face images and achieve the most
advanced results on popular face benchmarks.

Related Work
Lightweight CNN based on face recognition

Recently, lightweight CNNs based on face recognition
has been studied. PCANet(Chan et al. 2015) is a lightweight
CNN, which uses PCA instead of BP algorithm to train neu-
ral network, with few parameters and calculations and smal-
1 demand for samples, which is suitable for feature extrac-
tion of specific scenes. Based on PCANet, Yu et al proposed
2DPCANet(Li, Wu, and Kittler 2018), using 2DPCA to re-
place PCA algorithm and retained the structural information
in 2-D images. MobileNet(Howard et al. 2017) is specifical-
ly used for mobile terminal and embedded deep learning. It
is based on streamlined architecture and uses deep separable
convolution to build lightweight CNN. Compared with Mo-
bileNet V1,MobileNet V3’s(Howard et al. 2020) accuracy
and speed have been greatly improved. Also, MobileNet V2
is only about SMB in size, making it ideal for embedded and
mobile devices. In addition, there are many lightweight C-
NNs for face recognition, such as SqueezeNet(Iandola et al.
2016), ShuffleNet(Zhang et al. 2017), which have also at-
tracted wide attention.

Noisy Label Problems

Noisy label is an important issue in deep learning because
datasets tend to be large. (Ostyakov et al. 2018) trained an
ensemble of classifiers on data with noisy labels using cross-
validation and used the predictions of the ensemble as soft
labels for training the final classifier. Identification of incor-
rect labels based on prediction confidence was also shown to
be highly effective in extensive experiments on face recog-



nition by (Ding et al. 2018). (Kohler, Autenrieth, and Beluch
2019) proposed an iterative label noise filtering approach
based on similar concepts as Rank Pruning, which estimates
prediction uncertainty during training and relabels data sam-
ples that are likely to have incorrect labels. (Zhou et al. 2017)
proposed a GAN for removing label noise from synthetic da-
ta generated to train a CNN. GANs were used to generate a
training dataset with clean labels from an initial dataset with
noisy labels by (Chiaroni et al. 2019). Although some strate-
gies have been studied for noisy label problem, noisy label
is still an open issue for deep learning methods.

Architecture

In this section, we first introduce Max-Feature-Map op-
eration to obtain more information for face recognition in
a lightweight CNN framework. Then we propose a seman-
tic bootstrapping strategy to address noisy labeled images in
large-scale dataset.

Max-Feature-Map

There are a lot of noises in large-scale face dataset. If
these noises are not properly handled, training will be bi-
ased. The existing method of ReLU can separate noisy la-
bels and informative labels by a threshold to determine the
activation of one neuron. If the neuron is not active, its out-
put will be 0 to eliminate the noisy labels(value< 0). But,
using a threshold may loss some information especially for
the first several convolutional layers because both positive
and negative results of these layers are useful.

We propose the Max-Feature-Map operation inspired by
the concept of neural inhibition, which means when one neu-
ron fires, the corresponding neuron will be inhibited. MFM
is an alternative of ReL.U to suppress the activation of a s-
mall number of neurons via competitive relationship.

We define two types of MFM operations to obtain com-
petitive feature map. The first one is MFM2/1 operation
which combines two feature maps and outputs element-wise
maximum one can be written as:
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1 < 7 < W, W and H denote the spatial width and height of

feature maps. As is shown in Eq.(1), the output £ via MFM

operation is in R#*W*N The gradient of Eq.(1) takes the
following form,
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By using MFM2/1, we generally obtain 50% informative
neurons.

The second one is MFM3/2 operation which inputs three
feature maps and removes the minimal one element-wise,

can be defined as:
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where 2" € RFXW 1 < n < 3N,1 <k < N and medi-
an(.) is the median value input feature maps. The gradient of
MFM3/2 is similar to Eq.(2) and Eq.(3), in which the value
of gradient is 1 when the feature map xfj is activated, and
it is set to be 0 otherwise. In this way, we select and reserve
2/3 information from input feature maps.

MEFEM operation can separate the noisy signals and infor-
mative signals via inactive and active neurons. It can also
suppress the activation of a small number of neurons so that
MFM based CNN model are light and robust. Meanwhile,
the inhibition of one neuron is free of parameters so that it
does not depend on training data extensively.

The Lightweight CNN Framework

In this section, we discuss the lightweight CNN-29 model
with MFM. Our model unilizes the idea of residual block-
s and contains 29 layers. With the development of residu-
al networks, deep CNNs are widely used and often achieve
high performance in various computer vision tasks. The
residual block in our model includes two MFM operations
without batch normalization.

Compared to the traditional residual networks, our model
with MFM operation has some improvements. On the one
hand, when testing data domain is different from training
domain, the advantages of batch normalization which accel-
erates the convergence of training and avoids overfitting are
not obvious. On the other hand, we employ the fully con-
nected layer instead of global average pooling layer on the
top. In our training scheme, input images are all aligned, so
that each node for high -level feature maps contains both se-
mantic and spatial information which may be damaged by
the global average pooling. The details of our model are p-
resented in Table 1.

Semantic Bootstrapping for Noisy Labels

Semantic bootstrapping is proposed to make prediction of
the network more consistent with the noisy labels. It, called
“self-training”, provides an effective and simple method to
estimate sample distribution. we use the CASIA-WebFace
and MS-Celeb-1M dataset for training in the experiment.

Assume x € X and t denote data and labels, re-
spectively. The CNN based on softmax loss functions can
be represented as a conditional probability P(t|f(z)),
> ; P(ti|f(x)) = 1. The maximun probability P(t;|f(x))
determines the most convincing prediction label. First, we
train a Lightweight CNN model on the CASIA-WebFace
dataset and then fine-tune it on the MS-Celeb-1M dataset.
Second, we employ this model to obtain the conditional
probability and label for each sample on the original noisy
label MS-Celeb-1M dataset. We change the label of sample
whose probability is greater than the threshold to the pre-
diction label. The first bootstrapping is employed to select
samples. We accept the sample whose prediction label is the



Table 1

Type Filter Size | Output Size #Params
/Stride,Pad
Convl | 5 x5/1.2 128x128%96 | 2.4K
MFM1 | - 128x128x48 | -
Pooll %272 64 64%48 5
Conv2_x B i gﬁ’ H x1| 64x64x48 82K
Conv2a | Ix1/1 64 64%96 4.6K
MFM2a | - 64x64x48 -
Conv2 | 3x3/1,1 6464192 165K
MFM2 | - 64 64%96 -
Pool2 | 2x272 32x32x96 -
Conv3_x gigﬁ} <2 | 32x32%96 662K
Conv3a | 1x1/1 32%32x192 18K
MFM3a | - 32%32%96 -
Conv3 3x3/1,1 32x32%x384 331K
MFM3 | - 32%32%192 -
Pool3 | 2x272 16x16x192 n
Convéd_x g i gﬁ %J %3 | 16x16x192 3.981K
Convda | 1x1/1 16x16x384 73K
MFM4a | - 16x16x192 -
Convd | 3x3/1,1 16X 16x256 442K
MFM4 | - 16x16x128 -
ConvS.x gigﬁ% w4 | 16x16x128 | 2.356K
Conv5a 1x1/1 16x16x256 32K
MFM5a | - 16x16x128 -
Conv5 | 3x3/1,1 16x16x256 294K
MFM5 | - 16x16x128 -
Poold | 2x272 Sx8x 128 5
fcl - 512 4.194K
MFM fcl| - 256 -
Total - 5 12.637K

same as the ground truth and whose label is modified to for-
m the MS-Celeb-1M re-labeling dataset, denoted as MS-1.
Third, MS-1 is used to retrain the Lightweight CNN mod-
el and then we relabel the original noisy label MS-Celeb-
1M to re-sample the dataset, denoted as MS-2. It is the sec-
ond bootstrapping. Finally, we retrain the Lightweight C-
NN model on MS-2. So far, we can obtain a model that
allows large noisy label dataset to share contributions and
work well.

Experiment

In this section, we evaluate our Lightweight CNN model-
s on various face recognition tasks. And then compare our
MFM operation with different activation functions. Finally,
we discuss the effectiveness of the semantic bootstrapping
method for selecting training dataset.

Experimental Methods and Preprocessing

The CASIA-WebFace and MS-Celeb-1M datasets are
used for training, and use gray-scale face images to alle-
viate the influence of large illumination discrepancy when
training and testing. When training, the face images are
aligned to 144x144 by the five landmarks and then random-
ly cropped to 128x128 as inputs. Besides, each layers use
BatchNormalization so that the value of each pixel falls be-
tween 0 and 1.

To train the Lightweight CNN, we randomly select one
face image from each identity as the validation set and re-
maining images as the training set. Dropout is used for fully
connect layers and the ratio is set to 0.7. The momentum is
set to 0.9, and the weight decay is set to 5 x 10~* for con-
volution layers and a fully-connected layer except the fc2
layers. Note that fcl contains face representation that can
be used for face verification, fc2 contains large number of
parameters, but not used for feature extraction. Thus we in-
crease the weight decay of fc2 layer to 5 x 1072 to avoid
overfitting. The learning rate is set to 1 x 10~2 initially and
reduced to 5 x 10~° gradually. The parameter initialization
for convolutional layers and fully-connected layers is Xavier
and Gaussian, respectively.

Multi-view Face Recognition

To further demonstrate the effectiveness of the proposed
model in different domain face databases. As we know, large
pose variations are one of the major factors that significantly
reduce the performance of face recognition algorithms. So it
is important to evaluate the effectiveness of face recognition
model in large pose variations.

We compare our proposed method with multi-view face
recognition methods(Kan, Shan, and Chen 2016; Yin and
Liu 2017; Zhu et al. 2013, 2014), and pose-aware face im-
age synthesis methods(Tran, Yin, and Liu 2017; Yim et al.
2015) in Multi-PIE databases(Gross et al. 2010). Note that
all the compared methods are trained on Multi-PIE, while
our posed method are trained on Ms-Celeb-1M (Guo et al.
2016) where the imaging condition is quite different form
Multi-PIE.

In test protocol, we follow from (Yim et al. 2015), where
neural expression images from all four sessions are used.
One gallery image is selected for each testing identity from
their first appearance. Specifically, we selected a single
frontal face image for each subject in the test dataset and
treated the selected face images as the gallery set, leaving
the remaining face images as the probe or test set. We then
extracted the deep features using our proposed face recogni-
tion network, The rank-1 recognition accuracy is evaluated
by comparing the features from faces in the probe set and
those from the real frontal faces in the gallery set. The com-
parison was performed using the cosine distance metric. The
evaluation results are given in Table 2. and compared with
the competing methods.

As shown in Table. 2, our method achieves very compet-
itive performance in £45°, but in large pose variations (e.g.
+75° ,490°), our face recognition network is collapsed in
accuracy performance. As shown in Fig. 1, this is because



Table 2: Comparison of state-of-the-art methods in terms of recognition accuracy (%) on Multi-PIE database.

Method +£15° +£30° £45° £60° £75° £90°
Zhu et al. (Zhu et al. 2013) 90.7 80.7 64.1 459 - -
Zhu et al. (Zhu et al. 2014) 92.8 83.7 72.9 60.1 - -
Kan et al. (Kan, Shan, and Chen 2016) 100 100 90.6 85.9 - -
Yin et al. (Yin and Liu 2017) 99.2 980 903 921 878 77.0
CPF (Yim et al. 2015) 950 885 799 619 - -
DR-GAN (Tran, Yin, and Liu 2017) 940  90.1 86.2 83.2 - -
A3FCNN (Zhang et al. 2018) 987 989 958 927 - -
Ours 986 974 921 62.1 242 5.5
Ours + TP-GAN (Huang et al. 2017) 98.7  98.1 954 877 774 646
there is very little visible information about faces at large Network Analysis

poses, the network can not recognize what is the identity of
the test face.

(a) 75° (b) 90°

Figure 1: The 75°, 90° faces are sample form Multi-PIE
dataset.

To tackle this problem, an extension module of our face
recognition network has been added, e.g. (Huang et al. 2017,
Luan et al. 2020; Qian, Deng, and Hu 2019; Rong, Zhang,
and Lin 2020), one of these methods is TP-GAN(Huang
et al. 2017) that it is a face frontalization model that can
eliminate pose variations by first synthesizing a frontal view
of the face from a given nonfrontal image. It can get abetter
preserve the facial texture details by processing the glob-
al and local transformations separately. The evaluation re-
sults are given in Table. 2. Thanks to this module, our face
recognition network can achieves higher accuracy by rotat-
ing faces. We improve the rank-1 accuracy from 24.2% to
77.4% (on +75°) and further improve from 5.5% to 64.6%
(on £90°). The results indicate that our proposed face recog-
nition network can efficiently capture the characteristics of
different identities and obtain features invariant to pose and
illumination for face recognition.

The experiments suggest that the proposed face recogni-
tion network obtain discriminative face representations and
have good generalization ability for multi-view face databas-
es.

MFEM operation plays an important role in our
Lightweight CNN models. Hence we give a detail analysis
of MFM on the Lightweight CNN-9 model in this subsec-
tion.

First, we compare the performance of MFM 2 / 1 and
MFM 3 / 2 with ReLU, PReLU and ELU on the LFW
dataset. We simply change activation functions and it is ob-
vious that the output channels of ReLU, PReLU and ELU for
each layer are 2x compared with MFM 2/ 1, and 1.5x com-
pared with MFM 3 / 2. The experimental results of different
activation functions are shown in Table 3, our MFM opera-
tion generally superior to the other three activation function-
S.

Table 3: Comparision with different activation function-
s on LFW verification and identification protocol by the
Lightweight CNN-9 model.

Method Accuracy(%) | Randk-1(%) | DIR@FIR=1%(%)
ReLU 98.30 88.58 67.56
PReLLU 98.17 88.30 66.30
ELU 97.70 84.70 62.09
MFM 2/1 98.80 93.80 84.40
MFM 3/2 98.83 94.97 88.59

The reason is that MFM uses a competitive relationship
rather than a threshold (or bias) to active a neuron. Since
the training and testing sets are from different data sources,
MFM has better generalization ability to different sources.
Compared with MFM 2 / 1, MEM 3 / 2 can further improve
performance, indicating that when using MFM, it would be
better to keep only a small number of neurons to be inhibited
so that more information can be preserved to the next con-
volution layer. That is, the ratio between input neurons and
output neurons should be set to between 1 and 2. In addition,
benefit by the MFM activation function, our Lightweight C-
NN model is more lightweight and can be adapted to the
mobile terminal with a little modification.

Noisy Label Data Bootstrapping

In this subsection, we verify the efficiency of the pro-
posed semantic bootstrapping method on the MS-Celeb-1M



dataset. We select Lightweight CNN-9 for semantic boot-
strapping. The testing is performed on LFW.

First, we train a Lightweight CNN model on the CASIA-
WebFace dataset that contains 10,575 identities in total.
Then, we initialize our pre-train model by CASIA-WebFace
and fine-tune it on MS-Celeb-1M (contains 99,891 identi-
ties). To alleviate the difficulty of CNN convergence, we
firstly set the learning rate of all the convolution layers to
0, so that the softmax loss only contributes to the last fully-
connected layers to train a classifier. When it is about to con-
verge, the learning rate of all the convolution layers is set to
the same, and then the learning rate is gradually decreased
from1 x 1073 to 1 x 107°.

Second, we employ the trained model in the first step to
make predictions on the MS-Celeb-1M and obtain the prob-
ability p; and label £; for each sample #; € X. We accept
the re-labeling samples: 1) The prediction { is the same as
the ground truth label t; 2) The prediction £ is different from
the ground truth label t, but the probability p; is greater than
the threshold. As show in Figure 2, we set threshold pg to
[0.6, 0.7, 0.8, 0.9] to construct four re-labeling dataset. Ob-
viously, the best performance is obtained when py is set to
0.7. In this way, the MS-Celeb-1M re-labeling dataset, de-
fined as MS-1M-1R, contains 79,077 identities.

The performance trained on MS-Celeb-1M-1R The performance trained on MS-Celeb-1M-2R
s
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Figure 2: The performance of LFW. The models are trained
on the cleaned datasets with different threshold settings to
sample images.

Finally, we retrain Lightweight CNN-9 on MS-1M-2R.
Table 4 shows experimental results of the CNN models
learned on different subsets. We have the following observa-
tions: 1)The MS-Celeb-1M database contains massive noisy
labels. If the noisy labels are correctly dealt with, the per-
formance on the two testing datasets can be improved. Our
semantic bootstrapping method provides a practical way to
deal with the noisy labels on the MS-Celeb-1M database.
2) Verification performance benefits from larger datasets. 3)
After two bootstrapping steps, the number of identities drops
from 99,891 to 79,077 and performance improvement tends
to be smaller. These indicate that our semantic bootstrapping
method can obtain a purer training dataset that could in turn
result in a light CNN with higher performance.

Conclusion

In this paper, we developed a lightweight CNN framework
to learn robust facial recognition on datasets with noisy la-
bels. Inspired by neural inhibition and maxout activation, we
propose the Max-Feature-Map operation to obtain compact
and low-dimensional face recognition. Small kernel sizes of
convolution layers, Network in Network layers and Resid-
ual Blocks have been implemented to reduce the parame-

Table 4: The performance on LFW for Lightweight CNN-9
model trained on different datasets.

Accuracy(%) | FAR=1% | FAR=0.1%
CASIA 98.13 96.73 87.13
MS-Celeb-1M 98.47 98.13 94.97
MS-IM-1R 98.80 98.43 95.43
MS-1M-2R 98.80 98.60 96.77

ter space and improve performance. The advantages of our
framework is that it is faster and smaller than other CN-
N methods, and contains only 12,637K parameters in the
lightweight CNN-29 model. In addition, an effective seman-
tic bootstrapping has been proposed to deal with the noise
label problem. The experimental results verify that the pro-
posed lightweight CNN framework has potential value for
some real-time facial recognition systems.
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