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Abstract

It has been well demonstrated that visually impercepti-
ble perturbations added to the natural image can suc-
cessfully fool neural networks. While most of recent
work has focused on image classification, we want to
explore adversarial examples for semantic segmenta-
tion which is more difficult. In this paper, three white-
box and one black-box attack approaches are utilized
to attack segmentation neural network. We show em-
pirically that there exist barely the perceptible pertur-
bations which results in catastrophic predictions given
by several semantic segmentation neural networks. Fur-
thermore, we also show that adversarial examples gen-
erated from one model can be transferred to attack an-
other one.

Introduction
Convolutional neural networks (CNNs) have become the
state-of-the-art solution for a wide range of vision prob-
lems (He et al. 2015; Long, Shelhamer, and Darrell 2015;
Ren et al. 2015; Szegedy et al. 2014), including object de-
tection, visual concept discovery, semantic segmentation,
boundary detection, etc. Based on powerful computational
resources like modern GPUs and TPUs, state-of-the-art per-
formance on various datasets has increased at an unprece-
dented pace, and as a result, these models are now being
deployed in more complex systems.

However, it is also notorious for its vulnerability which
can be fooled by a human imperceptible perturbation (Car-
lini and Wagner 2017; Goodfellow, Shlens, and Szegedy
2015; Moosavi-Dezfooli, Fawzi, and Frossard 2016). In
(Szegedy et al. 2014). In (Szegedy et al. 2014), it was shown
that adding imperceptible perturbations can result in failures
for image classification task. These perturbed images, called
adversarial examples, are considered to fall on some areas
in the large, high-dimensional feature space which are not
explored in the training process.

Given that prior work on adversarial examples mostly fo-
cus on image classification task, in this paper we will ex-
plore the effect of adversarial attacks on tasks embedded
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Figure 1: An adversarial example for semantic segmenta-
tion. FCN-ResNet50 is used for segmentation. Left column:
the original image (top row) with the normal segmentation
(bottom row). Right column: after the adversarial perturba-
tion (top row, generated by PGD with numiter = 100) is
added to the original image, the segmentation results are
completely wrong. Note that though the added perturbation
can confuse semantic segmentation model, it is visually im-
perceptible (the maximal absolute intensity in each channel
is less than 8)

a localization component, more specifically: semantic seg-
mentation. Semantic segmentation is a widely used and im-
portant method for scene understanding which can be used
for examples for automated driving, video surveillance, or
robotics. With the wide-spread applicability in those do-
mains comes the risk of being faced with an adversary trying
to fool the system. Therefore, studying the adversarial attack
against semantic segmentation systems becomes an impor-
tant topic.

In this paper, we go one step further by generating adver-
sarial examples for semantic segmentation and show trans-
ferability of them. Note that semantic segmentation is more
difficult than classification problems, as we need to consider
orders of magnitude more targeted (e.g., pixels for segmen-
tation task). Three white-box attack methods, i.e., FGSM
(Goodfellow, Shlens, and Szegedy 2015), MI-FGSM (Dong
et al. 2018), PGD (Madry et al. 2019), one black-box attack,



Square Attack(Andriushchenko et al. 2020), and four differ-
ent segmentation networks i.e., FCN8-VGG, FCN16-VGG,
FCN-Res50, FCN-Res101 are used in our work, the goal is
to show how fragile current semantic segmentation models
are when confronted with an adversary, and we also try to
transfer perturbations generated from one model to another
one to show the transferability of adversarial perturbations.
Figure 1 shows an adversarial example which can confuse
semantic segmentation neural network.

Related Work
Semantic Segmentation
The semantic segmentation is an essential issue in the com-
puter vision field (Ma et al. 2017), which involves assign-
ing a semantic category to each pixel. Jonathan Long et al.
(Long, Shelhamer, and Darrell 2015) proposed Full Con-
volutional Networks (FCNs) for semantic segmentation in
2015, which remove the fully connected layers in classifica-
tion CNN networks, becoming a pioneer of a fully convolu-
tional architecture for dense semantic segmentation.

Based on the FCN (Long, Shelhamer, and Darrell 2015),
recently many semantic segmentation approaches (Long,
Shelhamer, and Darrell 2015; Paszke et al. 2016; Chen et
al. 2017; Zheng et al. 2015; Zhao et al. 2017)have been pro-
posed. Badrinarayanan V et al. (Badrinarayanan, Kendall,
and Cipolla 2017) proposed the following work SegNet to
introduce an encoder and decoder network, where the de-
coder utilizes pooling indices in the encoding layers to up-
sample the feature map. Ronneberger O et al. proposed UNet
(Ronneberger, Fischer, and Brox 2015) adopting skip con-
nections to combine shallow representations from the en-
coder and deep features from the encoder, which exploit
low level feature for accurate semantic segmentation. Paszke
et al. (Paszke et al. 2016) proposed ENet, real-time se-
mantic segmentation network by exploiting separable con-
volution and less channels. CRF was applied as a post-
processing procedure (Chen et al. 2017) or end-to-end in-
tegrated (Zheng et al. 2015) into the network to refine a
segment contour. PSPNet (Zhao et al. 2017) applies pyra-
mid pooling module to aggregate information from differ-
ent scales of feature maps. Hierarchical (Tao, Sapra, and
Catanzaro 2020) and ResNet (Zhang et al. 2020) have been
the state-of-the-art approaches of the semantic segmentation
field.

Adversarial Attack
Szegedy et al. (Szegedy et al. 2014) first showed that neu-
ral networks are vulnerable to adversarial examples, which
are clean images being intentionally perturbed, e.g., by
adding carefully crafted perturbation that is imperceptible
to human. Various methods have been proposed to gen-
erate adversarial examples, based on the gradient (Carlini
and Wagner 2017; Goodfellow, Shlens, and Szegedy 2015;
Madry et al. 2019; Dong et al. 2018), the query score (An-
driushchenko et al. 2020; Huang and Zhang 2020) or the
decision (Papernot et al. 2017; Cheng et al. 2018; Brendel,
Rauber, and Bethge 2018; Ilyas et al. 2018), most of which

mainly focus on image classification, including both white-
box attack and black-box attack. In the white-box setting,
both the network architecture and parameters are available
to the attacker. The gradient-based methods are always use-
ful for white-box attack and the strongest methods are al-
most all based on project gradient descent (PGD) (Madry
et al. 2019). As for the black-box attack, the attacker only
has access to the model’s input and the predicted output,
which is more challenging because the modification of the
input must be computed without access to the loss gradi-
ent of the model. The score-based and decision-based meth-
ods work for that requiring repeated queries to the model.
The state-of-the-art black-box attack is Square Attack (An-
driushchenko et al. 2020), which is based on random search
and square-shaped random sampling.

Adversarial Attack on Semantic Segmentation
A few studies have been conducted on the adversarial at-
tack for semantic segmentation networks, which is also an
important computer vision task and relatively more difficult.
Anurag Arnab et al. (Arnab, Miksik, and Torr 2018) con-
ducted the first systematic analysis about the effect of mul-
tiple adversarial attack methods on different semantic seg-
mentation networks. Fisher et al. (Fischer et al. 2017) found
the existence of adversarial examples in semantic segmenta-
tion and Metzen et al. (Hendrik Metzen et al. 2017) showed
that universal perturbations can be made to fool semantic
segmentation. Xie C et al. (Xie et al. 2017) propose an at-
tack method named Dense Adversary Generation (DAG) to
generate a group of adversarial examples for state-of-the-art
segmentation and detection neural networks. Shen G et al.
(Shen et al. 2019) leveraged SPADE (Spatially-adaptive de-
normalization) to generate effective adversarial attack in a
single step, improving the attack success rate surpassing the
state-of-the-art adversarial attack methods including PGD.
However, due to the high cost of computation, traditional
gradient-based methods such as FGSM, PGD are more effi-
cient and thus widely used in practice.

Proposed Solution
Adversarial Attack Methods
The gradients of the loss function with respect to the input
data are very common information used by adversarial at-
tack algorithms. Generating adversarial images can be for-
malized as an optimization problem with constraints. Let x
represent the input data and y is the corresponded label. fθ
is a DNN parametrized with θ (i.e., where the network is
encoded as fθ(x)), L is the loss function which should be
minimized in the standard training procedure. Under white-
box setting, the gradient of the loss function with respect to
input x can be easily derived:

∇xL(fθ (x) , y) (1)

FGSM. Fast Gradient Sign Method (FGSM) is the sim-
plest yet a very efficient white-box attack method. By max-
imizing the loss function L, adversarial examples are gener-
ated with one-step update as

x′ = x+ ε · sign(∇xL(fθ (x) , y)) (2)



Figure 2: Four examples for semantic segmentation. These five columns, from left to right, shows the clean images, the pertur-
bations, the adversarial images, the original segmentation result and the adversarial segmentation result, respectively. Note, the
the adversarial perturbation is getting from PGD-20 attack based on FCN-ResNet50

where ε is the magnitude of adversarial perturbations un-
der l∞norm constraint.

PGD. PGD is an extended version of FGSM, by applying
iterative FGSM with a small step size α and a random start
point:

x′0 = x, x′t+1 = Πx+ε{x′t + α · sign(∇xL (fθ (x′t) , y))}
(3)

Successive variants of PGD prove that PGD is strong in
white-box setting and it is usually used in adversarial de-
fense to perform adversarial training or evaluate the robust-
ness.

MI-FGSM. FGSM is one-step attack and get relatively
lower attack success rate, while generated adversarial exam-
ples are more transferable. In contrast, the iterative method
is more likely to overfit on the threat model, leading to low
transferability. MI-FGSM [16] integrate momentum into the
iterative FGSM to improve the transferability:

gt+1 = µ · gt +
∇xL (x′t, y)

||∇xL(x′t, y)||1
(4)

x′t+1 = Πx+εx
′
t + α · sign (gt+1) (5)

where gt is the accumulated gradient at iteration t, and µ
is the decay factor of gt. Like the momentum optimization
formulation, the momentum help stabilize update directions
and escaping from poor local maxima. MI-FGSM reaches
the trade-off between the attack ability and the transferabil-
ity, useful for black-box attack.

Square Attack. Square Attack is a score-based black-box
attack that does not rely on the gradient information, which

is based on random search scheme to sample square-shaped
updates at random positions. A good initialization is impor-
tant in the black-box setting, for some examples are easily
modified to be adversarial. Square Attack initializes pertur-
bations with vertical stripes of width one where the color of
each stripe is sampled uniformly at random from {−ε, ε}c
(c is the number of channels). Based on the observation
that values in l∞-perturbations are usually ±ε, the updated
squares are also selected in {−ε, ε}c and the percentage of
pixels p deciding the side length

√
p · w2 is changed as it-

erations grow. Finally, all elements are projected onto the
l∞-ball of radius ε.

Attack Semantic Segmentation
The task can be divided into two parts: build semantic seg-
mentation models with good performance and generate ad-
versarial examples to perform white- and black-box attack.
In this paper, we perform untargeted l∞ attack on seg-
mentation models, fooling models segment objects to any
wrong classes. For semantic segmentation, threat models
are FCN8-VGG, FCN16-VGG, FCN-ResNet50 and FCN-
ResNet101, where VGG is the typical VGG16 and the back-
bone is VGG or ResNet to extract features. The difference
between FCN8, FCN16 and FCN is the upsampling oper-
ation. Segmentation models intend to achieve pixel-to-pixel
classification to the input image, then output an image which
is divided into several parts and corresponding label.

For adversarial attack on semantic segmentation, previ-
ous work proposed various methods and get high attack suc-
cess rate. The state-of-the-art attack, AdvSPADE, leverages
conditional GAN to generate adversarial examples, claim-
ing that it improves the attack success rate significantly



Table 1: the accuracy of non-targeted adversarial attacks against four different semantic segmentation neural networks, the
adversarial examples are crafted for FCN8-VGG, FCN16-VGG, FCN-Resnet50, FCN-ResNet101 respectively using FGSM,
MI-FGSM, PGD attack method. Clean represent the original image of VOC dataset. Note all the attack method are white-box
attacks.

Clean FGSM MI-FGSM PGD
20 100 200

FCN8-VGG 91.22 68.98 23.57 17.20 14.49 14.06
FCN16-VGG 90.99 68.22 22.13 16.11 13.45 13.08
FCN-Res50 93.25 71.98 16.24 16.46 13.01 —

FCN-Res101 94.25 74.09 22.18 21.96 18.95 —

and surpasses gradient-based methods. However, training
GAN requires too much time, so it is not an efficient way
to perform attack. Previous attack for semantic segmenta-
tion, which used gradient-based attack, only used the classic
white-box attack methods, e.g., FGSM and its iterative ver-
sion. Therefore, considering the efficiency and black-box at-
tack performance, MI-FGSM and black-box Square Attack
are adopted.

For white-box attack, the core of is to generate pertur-
bations based on the gradient of loss. Semantic segmenta-
tion makes a prediction at each pixel, and the corresponding
pixel-wise cross entropy loss is:

LPCE(f (x) , y) = − 1

N

∑
i∈N

∑
classes

yiLogSoftmax (fi(x))

(6)
By calculating ∇x′LPCE (f (x′) , y), we update the ad-

versarial examples based on Eq. (2-5), maximizing LPCE
along the gradient direction.

For black-box attack, only logits are accessed to. The
original Square Attack updates perturbations using margin-
based loss L (f (x) , y) = fy (x) − max

k 6=y
fk(x) for untar-

geted attack. In image classification tasks, each image only
has one label, while in segmentation, each pixel has its own
label making calculation computationally intensive. To al-
leviate that, we adopt loss oracle to accept the update when
the resulting loss is larger than the best loss so far. Pixel-wise
cross entropy loss is commonly used in semantic segmenta-
tion, so it is natural to define such loss as oracle to guide the
update.

Experiment
Dataset
In this project, we use PASCAL VOC2012 (Everingham et
al. 2010), a benchmark in visual object recognition and de-
tection, for training and testing. The train/val dataset has
11,530 images, which contains 27,450 ROI annotated ob-
jects and 6,929 segmentations. We should note that most
Flickr images can be characterized as “snapshots”, e.g., fam-
ily holidays, birthdays, parties, etc. and so many objects
appear only “incidentally” in images where people are the
subject of the photograph. The dataset serves for object de-
tection and semantic segmentation for it providing a large
number of segmentation information under nature scene and
could be an appropriate data source in our project.

Network
CNNs can be trained in end-to-end manner to accomplish se-
mantic segmentation. We adapt ResNet and VGG, which are
contemporary classification networks, into fully convolu-
tional networks and transfer their learned representations by
fine-tuning to the segmentation task, forming FCN-ResNet
and FCN-VGG. Specifically, they are FCN8-VGG, FCN16-
VGG, FCN-Resnet50 and FCN-ResNet101. They mainly
differ in the backbone used to extract features and the ar-
chitecture of the upsampling.

Different Attack Method
We report in Table 1 the accuracy of attacks against the
models we consider. The adversarial examples are gener-
ated for FCN8-VGG, FCN16-VGG, FCN-Resnet50, FCN-
ResNet101 respectively using FGSM, MI-FGSM, PGD. The
maximum perturbation ε is set to 8 among all experiments,
with pixel value in [0,255]. The number of iterations is 20
for MI-FGSM, and the decay factor µ is 1.0. For PGD at-
tack, the iteration is 20, 100, 200. Note for FCN-ResNet50
and FCN-ResNet101, the iteration is 20 and 100 because it is
very computationally expensive for PGD-200 used in com-
plex model.

From Table1, we can observe that three different attack
methods can efficiently drop the accuracy. For example, MI-
FGSM drops the accuracy from 94.25% to 22.18% for FCN-
ResNet101. PGD is the strongest among these three attack
methods, and its accuracy decreases with the increment of
number of iterations, which is supported by our analysis. In
particular, an interesting phenomenon is that ResNet-based
models not only achieve higher accuracy on clean input but
also are more robust to adversarial examples.

Transfer Performance
In this section we show the transferability of adversarial ex-
amples generated from different models. In particular, we
focus on MI-FGSM and PGD-20 attack method. Table 2 re-
ports the accuracy of these models under attack. It is obvi-
ous that the transferability of MI-FGSM is better than PGD-
20. In addition, adversarial examples are easier to transfer to
models with the same backbone as the source model.

Number Of Iterations
Figure 3 illustrates the accuracy of FCN-ResNet50 under
PGD attack with different number of iterations. We run
{20, 40, 60, 80, 100} iterations of PGD as our adversary,



Table 2: Transfer attack results for segmentation networks under MI-FGSM. The left column represents four basic segmentation
models which are used to generate adversarial examples. Then examples generated on one model are transferred to attack
others.* indicates the white-box attacks.

Attack FCN8-VGG FCN16-VGG FCN-Res50 FCN-Res101
FCN8-VGG MI-FGSM 23.57* 25.43 79.43 82.69

PGD-20 17.20* 20.69 86.39 89.08
FCN16-VGG MI-FGSM 24.70 22.13* 79.47 82.83

PGD-20 20.16 16.11* 86.61 89.09
FCN8-Res50 MI-FGSM 82.80 82.49 16.24* 69.20

PGD-20 88.96 88.76 16.46* 89.19
FCN8-Res101 MI-FGSM 83.77 83.53 68.68 22.18*

PGD-20 89.08 88.89 87.64 21.96*

Figure 3: The accuracy of FCN-ResNet50 under PGD attack
with different hyperparameters of number of iterations

with step size α = ε/iterations. It can be seen that as the
number of iterations grows, the accuracy of FCN-ResNet50
on VOC2012 test set drops. An intriguing phenomenon of
the curve is that the scope of the accuracy curve decreases
too. We highly assume the curve will be horizontal in the
end.

Black-box Attack
For black-box attack, we take Square Attack into consid-
eration which is the most efficient black-box attack to our
knowledge. Figure 4 illustrates the results of horizontal and
vertical initialization. It is not hard to find that the initializa-
tion of vertical is slightly better than horizontal initialization.

Conclusion
In this paper, we investigate the problem of generating ad-
versarial examples for semantic segmentation leveraging the
typical methods originally designed for classification. In
particular, three gradient-based white-box attack and one
query-based black-box attack are performed for segmenta-
tion models. Extensive experiment results verify that these
methods work well on semantic segmentation, which might
be attributed to the similarity between classification and seg-
mentation.

Figure 4: The accuracy of FCN-ResNet50 under square at-
tack. The blue curve is square attack with vertical noise as
initialization and the orange curve takes horizontal noise as
initialization instead.

While previous works have shown that adversarial attacks
might be extended to the physical world and deceive face
recognition systems, a practical attack against, e.g., an auto-
mated driving or surveillance system has not been presented
yet. Investigating whether such practical attacks are feasi-
ble presents an important direction for future work. Further-
more, investigating whether other architectures for semantic
segmentation are less vulnerable to adversarial perturbations
is equally important.
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