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Abstract

As the price of agricultural product indirectly reflects the rela-
tionship between supply and demand of the agricultural mar-
ket, so predicted price could be a reference of farmers and
the country to modify their strategy to smooth the impact
from the market. The Agricultural product price prediction
has been widely studied in recent years, but it generally stays
in the stage of traditional linear regression analysis or deep
learning model such as LSTM neural network. Therefore,
combined with the latest research on time series prediction
in deep learning, we apply the temporal convolutional net-
work TCN model to agricultural product price prediction. We
also propose an improved TCN neural network model, which
introduces LSTM neural network on the basis of TCN model.
Thanks to the gate mechanism of LSTM cell, the model’s
control to long-term memory is strengthened. Compared with
TCN, LSTM neural network and GRU neural network, all
single models, we evaluate the TCN stacked LSTM model
and results shows that it gets better performance in some
cases.

Introduction
Agricultural products market is an unseparatable part of
China’s market economic system. The stability of agricul-
ture is the cornerstone of China’s economic development. A
common problem in agricultural production is the waste of
resources and the loss of benefits caused by too much or too
little planting. It is mainly due to the failure to follow the
Law of market economy. This would be greatly improved if
farmers were given prices over a period of time as a refer-
ence for farming and the a signal of supply-demand balance.
So it is a meaningful study to forcast the price of agricutual
products.

At present, with the development of big data and artifi-
cial intelligence, more agricultural product data is stored as
a format of electronic files which will help further data min-
ing and analysis. Agricultural product price data is a special
sub-category of time series, which has many influencing fac-
tors. Natural disasters, supply, weather, national policies, in-
ternational exchange rates, epidemics and other factors are
all essential factors that affect agricultural product prices.
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For example, at the beginning of this year, the world’s econ-
omy was affected by COVID-19, which also impacted on
agricultural products. However, this unpredictable factor is
currently difficult to predict or quantify. How to accurately
predict the price trend of agricultural products in a certain
period of time in the future to provide farmers references is
one of the most challenging agricultural problems at present.

In the past, the empirical estimation method, survey anal-
ysis method and post-statistical analysis method were usu-
ally used to predict the price of agricultural products. How-
ever, the first two methods were too subjective, while the
traditional statistical analysis method applied to this prob-
lem was often based on the assumption that ”the time series
of the price of agricultural products is linear”, while obvi-
ously the market is volatile. Now in the era of big data,the
massive data makes it possible to use deep learning methods.
Many scholars have focused their research on predicting the
prices of agricultural products. They tried different methods
such as gray theory, RBF neural network, etc. (陈佳珊 and
张丹 2019; 刘锦源 2019; 罗洪奔 2014; 景秋玉 2018) .
They rarely conduct research on the analysis of agricultural
product price trends in combination with agricultural prod-
uct factors. From data acquisition, influencing factor analy-
sis to combined factor forecasting process, this problem is
extremely challenging. There are many options when pre-
dicting the trend of time series, which can be roughly di-
vided into the following categories, statistical methods, ma-
chine learning methods and deep learning methods. For ex-
ample, Kim et al. proposed an improved SVM model, which
used polynomial kernel function and Gaussian radial basis
function as the kernel function, and used 12 indicators as in-
puts to study the Korea’s Comprehensive Stock Price Index
(KOSPI)(Kim 2003).

Related Work
The forecast of agricultural product price trend is similar to
the classical time series problem, which has transited from
the first qualitative analysis to the later quantitative analysis.
The analysis basis of problems has gradually changed from
the original subjective ideas based on experience and feeling
to the application of big data and scientific statistical meth-
ods. Based on the past agricultural product price prediction
models, it can be divided into the traditional statistical ana-
lytical model and the machine learning prediction algorithm



from the persepective of algorithm, whereas from the per-
spective of model components, it can be divided into into
single prediction model, combined prediction model and in-
tegrated prediction model(MacQueen 1967).

Traditional statistical analysis models composed of lin-
ear theory and nonlinear theory, and linear theory mod-
els are generally based on the assumption that the past se-
quence is linear. In 2013, Guihong Wang and other re-
searchers used 8 methods respectively, including average
prediction method and timing average growth quantity pre-
diction method, to conduct price prediction and experimen-
tal comparative study on 13 types of agricultural prod-
ucts(Zhang 2003). However, the price sequence of agricul-
tural products cannot always form a simple linear relation-
ship or a linear superposition. Since the price sequence of
agricultural products has a large number of potential factors
and great uncertainties, the linear prediction method would
assert certain limitations and thus is not applicable.

As researchers continue to take the influence factors on
agricultural products into account, the application of nonlin-
ear theoretical models in this problem has been developed.
In 2012, Ganqiong Li proposed to divide the impact fac-
tors of agricultural products into strong fluctuation factors
and volatile fluctuation factors. Li took vegetables as an ex-
ample to establish non-parametric kernel density estimation
method, multi-layer feedforward neural network and other
models. The research results showed that the prediction ac-
curacy was above 90% (李干琼 2012).

Later, the intelligent prediction algorithm represented by
machine learning and deep learning algorithm gradually be-
comes the mainstream algorithm due to their higher pre-
diction accuracy and generalization ability(刘锦源 2019;
Arthur and Vassilvitskii 2006;陈佳珊 and张丹 2019; Olah
2015; 姚缙然 2019). Jinyuan Liu introduced THE EEMD
method to improve the LSTM model for predicting the fu-
tures prices of agricultural products. This method is more ac-
curate than the traditional machine learning method (LSTM
and SVR) (刘锦源 2019). Ning Jia , Chunjun Zheng fur-
ther combined the convolutional neural network, Long-Short
Term Memory model and the attention mechanism. Com-
pring with the traditional single model, the combined model
not only improved the accuracy, but also predict the overall
trend of vegetable products in the coming week accurately
(贾宁 and郑纯军 2019).

Reseachers found through experiments that both the tra-
ditional statistical analysis model have complex factors that
would affect the model, and thus it is not sufficient to only
rely on a single prediction model. The combined model and
the integrated model have thereby been proposed. Differ-
ent models are chosen and combined according to certain
weight. Jiashan Chen and other researchers predicted the
agricultural product price index for the next five quarters.
They extracted the linear information from SARIMA and
nonlinear information with LSSVM. The result showed that
the combined model had higher robustness and prediction
accuracy than the single model (陈佳珊 and 张丹 2019).
To achieve better forecasting for the output of grain, Jinran
Yao attempted to obtain a combination forecasting model
that has a wider range of application and better stability (姚

缙然 2019).
The combination model slices the research object hori-

zontally followed by its superposition, while the correspond-
ing integrated prediction model slices the research object
vertically, followed by divide and conquer and reintegration.
Lin Chen studied the ARIMA-based prediction model, neu-
ral network prediction model and VAR model to predict the
settlement price of cotton and other futures on Zhengzhou
Commodity Exchange, which achieved satisfactory results
(陈林 2011).

At present, more researchers are trying to apply deep
learning to solve the problem. As a common tool in arti-
ficial intelligence, deep learning technology is also applied
on time series problems, which solves many practical issues
including the price prediction of stocks and horticultural
plants. In literature(Gudelek, Boluk, and Ozbayoglu 2017),
convolutional neural network (CNN) is used to predict the
stock price fluctuations in a two-dimensional space. Zhang
adopted a hybrid framework of ARIMA model and neu-
ral network model to solve the time series problem(Zhang
2003). In literature(Chang, Zhang, and Chen 2018), Long
Short-Term Memory (LSTM) is used to predict the price of
electricity. Therefore, in order to obtain better results than
the previous prediction algorithm, we will use four different
deep learning models to study the prediction of agricultural
product price trend.

Deep Learning Models
In this section, we’ll introduce four different deep learning
models we implement in our experiences. They are LSTM
neural network, GRU neural network, TCN(temporal convo-
lution neural network) and TCN stacked LSTM neural net-
work respectively.

LSTM neural network
In traditional recurrent neural networks, two issues brought
great affect on model performance: (1)Models have diffi-
culty learning long-term memory, for they use a relatively
single mechanism to deliver hidden state which makes infor-
mation from long time ago easily forgotten;(2) The gradient
blows up or decays exponentially over time due to a scaling
effect on the gradient of the loss function of the neural net-
work. The two issues above make traditional recurrent neu-
ral networks a fair performance on long-term memory tasks
and hard to train.

Hochreiter S et al.(Hochreiter and Schmidhuber 1997) re-
designed the cell of recurrent neural network and introduced
LSTM neural network, which have been widely used in time
series problems in recent years. Thanks to its ’gate mecha-
nism’ in LSTM cell, it perfected the shortcomings of clas-
sical original RNN models. The cell structure is depicted in
Figure1.

A LSTM cell can be a described as a collection of three
gates: input gate ,forget gate and output gate. The input gate
receives the input and serves as a filter to controls update
information u(t).

i(t) = σ
(
Wihh

(t−1) +Wixx
(t) + bi

)
(1)



Figure 1: The architecture of long-short term memory cell
.

u(t) = tanh
(
Wchh

(t−1) +Wcxx
(t) + bc

)
(2)

Where x(t) is the input at time step t , ht−1 denotes the
hidden state of last time step and σ represents sigmoid acti-
vation function.

The forget gate decides the extent cell at time step t wil
forget the information in ct−1, in which the memory of pre-
vious time steps stored.

g(t) = σ
(
Wfhh

(t−1) +Wfxx
(t) + bg

)
(3)

Then the cell computes the ct based on the above two
gates.

c(t) = g(t) � c(t−1) + i(t) � u(t) (4)
The output gate finally expose a part of cell state c(t) as

the hidden state of time step t.

o(t) = σ
(
Wohh

(t−1) +Woxx
(t) + bo

)
(5)

h(t) = o(t) � tanh
(
c(t)
)

(6)

With the help of ’gate mechanism’ and cell state c(t),
LSTM neural networks are able to learn to preserve long-
term memory.

GRU neural network
Introduced by Cho, et al. in 2014 (Cho et al. 2014), GRU
(Gated Recurrent Unit) aims to solve the vanishing gradi-
ent problem which comes with a standard recurrent neu-
ral network. GRU can also be considered as a variation on
the LSTM because both are designed similarly and, in some
cases, produce equally excellent results.

To solve the vanishing gradient problem of a standard
RNN, GRU uses, so-called, update gate and reset gate. Ba-
sically, these are two vectors which decide what information
should be passed to the output. The special thing about them
is that they can be trained to keep information from long
ago, without washing it through time or remove informa-
tion which is irrelevant to the prediction. The architecture of
GRU is shown in Figure 2.

The update gate zt is calculated using the fomula:

Figure 2: The architecture of gated recurrent unit
.

zt = σ
(
W (z)xt + U (z)ht−1

)
(7)

When xt is plugged into the network unit, it is multiplied
by its own weight W (z). The same goes for h(t− 1) which
holds the information for the previous t−1 units and is mul-
tiplied by its own weight U(z). Both results are added to-
gether and a sigmoid activation function is applied to squash
the result between 0 and 1.

The reset gate is used from the model to decide how much
of the past information to forget. To calculate it, we use:

rt = σ
(
W (r)xt + U (r)ht−1

)
(8)

Then we take the usage of reset gate and calculate a new
memory content ht, in which reset gate is to restore the rel-
evant information of the past:

h′t = tanh (Wxt + rt � Uht−1) (9)
Finally, based on the update gate and the introduced new

memory content, we’ll filter the content from the past the
new memory content, which means gettting useful from the
past and current with the help of update gate and combined
as a new content vector. The fomula is:

ht = zt � ht−1 + (1− zt)� h′t (10)
By introducing two gates, the architecture of GRU neu-

ral network is simpler. In some cases can perfrom as well as
LSTM neural network which has three gates and save train-
ing time faced with large samples.

Temporal Convolution Networks
The TCNs model was firstly designed in 2018(Bai, Kolter,
and Koltun 2018) as a simple sequence predicting architech-
ture. The distinguishing characteristics of TCNs are: 1) The
convolutions in the architecture are causal; 2) the architec-
ture can take a sequence of any length and map it to an out-
put sequence of the same length, just as with an RNN.

Beyond this, the TCNs build very long effective history
sizes by using a combination of very deep networks and
dilated convolutions without gating mechanisms like above
two recurrent neural network models.



Figure 3: A dilated causal convolution with dilation factors
d = 1, 2, 4 and filter size k = 3. The receptive field is able to
cover all values from the input sequence.

.

Causal Convolutions The TCN is based on two princi-
ples: the fact that the network produces an output of the
same length as the input; the fact that there can be no leakage
from the future into the past. The accomplish the first point,
the TCN uses a 1D fully-convolutional network (FCN) ar-
chitecture(Long, Shelhamer, and Darrell 2015). To achieve
the second point, the TCN uses causal convolutions, con-
volutions where an output at time t is convolved only with
elements from time t and earlier in the previous layer.

The above design can be describe as: TCN = 1D FCN +
causal convolutions.

Dilated Convolutions But how TCNs preserve long his-
tory? The solution in TCN is the dilated convolutions. For-
mally, for a 1-D sequence input x ∈ Rn and a filter f :
{0, . . . , k − 1} → R, the dilated convolution operation F
on element s of the sequence is defined as:

F (s) = (x ∗d f) (s) =
k−1∑
i=0

f(i) · xs−d·i (11)

Where d is the dilation factor, k is the filter size, and s −
d · i accounts for the direction of the past. We dipicted an
example of dilated convolution architecture in Figure 3.

Either we choose larger filter size k and increasing the di-
lation factor d will expand the receptive field of the TCN.
When the layers go higher, the increase of dilation factor d
ensures the filter of the layer hits the input from long history;
the larger filter size k will ensure the filter catch the infor-
mation from in relatively long history from previous layer,
which will also expand the receptive field.

Residual Connections As the TCN’s receptive field de-
pends on the network depth n as well as filter size k and
dilation factor d, stabilization of deeper and larger TCNs be-
comes important. Due to the effectiveness the residual block
(He et al. 2016) helps layers to learn modifications to the
identity mapping rather than the entire tranformation, which
has repeatedly been shown to benefit very deep net- works,
the TCN employ a generic residual module in place of a con-
volutional layer.

The mechanism of residual block can be shown as:

o = a(x+ F(x)) (12)

Where x is the input of the block, the a is the active func-
tion, and the F denotes a series of transformations.

TCN stacked LSTM
Given both LSTM neural network and TCN perform well
in some cases and are brought into various applications, we
combine the two models into a new one named TCN stacked
LSTM.

On the basis of TCN, we add LSTM layer on it. The
stacked model contains CNN and RNN, we designed the
model to extract and combine the advantages from them.
The detail of these two models have been descripted above.

Experiments
Data Collection
In our work, we are not using open source dataset but collect
history data by outselves. The factors affecting the agricul-
tural product price we considered are temperature ,impact
on production, and exchange rate, impact on sales. The data
range from 2014-01-01 to 2020-10-20. The following web-
sites are where we crawl data:

• temperature http://lishi.tianqi.com/

• exchange rate https://srh.bankofchina.com/search/whpj/search cn.jsp

• fruit price http://nc.mofcom.gov.cn/channel/jghq2017

Totally we collect history price data of five fruit cate-
gories in some Beijing agricultural wholesale markets, the
fruits contain Cantaloupe, Strawberry, Pineapple, Fuji Ap-
ple, Mango. The temperature consists of highest tempera-
ture, lowest temperature and average temperature for each
day.

Preprocessing
Due to the exchange rate is in hours, we average the data and
observe the change in a day.

In addition, for the benefit of stability in training, we use
min-max transformation to normalize the factors. The min-
max transformation can be shown as:

x∗ =
x− xmin

xmax − xmin
(13)

Finally, we leave out data of last 30 days for evaluating
the performance of models.

Training
All the networks are trained using adam optimizer and Mean
Square Error(MSE) loss function and Mean Absolute Er-
ror(MAE) is used to evaluate the models. We train models
for 500 epochs with a batch size of 30. In the training pro-
cess, we use 10% of the data as the validation set. When 40
epochs validation set loss is not improved, training will be
stopped. After training, we save loss values and models.



(a) strawberry

(b) cantaloupe

Figure 4: LSTM’s prediction results for strawberry and can-
taloupe prices

类别 GRU LSTM TCN Improved TCN
草莓 83.151 19.329 12.924 6.448
哈密瓜 3.136 2.802 4.639 2.114
富士苹果 2.067 0.347 0.082 0.114
芒果 1.54 0.992 5.751 0.942
菠萝 0.359 0.163 0.135 0.133

Table 1: losses for four models in different fruits

Evaluation and Comparison
We trained GRU, LSTM, TCN and TCN stacked LSTM
models for each fruit and then using the test data set to eval-
uate different models. We calculate the mean square error of
different models on different fruit test sets, which is conve-
nient for comparison between models.The losses of training
are shown in Table1. On the strawberry and mango data sets,
LSTM performs better; on other data sets, TCN performs
better. Although LSTM performs best on the strawberry and
cantaloupe data sets, the gap between the predicted price and
the real price is still large. Figure 4 shows LSTM’s predic-
tion results for strawberry and cantaloupe prices. The hori-
zontal axis is the number of days in the future, and the ver-
tical axis is the price.

For TCN, compared with other models, its prediction of
Fuji apple price is very close to the real price. Figure 5 shows
four models’ prediction results for Fuji apple. For GRU and
TCN stacked LSTM, the difference between the predicted
price of different fruits and the real price is large, about 2
to 3 yuan. In general, the performance of TCN is slightly

(a) GRU (b) LSTM

(c) TCN (d) TCN stacked LSTM

Figure 5: four models’ prediction results for Fuji apple

better, but there is still a certain gap with the real price.

Discussion
The research on agricultural product price trend prediction
combined with deep learning is complicated and diverse,
but it is difficult to find a recognized generalization abil-
ity and high accuracy algorithm model. This paper studies
the network structure of recurrent neural network LSTM
and time neural network TCN, introduces the advantages
of LSTM on the basis of TCN, and proposes an improved
TCN model.Compared with TCN, LSTM neural network
and GRU neural network, we evaluate the TCN stacked
LSTM model and results shows that it gets better perfor-
mance in some cases.

Although we have implemented an algorithm model with
better performance in agricultural product price prediction,
we also encountered some shortcomings and regrets in the
research process, which may be provided as a future work
direction.

Improvement of data set Although we can easily obtain
the price data of various agricultural products with the help
of the Internet, it is not enough to obtain the price data of
agricultural products. There are many factors that affect the
prices of agricultural products, and the accumulation, acqui-
sition, and mining of influencing factors are crucial. How to
quantify natural factors such as disasters is also worth ex-
ploring in the future.

Improvement of algorithm designment Although the
TCN, LSTM, and improved TCN models used in this paper
perform better in agricultural product price prediction. But
as research continues to deepen, better algorithm models,
combined models, and integrated models will continue to
emerge. This requires us to keep pace with the times and
combine the latest research results. At the same time, the
research on the adaptive optimal algorithm of model initial
parameters is also a direction worth studying in the future.
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