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Abstract

How to cope with the questions (e.g. overfitting, owe fitting)
that by small datasets and limited amount of annotated sam-
ples in the CNN-based Image Identification is a significant
problem faced in the medical imaging domain. In this pa-
per, we present a data augmentation method that generates
synthetic medical images using Generative Adversarial Net-
works (GANs). Our work proposing a training scheme that
first uses classical data augmentation to enlarge the training
set and then further enlarges the data size and its diversity by
applying GAN techniques for synthetic data augmentation.
We compare the classification performance before and after
using GAN to expand the data set. The classification perfor-
mance using GAN to expand the data set batter than using
only classic data augmentation.

Introduction

On the one hand, how to train a model by small datasets
and limited amount of annotated samples when employing
supervised machine learning algorithms that require labeled
data and larger training examples. Especially in the field of
medical imaging, most annotations that made by radiolo-
gists with expert knowledge on the data are time consum-
ing. Although public medical datasets are available online,
and grand challenges have been publicized, most datasets
are still limited in size and only applicable to specific med-
ical problems. [4] Moreover, collecting medical image-data
is a complex and expensive procedure that requires assisting
work lots of professional doctors and diagnostic specialists.

Most of researchers use data augmentation schemes com-
monly including simple modifications of dataset images
such as rotation translation flip and scale to overcome this
problem. [6] Using such data augmentation to improve the
training process of networks has become a standard proce-
dure in computer vision tasks.

But relying on traditional methods to augment datasets
image alone is not enough. The datasets image is hard to get
close to accuracy of the real image data. Therefore, we pro-
pose a way to improve the case. This promising approach
for training a model that synthesizes images is known as
Generative Adversarial Networks (GANSs). [3] GANs are a
framework for the estimation of generative models via an
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adversarial process in which two models, a discriminator D
and a generator G, are trained simultaneously. The genera-
tor G aim is to capture the data distribution, while the dis-
criminator D estimates the probability that a sample came
from the training data rather than G. To learn a generative
distribution pg over the data x the generator builds a map-
ping from a prior noise distribution P, to a data space as
G(z;0q), where ¢ are the generator parameters. The dis-
criminator outputs a single scalar representing the proba-
bility that x came from real data rather than from pg. The
generator function is denoted with D(x;0p), where 0 are
discriminator parameters[8]. GANs have gained great popu-
larity in the computer vision community and different vari-
ations of GANs were recently proposed for generating high
quality realistic natural images. [2]

Recently, the driving focus of the medical image analy-
sis (MIA)community has been on the supervised learning
of decision boundaries, while generative tasks have been on
the back seat. This changed dramatically with the advent of
generative adversarial networks (GANs) , which lead to a
new age of generative modeling and distribution learning.
[7] With their abilities to mimic data distributions and to
synthesize images at yet unprecedented levels of realism,
GANSs have carved open new ways to bridge the gap between
supervised learning and image generation. GANs can dis-
cover the high dimensional latent distribution of data, which
has led to significant performance gains in the extraction of
visual features. [5]

Most studies have employed the image-to-image GAN
technique to create label-to-segmentation translation, seg-
mentation to-image translation or medical cross modality
translations [4]. We focus on study the GAN framework to
synthesize high quality medical images for data augmenta-
tion. We compare the classification performance before and
after using GAN to expand the data set. The classification
performance using GAN to expand the data set batter than
using only classic data augmentation.

RELATED WORK PROPOSED SOLUTION

Even a small CNN has thousands of parameters that need to
be trained. When using deep networks with multiple layers
or dealing with limited numbers of training images, there
is a danger of overfitting which especially the sample size
is small. The Classic solution to reduce overfitting is data



augmentation that artificially enlarges the dataset. Classical
augmentation techniques on images include mostly affine
transformations. To enrich the training data we apply here
an image synthesis technique based on the GAN network.
Examples of real and synthetic retina are shown in Figuere
1.

Classic Data Augmentation

Classic augmentation techniques on the images include
mostly affine transformations such as translation, rotation,
scaling, flipping and shearing. In order to preserve the retina
characteristics, we avoided transformations that cause shape
deformation (like shearing and elastic deformations). We
took N = 1080 images as the training set. The training set
images are vertical flipped N-vf times with probability 1
(p = 1), and horizontal flipped N-hf times with probabil-
ity 0.1 (p = 0.1). In addition, we generated the retina im-
ages N-col times that has a difference in brightness (be-
tween 0.7 and 0.9), contrast (between 0.7 and 0.9) and
saturation (between 0.7 and 0.9). As a result of the aug-
mentation process, the total number of augmentations was
N=N{1+N—-vf+ N —hf+ N — col). Bicubic inter-
polation was used to resize the images to a uniform size of
64 x64.

GAN Networks for Retina Synthesis

GANs are a specific framework of a generative model. It
aims to implicitly learn the data distribution p data from a
set of samples (e.g. Images) to further generate new sam-
ples drawn from the learned distribution. We employed the
Wasserstein GAN [1]for synthesizing retina images. The
model consists of two deep CNNs that are trained simulta-
neously. A sample x is input to the discriminator (D), which
outputs D(x), its probability of being a real sample. The gen-
erator (G) gets input samples z from a known simple distri-
bution pz, and maps G(z) to the image space of distribu-
tion pg. During training, the generator improves its ability
to synthesize more realistic images while the discriminator
improves its ability to distinguish the real from the synthe-
sized images. Hence the moniker of adversarial training.
We put a vector of 100 random numbers drawn from a
uniform distribution as input and outputs a retina image of
size 64 x 64 x 3. The generator network architecture consists
of a fully connected layer reshaped to size 4 x 4 x 1024 and
four fractionally-strided convolutional layers to up-sample
the image with a 5 x5 kernel size. The discriminator network
has a typical CNN architecture that takes the input image of
size 64 x 64 x 3, and outputs a decision - if the retina is real or
fake. In this network, four convolution layers are used, with
a kernel size of 5 x 5 and a fully connected layer. Strided
convolutions are applied to each convolution layer to reduce
spatial dimensionality instead of using pooling layers.

EXPERIMENTS AND RESULTS

Data and Implementation

The dataset was mass up of 1480 retina images, and splited
1080 train dataset and 400 test dataset. The train dataset

Figure 1: Left side: Real retina; Right side: Synthetic retina

contained 5 class images which were established by Fun-
dus Camera and were reshaped size of 64 x 64. We used the
train dataset to fit the original distribution by WGAN, and
we ended up with about 2000 fake images. We selected 443
high quality images from the fake ones, and splited the high
quality images into 5 class (label: number of images, [0]:
101, [1]: 96, [2]: 84, [3]: 80, [4]: 82)

We use Resnetl01 and Densenetl21 to verify data aug-
mentation results. For training, we used a batch size of 64
with a learning rate of 0.0001 for 40 epochs. For the imple-
mentation of the retina classification CNN we used pytorch
framework. For the implementation of the WGAN architec-
tures, we used pytorch framework. In addition, all training
processes were performed using an NVIDIA GeForce GTX
1080 Ti GPU in Colab.
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Figure 2: Classic Augmentation Only

Evaluation of the Synthetic Data Augmentation

We started by examining the effects of using resnetlO1
and densenet121 of none data augmentation for the retina
classification task, but due to small number of samples,
overfitting is inevitable. We then using only classic data
augmentation to cope with overhitting, but with little
success. Then we synthesized the retina images and using
data augmentation with it and examined the classification
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Figure 3: Classic and Synthesized Images Augmentation

Figure 4: Confusion Matrix for the Classical Data Augmen-
tation

results after adding the synthesized retina images to the
training set. As is shown in Figure 2 and Figure 3, the way
of data augmentation by synthesize images improved the
overfitting effectively.

As is shown in Tablel, we used none augmentation as our
baseline. We recorded the classification results for the retina
classification CNN for increasing amounts of data augmen-
tation over the original training set. In order to examine the
effect of adding increasing numbers of examples, we formed
the data group to increase the images to 4320. But Resnet
and Densenet went up from 45.96% and 46.44% to 47.08%
and 48.18% respectively. The confusion matrix for the test
results of Resnet appears in Figure 4.

The second step of the experiment consisted of generat-
ing synthetic the retina images for data augmentation us-
ing GAN. We employed the WGAN architecture to train the
retina images, and in all the steps of the learning procedure

Figure 5: Confusion Matrix for the Synthetic Data Augmen-
tation

Resnet Densenet
None Aug 4596% 46.44%
Classic Aug 47.08% 48.18%

Classic and GAN Aug 62.86% 71.27%

Table 1: Evaluation of the Synthetic Augmentation

we maintained a complete separation between train and test
subsets. In Generator training, we used a batch size of 8 with
a learning rate of 0.0001 for the frist 800 epochs and with
a learning rate of 0.00005 for the last 600 epochs, in total
1400 epochs. After the generator had learned the retina dis-
tribution, it was able to synthesize new examples by using
an input 100dim vector of normal distributed samples.

Since our dataset was too small for effective training, we
incorporated classic augmentation for the training process
to increase the images of training dataset to 5649. The clas-
sification results significantly improved from 47.08% and
48.18%(Resnet and Densenet) to 62.86% and 71.27%. The
confusion matrix for the best classification results using syn-
thetic data augmentation is presented in Figure 5.

CONCLUSION

To conclude, in this work we presented a method that uses
the generation of synthetic medical images for data augmen-
tation to improve classification performance on a medical
problem with limited data. We demonstrated this technique
on a retina classification task and achieved a significant im-
provement of 15.78% and 23.09% using synthetic augmen-
tation over the classic augmentation.
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