Automatic Detection of Hard Exudates in Retinal Fundus Images
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Abstract

Among the early clinical symptoms of Diabetic Retinopathy
(DR), the hard exudates (HE) on the retina are the most obvi-
ous. The automatic detection of hard exudates through deep
learning technology is of great significance for the early di-
agnosis and treatment of DR. Therefore, this paper mainly
proposes a method for detecting hard exudates of retinal fun-
dus images based on convolutional neural networks. In the
preprocessing process, due to the problems of low bright-
ness and contrast in the fundus image, the brightness ad-
justment algorithm based on the HSV color space is used
to correct the brightness of the fundus image by adjusting
the V attribute in this paper. Besides, after brightness ad-
justment, the green channel image with the strongest con-
trast of hard exudates is extracted from the fundus image
for patch generation. Under the condition that the number
of training samples is limited, this paper proposes a con-
volutional neural network based on patches, which converts
the detection problem of hard exudates into a pixel two-class
classification problem. Finally, all output labels are reshaped
into predicted images. In addition, the network also uses
techniques such as dropout, weight initialization, and batch
normalization to avoid overfitting the network and speed up
network training. Finally, the proposed method is tested on
the public dataset IDRiD. At the lesion level, the sensitivity,
specificity and accuracy of this method for hard exudate are
70.27%, 96.71%, and 96.11%. Compared with other meth-
ods that also use IDRiD dataset, the sensitivity is increased
by 28.71%.
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1 Introduction

Diabetic retinopathy (DR) is caused by long-term diabetes,
and it is also an important factor that causes blindness
among working people all over the world. DR patients are
more difficult to realize the visual impairment at the early
onset, which is easier to miss the best period of diagno-
sis and treatment. The early symptoms of DR are gener-
ally characterized by slight changes in capillaries. Com-
mon symptoms include microaneurysms, intraretinal hem-
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orrhage, soft exudates, and hard exudates, as shown in Fig-
ure 1. Among them, the hard exudates on the retina are
more prominent than other pathological features. Exudates
are formed by the leakage of macromolecular substances
in the blood after the blood vessel wall is damaged, which
is mainly characterized by sharp edges and relatively clear
bright spots. So, the research on the detection of hard exu-
dates is very significant for the early screening of DR.

(c) soft exudates
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-

(d) intraretinal hemorrhages

(a) microaneurysm

<
(b) hard exudates

Figure 1: Color fundus images, including common con-
ditions of diabetic retinopathy (Microaneurysm, Hemor-
rhages, Hard exudates and Soft exudates)

In clinical diagnosis, the collected fundus images are
often limited by the physiological structure and non-ideal
imaging conditions, which makes it difficult for doctors to
directly use the images for efficient analysis. Besides, fundus
images are usually affected by different lighting conditions,
collection angles and equipment conditions, resulting in dif-
ferences in inspection results and the inability to screening
comprehensively. Therefore, the use of computers can ef-
fectively improve the screening efficiency and accuracy of
lesions in fundus images, and it is very urgent and necessary
to develop an automatic detection technology based on color
fundus images.

Many scientists adopted a variety of machine learning
methods to detect the lesions on the fundus image, includ-
ing K-means algorithm, Random forests (Fraz et al. 2017),
Support vector machine (Long et al. 2019), etc. However,
these approaches were highly dependent on hand-crafted
features and not adaptive to multi-modality missions. In or-
der to overcome these defects, researchers turned to use deep
learning, which has powerful feature extraction capabilities
and can extract low-level features into abstract high-level
features. Some commonly used deep learning methods in
recent years are U-net (Ye 2018), transfer learning (Li et al.
2017), CNN (Avula and Chakraborty 2018), etc.

Considering the problems of different brightness, low



contrast and a small number of fundus images, this paper
proposes an automated detection method for hard exudates
based on deep learning as a solution to address this prob-
lem. The performance of the proposed method is verified on
the public dataset named IDRiD, and then the experimental
results are compared with other methods.

2 Related Work

Automatic detection of exudates is a challenging problem
because the retinal fundus images often have uneven illu-
mination and poor contrast. Under these complicated con-
ditions, several related exudates’ detection methods have
been proposed, which can be divided into the following four
categories: Threshold-based (Pereira, Gongalves, and Fer-
reira 2015), Region-based growth (Li and Chutatape 2004),
Morphological-based (Harangi and Hajdu 2014; Zhang et al.
2014), Pixel-based (Akram et al. 2012) classification. The
above-mentioned exudation detection methods all regard the
image pixels as the result of the discrete representation of the
image, rather than the result of the natural entity, which may
adversely affect the interpretation and representation of the
image, for example, the representation of structural defects
caused by complex imaging mechanisms and noise.

Achanta et al. proposed a new method of generating su-
perpixels, called Simple Linear Iterative Clustering (SLIC),
which is faster than existing superpixel generation methods
(Achanta et al. 2012). This method can control the size and
regularity of superpixels, it has good accuracy and bound-
ary recall characteristics, which improves the performance
of the segmentation algorithm.

With the development of deep learning in recent years,
more and more scholars try to use deep learning and other
methods to analyze fundus images. Xianyi Ye proposed a
detection method of hard exudates based on principal com-
ponent analysis (PCA) network and U-net (Ye 2018). Luhui
Wu proposed an image labeling model based on deep learn-
ing, it used a generative adversarial network (GAN) to gen-
erate fundus images and developed an automatic detection
algorithm of DR fundus images using loss-weighted method
(Wu 2019).

With the technical support of big data and distributed
computing, the calculation speed and detection accuracy of
medical images processed by deep learning methods have
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been effectively improved.

3 Method

In this section, we introduce the framework of our project
firstly. Then, we introduce the CNN model used to realize
hard exudates’ classification. Finally, we will introduce the
metric how we evaluate our model’s performance.

3.1 Framework

In order to solve the problem of the limited number of train-
ing samples, we design and train an 8-layer convolutional
neural network on image patches. The network essentially
learns patches and then predicts the category of its central
pixel. Therefore, this is a mapping process from the image
patches to the predicted value of the pixel. Figure 2 shows
the framework of our method.

During the training process, image patches are used for
training the CNN. The output of the network is compared
with the annotated images of the lesion through the network
model to assess the performance of the network model for
hard exudates.

During the evaluating process, after preprocessing and
image augmentation on the test dataset, image patches di-
rectly use the learned convolution kernels to perform the
convolution operation. The network will predict whether the
center pixel of each image patch is a hard exudate or a back-
ground. Finally, the output is reshaped into an image to rep-
resent the prediction, and the label image is an image the
same size as the original fundus image.

3.2 CNN model for exudates classification.

In this section, the CNN model will be illustrated in detail.
After preprocessing the original dataset to get the classifica-
tion dataset required for training, we design a convolutional
neural network model for hard exudates. It’s necessary to
continuously adjust the model’s structure according to the
experimental results until the model reaches the best perfor-
mance.

Given that the distribution of the hard exudate is uncer-
tain, that the overall distribution is clustered, and that the
context between the hard exudate pixels is related, the input
size of the CNN model is set to 32x32. Figure 3 shows the
structure of our CNN model.
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Figure 2: The framework of our method. Before we train our model, we need to adjust the channel performance of the dataset.
The middle is the training process, and the right is the testing process.
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Figure 3: The structure of the hard exudates’ CNN. In our model, we use multi-scale convolutional layers to extract features
from the image patches firstly. We use BN-ReLu between the same scale convolution layers. Then we use fully connected layers
to calculate the final label, and we use ReLu and DropOut to avoid overfitting between fully connected layers. Finally, softmax

function predicts the label of images.

The initial weights of the CNN follow a truncated normal
distribution with a mean of 0 and a standard deviation of
0.1, and the initial deviation is 0.1. The optimizer uses Adam
with learning rate of 0.0001, and the loss function uses cross
entropy.

3.3 Maetric

The standard based on the lesion is to evaluate the perfor-
mance of the model by judging whether the detection area
in each fundus image is a hard exudate.

For each retinal fundus image, we use the corresponding
annotated image provided by the database as standard, com-
pare the pixel value and the annotated value detected by the
detection method, count the number and draw the confusion
matrix as shown in Table 1.

Prediction
Ground-truth e date Background
Hard Exudate | True Positive | False Negative
BackGround | False Positive | True Negative

Table 1: The metrics of Our method. True positive means
that a pixel is actually a hard exudate, and it’s also a hard
exudate in prediction; FP means that a certain pixel is ac-
tually a background, but it is a hard exudate in prediction;
TN means that a certain pixel is actually a background and
is also a background in prediction; FN means that a certain
pixel is actually a hard exudate, but it is a background in
prediction.

According to the statistical value, three evaluation indica-
tors can be calculated:

TP
SE*TP+FN
TN
SP*TNJFFP
TP+ FP
ACC*TN+TP+FN+FP

SE represents the accuracy of extracting hard exudates; SP
represents the accuracy of extracting background; and the

accuracy of ACC refers to the ratio of the correct results of
the method, which represents the method’s efficiency. Pixel-
level detection is mainly to determine whether each pixel is
a hard exudate. SE, SP and ACC are usually used to evaluate
the performance of the detection.

4 Experiment
4.1 Dataset

This paper mainly uses IDRiD dataset to evaluate the perfor-
mance of hard exudates’ detection methods. The retinal fun-
dus images in the IDRiD dataset were taken using a Kowa
VX-10 alpha digital fundus camera with a 50-degree field of
view (FOV) by experts from an Indian eye clinic. The reso-
lution size of each fundus image is 4288x2848. Each pixel
of these annotated images is marked as a part of the hard
exudate or background).

The fundus images in the dataset have the problems of un-
even brightness and low contrast. If we use traditional meth-
ods, a large number of false detections will be caused. It is
also difficult to efficiently and accurately detect hard exu-
dates.

4.2 Preprocessing

In the process of obtaining fundus images, due to the uneven
brightness and eye movement during shooting, the fundus
images often suffer from low image quality, uneven bright-
ness and poor contrast. To solve this problem, the retinal fun-
dus image is preprocessed before model training. This paper
mainly uses HSV-based brightness adjustment and extracts
the green channel gray-scale image with the highest contrast
of hard exudates for the next image patch extraction.

I Brightness adjustment based on HSV

The brightness adjustment algorithm based on the HSV
color space mainly adjusts the brightness V attribute of the
HSV color space. We use experiments to select different ad-
justment coefficients "« for the brightness average range
of the original fundus image, and then adjust the brightness
value to expand the brightness difference. The specific flow
chart is shown in Figure 4.

The contrast of fundus images before and after brightness
adjustment is shown in Figure 5.



convert RGB to HSV

Input the original
Tundus image

No

The weighted average of
the

Brightness multiplier

brightness mean value
value=1/(1- &)

value= & +1 ‘

HSV brightness upper and

lower limit processing

convert HSV to RGB
Output brightness
corrected image

Figure 4: Flow chart of brightness adjustment algorithm
based on HSV color space

Figure 5: Comparison of fundus images before and after
brightness correction

II Extract green channel grayscale image

After the brightness adjustment of the fundus image, the im-
age still has the problem of poor contrast, including the con-
trast between exudates’ structure and other parts. Therefore,
for the adjusted color fundus image, we extract the corre-
sponding images of the R, G, and B channels, as shown
in Figure 6, and select the channel with the highest con-
trast of hard exudates’ lesions. Therefore, the green channel
grayscale image is used for the next image patch’s genera-
tion

IIT  Generation of image patches

By performing a series of operations on each training sam-
ple, such as random cropping, rotation, flipping and so on to
generate copies of the training sample to expand the train-
ing set, which can enhance the generalization ability of the
network. Therefore, this paper will use a random cutting
method based on the ground truth image to generate patches
for each fundus image, so as to better adapt to the require-
ments of network training and serve as training samples for
the network. Specific steps of the random cutting method
based on annotated images:

(1) Adjust the resolution of the image and its correspond-
ing lesion annotation image to 256x256, and convert them
to a float32 type array;

(2) Randomly select a pixel from the fundus image, that
is, randomly select a coordinate (i, j). Then, crop out a 32x32
square image patch centered on the pixel;

Figure 6: Comparison of fundus images(top-left) and Im-
ages of R(top-right), G(bottom-left), B(bottom-right) three
channels

(3) In the extracted image patch with a size of 32x32, we
take the corresponding hard exudates labeled image as a ref-
erence. If the pixel at the center of the image patch (17, 17)
is a hard exudate, it is marked as 1, or it belongs to the back-
ground, then it is marked as 0. Each label uses one-hot en-
coding;

(4) Repeat the two steps of (2) and (3), extract 2000
hard exudates’ image patches and 2000 background image
patches for each fundus image.

The above processing is performed on each fundus image
in the dataset. The generated hard exudates and background
patches are shown in Figure 7. Since no padding is used dur-
ing the patch generation, all pixels cannot be predicted.
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(a) hard exudate patches

(b) background patches

Figure 7: Image Patches

4.3 Experimental Setting

In this paper, the CNN model of hard exudates is devel-
oped on Tensorflow. The maximum number of iterations is
200. In each iteration, 216,000 images are divided into six
groups for training, each containing 36,000 images. During
the training process, a small batch of 100 training images
were trained each time.

After training the network, the fundus images of each test
set are decomposed into 50,176 image patches. The network
predicts whether the central pixel of each 32 x 32 image
patch belongs to background or hard exudate. The predicted



values of all image patches are reconstructed to 224 x 224
images to represent the prediction results. The size of the le-
sion annotation image provided by the dataset was adjusted
to 256x256 and crop annotation image from coordinates (16,
16) to (240, 240) for evaluating the accuracy of the predic-
tion image output from the network.

In the prediction, we only predict the pixels of interest in
the 32 x 32 image patch, that is, the pixels at the center po-
sition (17,17). Each pixel in the predicted image is predicted
through the network. However, by selecting a series of 32 x
32 image patches to classify each pixel, this method can not
predict the edge pixels of the original fundus image.

4.4 Results

After training, we get the optimal CNN model. The accuracy
of the model on the training dataset is 99.01%. The predic-
tion image in the IDRiD test dataset is shown in Figure 8 and
the confusion matrix is obtained according to the number of
statistics, as shown in Table 2.

Ground-truth

Prediction Hard Exudate | Background Total

Hard Exudate 21407 43583 64990
BackGround 9058 1280704 1289672
Total 30465 1324287 1354752

Table 2: For each retinal fundus image in the test dataset,
the corresponding labeled image provided by the dataset is
taken as the reference standard, and the pixel value detected
by CNN model is compared with the labeled value statistics
to get the confusion matrix.

The detection method in this paper is compared with other
literature methods that also use the IDRiD dataset, and the
results are shown in Table 3. Among them, Ben’s method
(Avula and Chakraborty 2018) also detects hard exudate le-
sions based on CNN. Since the definitions of TP and TN
in Ben’s method are different from those in this paper, the
confusion matrix in Ben’s method is used to calculate the
sensitivity and specificity according to the definition in this
paper for comparison. In order to further test the general-
ization ability of the CNN model of hard exudate, the hard
exudate detection method proposed in this paper was evalu-
ated on the e-optha-EX dataset.

By analyzing the data in Table 3, it can be found that the
accuracy rate of the hard exudates’ detection method pro-
posed in this paper reaches 96.11% on idrid test dataset, and
the sensitivity is 28.71% higher than that in Ben’s method.
On the e-optha-EX test dataset, the model showed high ac-
curacy and specificity, but low sensitivity, and there was still
room for improvement. In addition, as can be seen from Fig-

Dataset Detect Method ~ Sensitivity ~ Specificity — Accuracy

. ours 70.27 96.71 96.11
IDRID - g method 4156 9829 96.60
e-optha-ex ours 44.25 97.48 97.35

Table 3: comparison of evaluation indexes between this
method and detection methods used in other literatures (%)

Figure 8: Comparison of fundus image, lesion labeling im-
age and prediction image on IDRiD test dataset.

ure 8, the bright part of the fundus image after brightness
correction includes hard exudates and optic discs, which has
a certain impact on the detection of hard exudates. To sum
up, the automatic detection method for hard exudates pro-
posed in this paper achieves high accuracy and high sensi-
tivity at the image level and also achieves good results at the
lesion level. Although there are some false detections, they
are all within the tolerance.

5 Conclusion

In this paper, a detection method about hard exudates based
on deep learning is proposed. In order to overcome the un-
even brightness and poor contrast of fundus images, the
method adopts the brightness adjustment algorithm based on
HsVand extracts the green channel image for patch genera-
tion. Finally, a CNN model is built to detect hard exudates.
The experimental results show that the sensitivity, specificity
and accuracy of the proposed method are 70.27%, 96.71%,
96.11% in the pixel-based criterion. Compared with other
methods that also use the IDRiD dataset, the sensitivity in-
creased by 28.71%.

However, due to the difficulty of detecting DR lesions and
the limited research time, the method still has some limita-
tions and needs further improvement. The future research
work to improve are:

1.This method performs poorly in edge detection of hard
exudates. In future work, we will try to use contrast enhance-
ment methods, such as multi-scale top hat transformation, to
enhance the edge information of hard exudates.

2.The brightness and color of the optic disc affects the
detection of hard exudates and cause a small number of false
detections. In future work, the disc disk removal operation
will be performed before patch generation.

3.Since padding is not used when generating patches, the
pixels at the edge of the fundus image are not predicted, the
future work will fill the original image before patch genera-
tion so that each pixel has an image patch centered on it.
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