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Abstract

In daily life, the abuse of antibiotics causes bacteria to de-
velop resistance to antibiotics, which is not conducive to pub-
lic health. Antimicrobial peptide is a small molecule polypep-
tide that forms a key component of the biological innate
immune system. It kills target bacteria by destroying cell
membranes and interfering with DNA. Therefore, antimicro-
bial peptides are promising alternatives to antibiotics. How-
ever, antimicrobial peptides have different lengths and vari-
ous structures. In order to apply them to various fields, they
need to be predicted and identified.The existing antimicro-
bial peptide identification and prediction methods mainly
adopt biological experiments, sequence alignment or machine
learning methods. Through deep learning, the accuracy and
speed of antimicrobial peptide identification and prediction
can be further improved. At present, there are few deep learn-
ing network models that specialize in amino acid sequences,
and there is no special database to provide samples of non-
antimicrobial peptides. Therefore, how to apply the relevant
cutting-edge methods of deep learning to the identification
and prediction of antimicrobial peptides is a problem worthy
of study. At the same time, the accuracy and speed of antimi-
crobial peptide identification still have room for further im-
provement.The Bidirectional Encoder Representations from
Transformers (BERT) model is a model applied in the field
of natural language processing. It builds a network structure
with Transformer as the core, and its core mechanism is the
self-attention mechanism. We used the BERT model based on
the existing protein database, used a large number of protein
sequences for pre-training, and combined with the compre-
hensive data set for fine-tuning, and constructed an antimi-
crobial peptide prediction model.

Introduction
Since the advent of antibiotics, they have had significant ef-
fects in the treatment of various diseases. However, with the
emergence of antibiotic abuse, bacterial resistance has grad-
ually increased, which is not conducive to long-term disease
treatment. Antimicrobial peptides were artificially induced
in the 1980s. (Steiner et al. 1981) Antimicrobial peptides
are small molecular peptides that form a key component of
the biological innate immune system. The length is gener-
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ally 9-100 amino acids. It kills target bacteria by damag-
ing cell membranes and interfering with DNA. Studies have
shown that antimicrobial peptides are the most promising
drugs to replace traditional antibiotics, and some antimicro-
bial peptides have been used in clinical treatment and other
fields.(Boman 2003);(Zelezetsky et al. 2006) At present,
there are many prediction methods for antimicrobial pep-
tides, such as biological experiment methods, which need to
be designed by professionals, and require rich experience
and a large amount of manpower and material resources,
and the efficiency is low. The use of deep learning for se-
quence comparison can speed up the acquisition of data rules
and discover the internal correlation of data. Improving the
speed and accuracy of predicting antimicrobial peptides by
the model can speed up the relevant research process and ac-
celerate its use in various fields. . Therefore, how to improve
the identification and prediction speed of antimicrobial pep-
tides and maintain a certain accuracy has become a problem.

On the other hand, the amino acid sequences that make
up antimicrobial peptides are similar to text sequences in
daily life, and their essence is a sequence composed of sym-
bols. Therefore, deep learning models in the field of natu-
ral language processing can be used in the prediction and
recognition of antimicrobial peptides. . After BERT was pro-
posed,(Devlin et al. 2018) it has shown excellent perfor-
mance on multiple natural language processing tasks. There-
fore, we applied the BERT model to the task of identifying
antimicrobial peptides, and implemented the BERT model
for identifying and predicting antimicrobial peptides.

Related work
At present, many researchers have begun to use deep learn-
ing algorithms to identify and predict antimicrobial peptides.
For example, Marc T et al.(Torrent et al. 2011) used neu-
ral networks to predict antimicrobial peptides; Xiao X et al.
(Xiao et al. 2013) constructed a secondary classification of
antimicrobial peptides. It first uses the amino acid compo-
sition (PseAAC) for feature extraction, and then uses fuzzy
K nearest neighbors to predict antimicrobial peptides; Fjell
CD et al.(Fjell et al. 2009) used QSAR and machine learn-
ing techniques to combine antimicrobial peptides to screen ;
Veltri D (Veltri, Kamath, and Shehu 2015) constructed an
end-to-end model including convolutional neural network
and cyclic neural network for the prediction and identifica-



tion of antimicrobial peptides; Randou EG et al. (Randou,
Veltri, and Shehu 2013) extracted 8 physical and chemical
characteristics of peptides and used logic Regression model
was used to predict antimicrobial peptides; Lee EY et al.
(Lee et al. 2016) used SVM to predict antimicrobial pep-
tides. Yoshida M et al.(Yoshida et al. 2018) used a com-
bination of evolutionary algorithms, neural networks, and
in vitro evaluation to optimize the efficacy of antimicro-
bial peptides , and Michael et al.(Youmans, Spainhour, and
Qiu 2019) used Long-Short Term Memory (LSTM) to pre-
dict and identify antimicrobial peptides , Dua M et al.(Dua
et al. 2018) encapsulated a deep model in a random heuris-
tic search for the screening of antimicrobial peptides . These
models have improved the accuracy and speed of antimicro-
bial peptide identification and prediction, but there is still
room for improvement. At the same time, some existing
models have the disadvantage of poor mobility.

Proposed Solution
Bert model
BERT (Bidirectional Encoder Representations from Trans-
formers) is a deep pre-training language model based on
Transformer architecture, and its structure is mainly shown
in Figure 1.

Figure 1: Basic structure of Bert model

Taking the Chinese pre-training model as an example, E1,
E2,...EN in Figure 1 indicate that text characters marked
with [CLS] and [SEP] are added at the beginning and end.
They pass through the 12-layer two-way Transformer (Trm)
encoder in turn to obtain the contextual embeddings of text
characters. Transformer is an encoder-decoder based on a
self-attention mechanism. The input of the bottom Trans-
former encoder is the sum of character vector, character po-
sition vector and sentence fragment vector. Each layer in the
model consists of two parts: Multi-head Self-attention and
Feed-forward Neural Networks. The former enables the en-
coder to pay attention to each character when encoding In-
formation about other characters around; the latter is used
to enhance the fitting ability of the model. After each layer
of the model undergoes an add and normalization (Add &
Norm) operation, a new character vector is generated as the
input of the encoder of the next layer. The coding vector T1
marked with [CLS] output by the top-level encoder can be

regarded as a semantic representation of the entire sentence
and used for subsequent text classification tasks.

In addition, in order to enhance the ability of semantic
representation, BERT proposed the concepts of masked lan-
guage model (Masked LM, MLM) and Next Sentence Pre-
diction (NSP). MLM is essentially a cloze task. 15% of the
characters in the Chinese corpus will be selected, 80% of
which will be replaced with [MASK], 10% will be randomly
replaced with another character, and the remaining 10% will
remain the original character. The model needs to pass a lin-
ear classifier to predict the selected word. In order to be
consistent with the following tasks, BERT needs to place
the original word or a random word in the predicted word
position in a certain proportion, so that the model is more
inclined to use context information to predict the selected
word. In the next sentence prediction task, the model selects
several sentence pairs, among which there is a 50% proba-
bility that two sentences are adjacent, and a 50% probability
that two sentences are not adjacent. The model can learn the
semantic information between words and sentences better
through the above two target tasks.

Data acquisition and preprocessing
Language model pre-training has shown excellent perfor-
mance in NLP tasks. Because antimicrobial peptide se-
quences are similar to text sequences, language model pre-
training can be considered for antimicrobial peptide recogni-
tion and prediction. In order to enable the model to capture
the long-term dependence and hierarchical relationship of
protein sequences after pre-training,(Linzen, Dupoux, and
Goldberg 2016);(Gulordava et al. 2018) it is necessary to
feed a large number of protein sequences to the model for
pre-training. We downloaded 556,603 pieces of data from
the UniProt database as pre-training data. By pre-training
the above data, the model can be used to capture proteins re-
lated to downstream tasks, such as long-term dependencies
and hierarchical relationships. Based on the above protein
data, we pre-trained a BERT model, and fine-tuned and eval-
uated the model with reference to the antimicrobial peptide
data constructed by others.

Although the antimicrobial peptide sequence has similari-
ties with the text sequence, there are also certain differences.
Antimicrobial peptides are not like English texts to divide in-
dividual words by spaces, nor do they use dictionary match-
ing algorithms for word segmentation like Chinese texts. In
this article, each protein is cut every three amino acids. As
a word, the amino acid fragments with the tail of the se-
quence less than three amino acids in length are individu-
ally regarded as a word. In this way, the protein is ”word-
divided” so that protein data can be used to predict Train the
BERT model.

At the same time, we use the data set in Table 1 to fine-
tune the model, and also randomly downsample the nega-
tive sample set of the training set to ensure sample balance.
For the sampled protein sequence, the same segmentation
method is used for ”word segmentation”. In addition, in or-
der to provide a predictive model of antimicrobial peptides
with strong generalization ability, all the protein sequences
of the 4 data sets were merged, and all repetitive sequences



Datasets Training Set Test set
Positive Sample Negative Sample Positive Sample Negative Sample

Dataset by Veltri, D. et al. 1066 1066 712 712
Dataset by Michael et al. 2087 2536 522 634
Dataset by Xiao, X. et al. 879 2405 920 920
Dataset by Lin, Y. et al. 2617 4371 284 1382

Table 1: Antimicrobial peptide data set composition distribution

were deleted, so as to avoid training on repeated samples,
which caused the model to be overly targeted for some sam-
ples. Learn. CD-HIT(Meher et al. 2017) is then used to
remove sequences with 70% pairwise sequence similarity,
and the remaining sequences are used for five-fold cross-
validation. Finally, use all the data to train the antimicrobial
peptide prediction model.

The construction process of antimicrobial peptide predic-
tion model based on BERT model is shown in Figure 2.

Figure 2: Antimicrobial peptide prediction model construc-
tion process

Training method
We use a 12-layer transformer, the hidden layer contains 768
unit nodes and 12 attention heads. In this paper, 15% of the
words in each protein sequence in the pre-training data set
are randomly masked, and the transformer is trained to pre-
dict the masked words, so that the transformer can capture
the long-term dependence of the protein. This transformer is
trained on a TITAN Xp. The batch size is 32, and the number
of training sessions is 10 million. Through a large amount of
training, the model can fully learn the long-term dependence
and hierarchical relationship of proteins, and can improve
the accuracy of the downstream task, that is, the prediction
of antimicrobial peptides. Then fine-tuned the model using
the processed antimicrobial peptide dataset and compared
the results with other models

Experiments
Evaluation metrics
In order to compare the independent test results of this
model with other models, we use Sensitivity (Sn), Speci-
ficity (Sp), Accuracy (Accuracy, Acc) and Matthews corre-
lation coefficient (Mattews correlation coefficient, abbrevi-
ated as MCC) is used as the evaluation index of the model.

These four indicators are defined by formulas (1)-(4).

Sn =
TP

TP + FN
(1)

Sp =
TN

TN + FP
(2)

Acc =
TP + TN

TP + TN + FP + FN
(3)

MCC =
TP × TN + FP × FN√

(TP + FP ) × (TN + FN) × (FP + FN) × (TN + FP )

(4)

TP is the number of predicted correct antimicrobial pep-
tides, that is, the number of true positive samples, FN is
the number of predicted incorrect antimicrobial peptides,
that is, the number of false negative samples, and TN is the
number of predicted correct non-antimicrobial peptides, that
is, the number of true negative samples. FP is the number
of non-antibacterial peptides that are predicted incorrectly,
that is, the number of false positive samples. Comprehen-
sive consideration of the four evaluation indicators of sen-
sitivity, specificity, accuracy and Matthews correlation coef-
ficient can better evaluate the performance of the classifica-
tion model. Considering the sensitivity and specificity of the
model, we can know the model’s ability to recognize pos-
itive and negative samples respectively. When the positive
and negative samples of the test set are balanced, the accu-
racy rate can better reflect the classification performance of
the model, but if the positive and negative samples of the test
set are unbalanced, the accuracy rate will lose its reference
significance. When the positive and negative samples are un-
balanced, MCC is a good indicator when evaluating model
performance. It considers both true positives and false pos-
itives as well as true negatives and false negatives, and its
value is between -1 and +1. When the value is close to 1, the
classification performance of the model is better; when the
value is close to -1, the model prediction result is opposite
to the actual result; when the value is close to 0, the model
prediction result is similar to random prediction.

Introduction to the benchmark model
The model we will build will be compared with AMP-
Scan(Veltri, Kamath, and Shehu 2018), BiLSM(Yoshida
et al. 2018), iAMP-2L(Xiao et al. 2013) and MAMP-
Pred(Lin et al. 2019) four models that also do antimicrobial
peptide prediction. The source of performance indicators of
these four models Yu proposed the literature of the model.

AMPScan is an end-to-end model. The model contains
five parts. From the input layer to the output layer, they
are embedding layer, convolution layer, maximum pool-
ing layer, LSTM and fully connected layer. The activation



method of fully connected layer adopts Sigmoid. Function,
the difference from the model in this chapter is that this
chapter uses a two-way LSTM.

BiLSTM is an end-to-end model that only uses two-way
LSTM. Its structure is relatively simple as a whole. When
acquiring the characteristics of a protein sequence, only the
global information of the protein is acquired, which may
lead to the loss of some local information and key informa-
tion.

The feature vector structure of iAMP-2L includes the fol-
lowing content: 1. Count the occurrence frequency of each
amino acid in the sequence. This part contains the overall in-
formation of the sequence, but the sequence information of
the amino acids is missing; 2. Calculate the two positions at
a fixed relative position. The product of five physicochem-
ical properties (molecular mass, hydrophobicity, etc.) of an
amino acid. This method obtains the sequence information
of amino acids to a certain extent. The classifier of iAMP-
2L uses fuzzy K-nearest neighbors, which is a variant of the
K-nearest neighbor algorithm. The main difference from the
K-nearest neighbor algorithm is that an index is added to
the Euclidean distance between the target sample and the
neighbor sample, which is called Is the fuzzy coefficient.
Adding this method can further enhance or weaken the influ-
ence of distance on the classification results. Compared with
the classic K nearest neighbor algorithm, it is more flexible,
but it also introduces a hyperparameter that requires manual
selection.

MAMP-Pred obtains sequence features through the SVM-
Prot 188D algorithm based on 8 physical and chemical prop-
erties and the Co-Pse-AAC algorithm based on 5 physical
and chemical properties. These two algorithms are com-
monly used algorithms for protein feature extraction and
have good results.

Evaluation and comparison with the benchmark
model
In each data set, the BERT-based model performs better than
other models. The ACC value of our model is more than
1% higher than other models. In particular, on ACC, the
BERT-based model is about 3% higher than iAMP-2L. The
results show that the BERT-based model performs well on
most data sets. In the models iAMP-2l and MAMP, protein
features are manually constructed by feature engineering.
The difference is that iAMP-2l uses fuzzy K-nearest neigh-
bors, while MAMP uses SVM to predict whether the protein
is an antimicrobial peptide. Both iAMP-2l and MAMP use
traditional machine learning methods to predict and iden-
tify antimicrobial peptides. The construction of features de-
pends on the experimenter’s settings, and the performance
of the model depends on the experimenter’s experience to
a certain extent. Both AMPScan and Bi-LSTM use end-to-
end networks to predict and identify antimicrobial peptides,
and obtain features through adaptive learning of the network
model. The performance of the model does not depend on
the experience of the experimenter. The number of end-to-
end network training is relatively small, and the number of
samples containing positive and negative sample labels is
small, and the characteristics of the sequence cannot be fully

captured, and performance is lost. By pre-training a large
amount of unlabeled data, the BERT model can further cap-
ture the characteristics of the sequence and fine-tune specific
data sets to identify and predict antimicrobial peptides.

Datasets Model Sn(%) Sp(%) Acc(%) MCC

Dataset by Veltri, D. et al. AMPScan 89.89 92.13 91.01 0.8204
BERT 90.62 93.07 91.84 0.8376

Dataset by Michael et al. Bi-LSTM - - 94.98 0.899
BERT 92.7 96.87 95.27 0.9023

Dataset by Xiao, X. et al. iAMP-2L 97.72 86.84 92.23 0.8446
BERT 97.98 92.6 95.53 0.9895

Dataset by Lin, Y. et al. MAMP-Pred 83.1 84.4 84.16 -
BERT 79.42 86.21 85.32 0.586

Table 2: comparison with the benchmark model

In summary, the BERT model can effectively capture the
long-term dependence of the sequence through long-term
pre-training, and effectively improve the performance of the
model. The fine-tuning process is end-to-end, avoiding the
dependence on the expert domain, and avoiding the influ-
ence of the pros and cons of the feature extraction algorithm
on the performance of the model.

Five-fold cross validation
We merge the four data sets in Table 1 to remove dupli-
cate sample data, and use CD-HIT to remove sequences with
70% sequence pair similarity to reduce data redundancy. At
the same time, the BERT-based model was cross-validated
5 times, and the cross-validation results are shown in Table
3. The cross-validated average Sn, Sp, Acc, and MCC were
87.68%, 85.82%, 85.98%, 0.6261, respectively. This numer-
ical result is low compared to the training and independent
testing of the model on a single data set. It may be because
the four data sets are constructed differently, especially the
negative samples are constructed differently, which leads
to the emergence of the data set. The pollution makes the
model appear to be degraded in terms of performance value.
In addition, the accuracy of the model in identifying positive
samples is higher than the accuracy of identifying negative
samples. This may be because the construction process of
positive samples is relatively similar. During training, there
are fewer false positive samples, which makes the model in
The ability to identify positive samples is stronger.

Sn(%) Sp(%) Acc(%) MCC
1 87.35 86.52 86.98 0.6245
2 87.21 86.04 85.96 0.6312
3 89.87 85.12 85.22 0.6327
4 85.76 86.12 86.14 0.6210
5 88.21 85.32 85.62 0.6212

Table 3: The result of five-fold cross validation

Although the performance value of the five-fold cross-
validation is lower than the performance values of the three
independent tests, this does not fully explain that the model



trained on the combined data set cannot be used, because the
five-fold cross-validation and independent testing use The
training set and the test set are different and cannot be di-
rectly compared, and Sp, Sn and Acc are all higher than
85%, indicating that the prediction results of the model still
have a certain reference value.

Conclusion
We built an antimicrobial peptide recognition model based
on BERT, which is pre-trained on the data provided by
UniProt, and then fine-tuned on a specific antimicrobial pep-
tide data set. Experimental results show that the generaliza-
tion ability of this model is better than other models in iden-
tifying antimicrobial peptides. In addition, 4 data sets of an-
timicrobial peptides were sorted and used to train a model
for predicting antimicrobial peptides.

The final training model uses all the antimicrobial pep-
tide data sets, but the results of the five-fold cross verifica-
tion show that the performance indicators are not particu-
larly good. The possible reason is that the current method of
constructing the data set is flawed. Therefore, a method for
constructing a complete antimicrobial peptide data set or a
complete antimicrobial peptide data set is needed. If there is
no such method, then the true performance test method of
the model should be obtained through testing and verifica-
tion by experimenters, but this is inefficient.
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