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Abstract

In a binary system, two stars rotate together around a common
center of mass. Long-term photometric observations have re-
vealed to astronomers very rich and diverse types of periodic
variability associated with different parameters of binary sys-
tems. The classification of this zoo of variable stars across the
sky is a challenging, useful, and fascinating task that may lead
to new discoveries such as compact objects in binary systems.
In this work, we use the photometric time series of binary
systems as input to classify the systems into several typical
classes without any pre-assumption of period. We show that
the classifier trained on the ASAS-SN survey data effectively
characterizes and classifies the stellar parameters.

Introduction

Eclipsing binary systems are binary systems with orbital
planes so close to the observer’s line of sight (the inclina-
tion ¢ of the orbital plane to the plane orthogonal to the line
of sight is close to 90 deg) that the components periodically
eclipse each other. Consequently, the observer finds changes
in the system’s apparent combined brightness with the pe-
riod coincidence with that of the components’ orbital mo-
tion.

In 1783, John Goodricke showed that Algol’s variations
were periodic: it gets about 2 magnitudes fainter than nor-
mal every 68.8 hours. He speculated that either Algol had an
unseen body in orbit about it with a period of 68.8 hours,
or that Algol had dark spots which came into view ev-
ery 68.8 hours (Goodricke 1783). H. C. Vogel showed in
1890 that Algol was a spectroscopic binary with a period of
68.8 hours (Vogel 1890). Furthermore, he showed that the
primary star was receding just before the eclipse, and ap-
proaching just after the eclipse. By about 1840, a few dozen
variable stars were known, these were discovered visually.
Presently, the ASAS-SN Variable Stars Database (AVSD)
contains 216,446 confirmed variable stars, 666,502 records
of light curves, and most were discovered in large-scale
CCD photographic patrols (Shappee et al. 2014; Jayasinghe
et al. 2019). The vast majority of these have not been studied
in any detail.
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Figure 1: Left panels: Example of different eclipsing binary
light curve types. Right panels: the binary configuration that
corresponds to each type on the left, respectively.

Historically, there are three basic classes of eclipsing light
curves, based solely on the overall light curve shape (Figure
1):

* EA Type: An eclipsing variable of the Algol type. There
are well-defined eclipse(s) and little variation in between.
EAs are detached binary systems with two stars well sep-
arated; each one is within its Roche Lobe;

* EB Type: An eclipsing variable of the /3 Lyrae type. There
are well-defined eclipse(s) but considerable variation in
between. EBs are semi-detached binary systems with one
of the star fills its Roche Lobe while the other one does
not;

* EW Type: An eclipsing variable of the W Ursae Majoris
type. There are no well-defined eclipse(s) and little dis-
tinction between the eclipse and out-of-eclipse phases.



EWs are contact binary systems with two stars both fills
their Roche-lobes.

Many binary systems will also show additional features
that complicate the interpretation of the light curve, mostly
due to starspots (bright and/or dark) or to mass transfer
streams. There are up to 40 different types in AVSD.

In reality, because of weather, observational plans, and
many other uncontrollable conditions, the cadence of long-
term observations are almost always irregular, with gaps in
between observation windows and non-uniform sampling
(Figure 2). This fact posts a big challenge to the classifi-
cation task. Traditionally statistical features have been de-
rived from the light curves to do follow-up classification.
The features include standard statistical measures like me-
dian, skew, kurtosis and specialized domain knowledge-
based ones such as “fading profile of a single-peaked fast
transient”. The standard features do not carry special pow-
ers for classifying a varied set of objects. The designer fea-
tures are better for specific classes, but carry a bias that does
not necessarily translate to a broader set classification. The
accuracy of the task is greatly improved by machine learn-
ing, but mostly requires computing the period of the binary
star system as input to the classifier model. The algorithms
used to calculate the period, such as the Lomb-Scargle pe-
riodogram are usually based on a priori statistics and there-
fore introduce uncertainty into the results (Zechmeister and
Kiirster 2009). Convolutional neural network (CNN) trained
with periodically folded data also lose the time-domain in-
formation of the original data.

Here we propose a classifier based on the Gated Recurrent
Unit (GRU) recurrent neural network (RNN) to classify the
light curve without assuming about the orbital period of the
binary star. RNN is suitable of identifying features in time
series data and is possible to learn the characterization of
periodic information. We discuss related work in Section 2,
then describe data collection and preprocessing in Section
3. The theoretical description and detailed architecture of the
classifier are located in Section 4 and Section 5, respectively.
The performance of the classifier is discussed in Section 6,
then concluded in Section 7.

Related works

Machine learning has been widely used in the past for the
task of light curve identification and clustering. A refined
classifier for eclipsing binaries based on pattern regression
and Bayesian network found an overall accuracy improve-
ment of 12.1% compared above a simple 50-30-7 multilayer
perceptron (Sarro, Sdnchez-Fernandez, and Giménez 2006).
Debosscher et al. trained both single-stage SVM classifiers
and sequential classifiers. The unique automated supervised
classifier for each of the 29 classes with sufficient stars uses
the Bayesian Model Averaging (BMA) instead of the maxi-
mum likelihood estimate provided by the error backpropaga-
tion algorithm and produces an average correct classification
rate of 70%. The SVM optimized by grid search and 10-fold
cross-validation got 50% correct identifications (Debosscher
et al. 2007). Modak, Chattopadhyay, and Chattopadhyay ap-
plied k-medoids clustering with complexity invariance dis-
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Figure 2: The original light curve from Catalina Sky Server,
correspond with the sources in Figure 1.

tance (CID) to the light curves and gave rise to two phys-
ically interpretable groups of Eclipsing binaries, which has
outperformed the established methods in average silhouette
width (ASW) (Modak, Chattopadhyay, and Chattopadhyay
2020).

The best-performing and widely applied algorithm is the
Random Forest Algorithm (RFA), which has been used in
The Catalina Sky Survey (CSS), Kepler mission K2, Hip-
parcos periodic variable stars and AVSD. It achieves an F}
score of 96.25% in the binary classification and 96.83%
in the eight-class classification (Neira et al. 2020). Artifi-
cial neural network (ANN, Karpenka, Feroz, and Hobson
2013), CNN (Cabrera-Vives et al. 2017), recurrent convolu-
tional neural network (RCNN, Carrasco-Davis et al. 2019),
and long short-term memory (LSTM, Charnock and Moss
2017) RNN both are common approaches to understand
what physical properties are most related to the light curve
(Hinners, Tat, and Thorp 2018).

Data collection and preparation

This work investigates using real light curve observations
taken from The All Sky Automated Survey for SuperNovae
(ASAS-SN). For this task, the training data was developed
using segments of 63,645 measurement samples taken from
the ASAS-SN dataset for objects with light curve type in-
formation. Their ASAS-SN numbers are unique associated
with the objects in the ASAS-SN dataset, and from its
names, class information can be extracted. Four classes, EA,
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Figure 3: The distribution of sequence length and variance
after rescale for each type of light curves. It shows the length
and sample size of different types of sequences vary greatly.

EB, EW, and VAR (not fall into any of the above categories),
are used in this work.

To create a good and clean training sample, for each sam-
ple of light curve {t;, m;,dm;}, where t; is the time point
of the data record, m; is the corresponding observed magni-
tude at this time point and dm; is the observation error, we
made a number of cuts before processing the light curves.
The selection criteria is described as follows.

Classify probability. To ensure the accuracy of the dataset
labeling, we selected only targets with a classification confi-
dence level of 1. For VAR type data, this indicator is reduced
to 0.5 in order to ensure that enough VAR data samples en-
ter the training set, and VAR data is not easily confused with
other types. The sample sizes is 12,618 for EA type, 5,995
for EB type, 25,193 for EW type, and 19,839 for VAR type.
It should be emphasized that the unevenness of the sample
size is an important factor affecting classification effect. The
distribution of selected data samples are shown in Figure 3.

Remove outliers. The light curves are measured in flux
units, as is expected for the ASAS-SN difference imaging
pipeline. The primitive data have a significant fraction of the
observations being 5 — 10 o outliers. These outliers are in-
tended to replicate the difference image analysis artifacts,
telescope CCD deficiencies, and cosmic rays seen in obser-
vational data. We perform “sigma clipping” to reject these
outliers. We do this by rejecting photometric points with flux
uncertainties that are more than 30 from the mean uncer-
tainty in each record, and iteratively repeat this clipping 5
times.

Panning light curves. One of the key differences in this
work compared to previous light curve classification ap-
proaches is our ability to provide time-varying classifica-
tions. The Key to computing this, is just make the obser-
vation time point as another dimension of the input of our
model. Cause the observed durations of light curves for
some sources may be very long and are recorded using the
Modified Julian Date (MJD) formation, we move the time
series data as a whole to {5 = 0 to avoid the effect of time
data on model convergence.

Rescale light curves. Different types of binary stars deride
to different level of magnitude. To ensure that the difference
in luminance does not affect the classification accuracy, all
data of magnitude observations were applied to the follow
function

m; = ——
Mmaz — Mmin

to scale into m; € [0, 1], where 7 represents the average
of the photometric data.

Model

In this work, we train a deep neural network (DNN) to map
the light curve data of an individual object s onto probabili-
ties over classes ¢ = {EA, EB, EW, VAR}. The DNN mod-
els a function that maps an input time-varying light curve
matrix, 1°?, for object s up to a discrete time ¢, onto an out-
put probability vector,

yst — ft(ISt;H),

where 6 are the parameters of our DNN architecture. We
define the input 7*¢ as an n x 3 matrix representing the light
curve up to a time point ¢;, the magnitude m; and the ob-
servation error 6m;. The output y*¢ is a probability vector
with shape 4 x 1, where each element yg’t is the model’s
predicted probability of each class ¢, such that y* > 0 and

First, to quantify the discrepancy between the model prob-
abilities and the class labels we define a weighted categorical
Cross-entropy,

Ho (Y y™) = =S5 weY S log(y2'),

where w, is the weight of each class, Y*! is a one-hot
encoded vector label of shape 4 x 1 for the true light curve
class.

To counteract imbalances in the distribution of classes in
the data set which may cause more abundant classes to dom-
inate in the optimization, we define the weight for each class
W, as

_ P
Zﬁ:lpc ’

We

where p. = 1 — % and N, is the number of times a
particular class appears in [V training set.
We define the global objective function as

Obj(a) = EiV:le (YSta ySt)a

where we sum the weighted categorical cross-entropy
over all N light curves in the training set. To train the DNN
and determine optimal values of its parameters 0, we mini-
mize this objective function with the sophisticated and com-
monly used Adam gradient descent optimizer. The model
fe(I5% é) is represented by the complex DNN architecture
illustrated in Figure 4 and is described in the following sec-
tion.
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Figure 4: The architecture of our network.

Network Architecture

RNNs, such as LSTM and GRU networks have been shown
to achieve state-of-the-art performance in many benchmark
timeseries and sequential data applications (Bahdanau, Cho,
and Bengio 2014; Sutskever, Vinyals, and Le 2014; Che
et al. 2018). Its success in these applications is due to its
ability to retain an internal memory of previous data, and
hence capture long-term temporal dependencies of variable-
length observations in sequential data. We extend this archi-
tecture with bi-directional to pass information both forwards
and backwards through the neural network representation
of the light curve, and hence preserve information on both
the past and future at any timestep. The deep neural net-
work (DNN) is illustrated in Figure 4. We have developed
the network with the high level Python API, Keras (Chollet
et al. 2018), built on the recent highly efficient TensorFlow
machine-learning system (Abadi et al. 2016). We describe
the architecture in detail here.

Input. As detailed in before, the input is an n X 3 matrix.
However, as we are implementing a sequence classifier, we
can consider the input at each time point as being a vector of
length 3 x 1.

GRU Layer. Gated recurrent units are an improved version
of a standard RNN and are a variation of the LSTM (Chung
et al. 2014). We have selected GRUs instead of LSTMs in
this work, as they provide appreciably shorter overall train-
ing time, without any significant difference in classification
performance. Both are able to capture long-term dependen-
cies in time-varying data with parameters that control the
information that should be remembered at each step along
the light curve. We use the first GRU layer to read the in-
put sequence one timestep at a time and encode it into a
higher-dimensional representation. The second GRU layer
has a 64 x 3 matrix as output similarly and the third GRU
layer output a 64 x 1 vector. We use bi-directional GRUs that
enable both information from previous and future timesteps
are encoded.

Batch Normalization. We then apply Batch Normalization
(Ioffe and Szegedy 2015) to each GRU layer. This acts to im-
prove and speed up the optimization while adding stability
to the neural network and reducing overfitting. While train-
ing the DNN, the distribution of each layer’s inputs changes
as the parameters of the previous layers change. To allow the
parameter changes during training to be more stable, batch

Parameter Value Range Step
Learning rate 0.001 Dynamic adjustment
GRU units 128, 64, 32, 16 -
Batch size 512, 256, 128 -
Sequences padding maxlen 100 - 1500 100
Dense units 128, 64,32, 16 -
Activation tanh, ReLLU, softmax
GlorotUniform, Orthogonal,
Initializer LeCunUniform, LeCunNormal

HeUniform, HeNormal
Dropout rate 0-04 0.05
Batch normalization True / False -
Bidirectional True / False

Table 1: Hyper-parameters selection for our model. The cho-
sen values are marked in bold.

normalization scales the input.

Dropout. We also implement dropout regularization be-
tween each layer of the neural network to reduce overfitting
during training. This is an important step that effectively ig-
nores randomly selected neurons during training such that
their contribution to the network is temporarily removed.
This process causes other neurons to more robustly handle
the representation required to make predictions for the miss-
ing neurons, making the network less sensitive to the specific
weights of any individual neuron. We set the dropout rate to
20% of the neurons present in the previous layer.

Dense Layer. A dense layer is the simplest type of neu-
ral network layer. It connects all 64 neurons in the previous
layer, to the 4 x 1 neurons in the output layer. As this is a
classification task, the output is a vector consisting of all 4
light curve classes.

Activation function. As with any neural network, each
neuron applies an activation function f(-) to bring nonlin-
earity to the network and hence help it to adapt to a variety
of data. For feed-forward networks it is common to make
use of Rectified Linear Units (ReLLU, Nair and Hinton 2010)
to activate neurons.

We reiterate that the overall architecture is simply a func-
tion that maps an input n x 3 light curve matrix onto an
4 x 1 softmax probability matrix indicating the probability
of each light curve class. In order to optimize the parameters
of this mapping function, we specify a weighted categorical
cross-entropy loss-function that indicates how accurately a
model with given parameters matches the true class for each
input light curve. We minimize the objective function us-
ing the commonly used, but sophisticated stochastic gradi-
ent descent optimizer called the Adam optimizer (Kingma
and Ba 2014). As the class distribution is inevitably uneven,
we prevent bias towards overrepresented classes by applying
class-dependent weights while training.

The several layers in the DNN create a model that has
266,000 free parameters. As we feed in our training set in
batches of 512 light curves at a time, the neural network
updates and optimizes these parameters. Ideally, we would
like to ensure that the model we build both accurately cap-
tures regularities in the training data while simultaneously
generalizing well to unseen data. While we implement reg-
ularization layers (dropout) to try to prevent overfitting, we
also monitor the performance of the classifier on the train-
ing and testing sets during training. In particular, we ensure
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Figure 5: The accuracy and loss in first 100 training epoch.

that we do not run the classifier over so many iterations that
the difference between the values of the objective function
evaluated on the training set and the testing set become sig-
nificant.

We performed a broad grid-search of 10 of our DNN
hyper-parameters which are shown in Table 1. After testing
all different setup parameters, we found that there was about
10% variation on the overall accuracy.

Result

We trained our DNN on 80% of this set and tested its perfor-
mance on the remaining 20%. The data was preprocessed us-
ing the methods outlined before. To assess the performance
of our model, we make use of several metrics. The most ob-
vious metric is simply the accuracy, that is, the ratio of cor-
rectly classified light curve in each class to the total num-
ber of light curve in each class. At each epoch along every
light curve in the testing set, we select the highest probability
class and compare this to the true class. The weighted cross-
entropy of the predicted class and the true class, which is
just the loss in this task, is also used as another metric. Here
we obtained the prediction accuracy and loss as a function
of epoch. This is plotted in Figure 5.

In Figure 6, we plot the normalized confusion matrices
for different types of light curve. The overall classification
performance is 91.37%, as expected, slightly worst at the EB
type of light curves due to the lack of samples. However, the
performance for the other types is particularly promising for
our ability to identify different types at early times to gather
a well-motivated follow-up candidate list.

The overall accuracy of our DNN is lower than the SOTA
model of 96.25%, cause the input light curve of the SOTA
model has been preprocessed by period folding algorithm
such as the Lomb-Scargle periodogram. Although we make
time-point series as one column of the input matrix, our
DNN does not seem to have fully learned such an algorithm
to auto-fold observation time-points. The fact that the EB
type samples are few that DNN does not learn enough clas-
sification information is also the reason for the poor overall
performance.

Confusion matrix

EA 0.0262 0.0176 0.0074

4000

8 02159 056178 01577 0.0086
3000
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2000
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1000
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Figure 6: The confusion matrix for DNN.

Conclusion

We have detailed the development of a new binary stellar
light curve classifier, which is well suited for the millions
of light curves per night that ongoing and upcoming wide-
field surveys such as ZTF and LSST will produce. The key
advantages that distinguish our approach from others in the
literature are:

* Our architecture combined with a diverse training set al-
lows us to identify 4 different light curve classes, despite
low S/N and limited observation times.

* We do not require user-defined feature extraction and
time folding before classification, and instead use the pro-
cessed light curves as direct inputs.

* Our algorithm is designed from the outset with speed as a
consideration, and it can classify the tens of thousands of
events that will be discovered in each LSST image within
a few seconds.

While we designed this model primarily for eclipsing bi-
nary light curves classification, the flexibility of our archi-
tecture means that it is also useful for photometric clas-
sification with any available types of the light curves. We
have presented detailed confusion matrices, accuracy and
loss curves for all the classes represented in our training set,
evaluated accuracy across the 4 classes is up to 91.37%.

In future work, we plan on applying this method on LSST
simulations to help to inform how changes in observing
strategy affect photometric classifications and find some
compact objects such as black holes and dwarf stars. We
will analyze further the physical meaning behind the statisti-
cal results and investigate possible causes and implications.
Overall, our DNN provides a novel and effective method of
classifying eclipsing binary light curves and providing pri-
oritized follow-up candidates for the new era of large scale
stellar surveys.
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