Explainable Channel Pruning for Accelerating Deep Convolution Neural
Networks via Class-wise Regularized Training”

Yuxin Zhang', Zhihua Wang?,
Xiaoyang Huang', Xiangjin Zhan?, Yuqing Chang*
Media Analytics and Computing Laboratory, School of Informatics, Xiamen University, China
2Medical Image Analysis Laboratory, School of Informatics, Xiamen University, China

3Big Data and Computational Intelligence Laboratory, School of Informatics, Xiamen University, China
4National Institute for Data Science in Health and Medicine, Xiamen University, China

Abstract

Channel Pruning has been long adopted for compressing
CNNs, which significantly reduces the overall computation.
Prior works implement channel pruning in an unexplainable
manner, which tends to reduce the final classification errors
while failing to consider the internal influence of each chan-
nel. In this paper, we conduct channel pruning in an explain-
able manner via class-wise regularized training, term as CRT-
Pruner. Through deep visualization of feature maps activated
by different channels, we observe that different channels have
a varying contribution to different categories in image clas-
sification. Inspired by this, we choose to preserve channels
contributing to most categories. Specifically, to model the
contribution of each channel to differentiating categories, we
develop a class-wise mask for each channel, implemented
in a dynamic training manner w.r.t. the input image’s cate-
gory. On the basis of the learned class-wise mask, we per-
form a global voting mechanism to remove channels with
less category discrimination. Lastly, a fine-tuning process is
conducted to recover the performance of the pruned model.
To our best knowledge, it is the first time that CNN inter-
pretability theory is considered to guide channel pruning. Ex-
tensive experiments demonstrate the superiority of our CRT-
Pruner over many state-of-the-arts. For instance, on CIFAR-
10, it reduces 65.23% FLOPs with even 0.62% accuracy im-
provement for ResNet-110. On ILSVRC-2012, CRTPruner
achieves a 45.6% FLOPs reduction with only a small loss of
0.83% in the top-1 accuracy for ResNet-50.

Introduction

Though convolutional neural networks (CNNs) have shown
predominant performance in various computer vision tasks,
such as image classification (Simonyan and Zisserman 2015;
He et al. 2016), image super-resolution (Dong et al. 2015;
Zhang et al. 2018), segmentation (He et al. 2017; Girshick
2015), and object detection (Girshick et al. 2014; Redmon
et al. 2016), the vast demand on computation cost has pro-
hibited them from being deployed on edge devices such as
smartphones and embedded sensors. To address this, the re-
searchers have developed several techniques for CNNs com-
pression, such as network pruning (Han et al. 2015; He et al.

“Project report for the 2020-2021 fall semester of deep learning
course.

2020), parameter quantization (Hubara et al. 2016; Liu et al.
2020), tensor decomposition (Peng et al. 2018; Hayashi et al.
2019) and knowledge distillation (Romero et al. 2014; Hin-
ton, Vinyals, and Dean 2015), etc. Among them, channel
pruning has attracted ever increasing attention for its easy
combination with general hardware and Basic Linear Alge-
bra Subprograms (BLAS) libraries, which is thus the focus
of this paper.

The core idea of channel pruning is to remove the entire
channels in one filter so as to generate a sub-network of the
original CNN with less computation cost. Existing studies
could roughly be categorized into two categories. The first
group abides a three-step pruning pipeline including pre-
training a dense model, selection of “important” filters and
fine-tuning the sub-net. Typically, most works of this cate-
gory focus on the second step by either figuring out a fil-
ter importance estimation, such as ¢;-norm (Li et al. 2017),
geometric information (He et al. 2019) and activation spar-
sity (Hu et al. 2016), or regarding channel pruning as an
optimization problem (Lin et al. 2020; Guo, Ouyang, and
Xu 2020). The second category implements channel prun-
ing through retraining the network from scratch with ad-
ditional sparsity constraints forced upon individual chan-
nels (Liu et al. 2017; Huang and Wang 2018; Luo and Wu
2020; Ding et al. 2020), after which, the pruned model can
be available by removing zeroed channels or channels below
a given threshold.

Though progress made in the past few years, existing
methods build channel pruning on the basis of observing
the CNN output, i.e., the final classification performance,
while leaving the internal influence of a CNN model hardly
touched. For example, Li et al. (Li et al. 2017) removed fil-
ters with smaller /1 -norms, which can indeed be viewed as to
minimize the output difference between the original model
and the pruned model. To take a more in-depth analysis,
the massive non-linear operations inside CNNs make them
hardly understandable. Thus, existing methods choose to re-
gard the CNNs as a black box and observe the final output
for network pruning. From this perspective, we term these
methods “Black-Box pruning” in this paper.

Nevertheless, understanding the internal explanation of

NI =L
T

\

-
Figure 1: Visualization of various kinds of images (first row)
along with the feature map of the 5-th and 144-th channel
(second and third row, respectively) in the conv12 layer of
VGG16-Net trained on ImageNet. (Best viewd with zoom-

ing in) All feature maps are with their origin activation value
and size.

deep CNNs has attracted increasing attention (Wu et al.
2017; Yosinski et al. 2015; Zeiler and Fergus 2014; Zhang,
Nian Wu, and Zhu 2018; Zhou et al. 2015), which also ad-
vances various vision tasks. For instance, Zeiler et al. (Zeiler
and Fergus 2014) won the championship of the ILSVRC-
2013 by adjusting architecture through visualization of in-
ternal feature maps. Inspired by this, we believe that explor-
ing the internal logic in CNNs could be a promising prospect
to guide channel pruning.

As exploited in (Yosinski et al. 2015), the feature maps of
each channel have the locality that a particular area in one
feature map is activated. Inspired by this, we visualize the
feature maps generated by VGG16-Net (Simonyan and Zis-
serman 2015) trained on ImageNet to explore the local infor-
mation in the internal layers of CNNs. As can be seen from
Fig. 1, the 5-th channel at the 12-th convolution layer always
generates feature maps that contain head information while
the 144-th channel attempts to activate textual information.
Even though there is no explicitly labeled head or text, this
CNN model automatically learns to extract partial informa-
tion to make better decisions, which exactly meets human
intuition when classifying an image. That is, head informa-
tion extracted by the 5-th channel helps the network to iden-
tify animals, and textual information extracted by the 144-
th channel contributes to classify categories with texts such
as digital watches. However, some local features may not be
beneficial to identifying all categories. For example, the 144-
th channel always chooses to deactivate most of the pixels
when processing images with no textual semantics like dogs
and pandas (see the third and fifth column in Fig. 1). Such
local representation on the internal layers of a CNN shows
that channels have a varying contribution to different cate-
gories in image classification, which motivates us to rethink
the importance criterion of channel pruning.

Instead of simply considering the CNN output after re-
moving a channel as prior arts do, we target at finding each
channel’s contribution to identifying different kinds of im-
ages. It is intuitive that if feature maps activated by one chan-

nel can benefit most categories’ classification, this channel is
essential and should be preserved; otherwise, it can be safely
removed.

To this end, we assign each channel a class-wise mask, the
length of which is basically the same as the category number
in the training set. For each category of the input images, the
corresponding mask is activated to multiply on the output
feature map for model inference. By exerting a sparsity con-
straint that pulls the class-wise mask toward zero to coun-
teract such gradients, these masks will maintain relatively
large absolute values. Thus, after a few training epochs, each
channel’s importance score can be measured by the absolute
sum of its class-wise mask, reflecting its overall contribution
to identifying all categories. In this way, we can carry out
the channel pruning in an explainable manner, for which we
term our channel pruning as “CRTPruner”. We further pro-
pose an iteratively global voting, which is performed using
the above importance score to remove unimportant channels
until the FLOPs of the pruned model meet pre-given com-
putation budget. Lastly, a fine-tuning process is conducted
to recover the performance of the pruned network.

Our contributions are summarized as follows:

* Based on an in-depth analysis of CNNs interpretation, we
propose a novel explainable importance criteria for chan-
nel pruning that we should preserve channels beneficial to
identifying most categories. To our best knowledge, it is
the first time that CNN interpretability theory is consid-
ered to guide channel pruning.

* We carry out channel pruning in an explainable manner by
jointly training a class-wise mask along with the original
network to find each channel’s contribution for classifying
different categories, after which a global voting and a fine-
tuning are conducted to obtain the final compact pruned
model.

Extensive experiments on CIFAR-10 and ILSVRC-2012
demonstrate the advantages of the proposed CRTPruner
over several state-of-the-art advances in accelerating the
CNNe .

Related Work

Channel Pruning. Channel pruning targets at snipping
away entire channels in convolution kernel to obtain a
pruned model, which not only saves computation cost, but
is also compatible with off-the-shelf hardware. As discussed
in Sec., previous channel pruning works can be approxi-
mately divided into two groups. Starting from a pre-trained
model, the first category designs various importance cri-
teria to remove unimportant channels. For example, Li et
al. (Li et al. 2017) chose to prune filters with smaller ¢;-
norm. Molchanov et al. (Molchanov et al. 2016) proposed
Taylor expansion to measure each channel’s influence to the
loss function as filter importance. In (Guo, Ouyang, and
Xu 2020), Guo et al. considered both classification loss
and feature importance as a pruning criterion to deal with
the influence of next-layer feature map removal. The other
group implements channel pruning in a training-adaptive
manner by introducing extra sparsity regularization. For ex-
ample, Huang et al. (Huang and Wang 2018) introduced

Label Soft Label
— —
D D
Convolution Feature Map

Kernel I
’ I

ConXK XK

Class-wise Mask

® Convolution Operation
© Element-wise Multiplication

@ Element-wise Add

Feature Map

DxHxW

Figure 2: Framework of the proposed CRTPruner for class-wise mask training.(Best viewd with zooming in)

a scaling factor to scale the outputs of specific structures
and added sparsity on these factors. They then trained the
sparsity-regularized mask for network pruning through data-
driven selection. Luo et al. (Luo and Wu 2020) employed
an “autopruner” layer appended in the convolution layer to
prune filters automatically. By regularizing auxiliary param-
eters instead of original weights values, Xiao et al. (Xiao,
Wang, and Rajasekaran 2019) pruned the CNN model via
a gradient-based updating rule. Both of these two groups
conduct channel pruning with respect to the CNN output,
failing to consider the internal mechanism of a CNN model.
Though there are considerable improvements, interpretation
for channel pruning remains an open problem.

Proposed Solution
Background

Considering an L-layer CNN model, its kernel weights can
be represented as W = {W?! W2 ... WL}, The kernel in

the [-th layer is denoted as W € RCout X Cin xK' XKZ, where
Cl.., CL . K' denote the numbers of output channels and

input channels, and the kernel size, respectively. Let Z! €

RNXCin xH'xW! pe the input of the [-th layer where [V is the
batch size of input images, and H', W' respectively stand
for the height and width of the input. Given training image
set X, associated with a set of class labels YV *P where D
represents the total number of categories in the training set,
we denote X = Z!. For the i-th input image X; . . - We treat
its label Y; . as a one-hot vector, that is Y; . = j indicates
that the j-th entry is set to one while the others are zero'.
With a conventional CNN, the output of the /-th layer can be
calculated as 2

o' =T'e W, 1)
where ® denotes the convolutional operation. We have O =
T @ RNXCL D H W gng ¢l — O Then, its

out —
training loss can be expressed as

mvé}n LX,W;Y). 2)

't also indicates that image X belongs to the j-th class.

2The convolutional operation usually involves a bias term and
is followed by a non-linear operation. For ease of representation,
we omit them in this paper.

For channel pruning, a subgroup of output channels
in W! will be removed to obtain pruned kernel W e
RCouexCix K <K' ynder the constraints of L, < C!,
and C’fn < (!, thus it can reach a better trade-off be-

m?
tween computation cost and accuracy performance. It is
worth mentioning that the corresponding input channels of
WHTL are also removed. Accordingly, we can reformulate

Eq. (1) and Eq. (2) in the pruned network as follows:

O' =T e W, 3)
min £(X, 17\/\; Y). 4
w

Class-wise Mask

The core of our CRTPruner is to assign per-layer kernel
W! a class-wise mask, which is formatted in the form of
M! € RP*Cout Specifically, the mask value M} is built

to measure the contributions of individual channels Wé:):,:
to the network for recognizing the j-th category.

Then, for the ¢-th input image X, . . . with label Y; ., the
convolution using Eq. (1) in the forward propagation under
our mask framework can be rewritten as

O..=TI .. @My W) i=12..N, (9

s I

where * denotes the channel-wise multiplication, that is,
channel W' ... 1s multiplied with the scalar mask ./\/l
Subsequently, our mask-based training loss can be obtalned
as follows:
min L(X, W, M;Y). (6)
W,M

The rationale of our mask design lies in that, during back-
propagation, the mask /\/ll ¢ Will receive the gradient sig-
nals regardlng the input 1mages of the j-th category. On
the premise of this principle, if channel W! . . . benefits the
network to recognize input images from the Jj-th category,
./\/ll . Will be positively activated, and deactivated, other-
Wlse Therefore, our class-wise mask design can well reflect
the internal logic in CNNs, which seamlessly follows our
motivation behind the channel pruning in our CRTPruner.

In comparison with typical CNNs where the label infor-
mation is utilized in the loss layer, our class-wise mask-
based convolutional operations are more label-guided since

it requires label information in every convolutional layer as
shown in Eq. (5). This poses a critical challenge of the over-
fitting problem since the label information is in the format
of one-hot vector, meaning that we need to provide ground-
truth labels for each convolution layer’s forward propaga-
tion. Such data flow during training varies largely from the
real testing part, thus may cause the over-fitting problem.
Inspired by the label-smoothing regularization (Szegedy
et al. 2016), we propose to solve this problem by soften-

ing the one-hot vector, denoted as Y € RV*D_ element of
which is defined as
> Yia ifY;q=1,
Yiga= : . 7
4 {N(O, 1)-Y; 4 otherwise, @

where N (-, -) denotes the normal distribution.
Then, the convolution in Eq. (5) is reformulated as

""" ®

i=1,2,..,N.
As a result, channel pruning can be realized by removing
those channels with poor masks, which indicate less contri-

bution to object classification. To this end, it is natural that
we can impose sparsity constraint on per-channel mask as

L Céut
- 1
min E g M ll2-)
=1 c=1

The combination of our classification objective in Eq. (6)
and sparsity constraint in Eq. (9) leads to the following final
training loss:

l
L Cout

in LXWMY) 423D Ml (10)

=1 c=1

Noticeably, the objective of Eq.(10) targets at locating
channels that contribute more to recognizing the input im-
ages, which then makes up of the pruned kernel W as de-
scribed in Sec., followed by a series of fine-tuning proce-
dures using loss objective of Eq. (6). Therefore, only a few
epochs are needed to train our class-wise mask so as to de-

rive W in our empirical observation®.

Global Voting for Cross-layer Pruning

Given a global pruning rate «, how to appropriately dis-
tribute it to each layer to preserve C! , channels would sig-
nificantly affect the performance of the pruned model (Liu
et al. 2019b). Prevalent methods resort to rule-of-thumb de-
signs (Li et al. 2017; Lin et al. 2020) or complex structure
search (Liu et al. 2019a; Li et al. 2020).

Fortunately, our CRTPruner can tacitly obtain a global
important criterion for all channels in the network and
conduct layer-wise pruning rate decision in an iteratively-
voting manner. Detailedly, consider a trained class-wise

3We consider 10% of the total fine-tuning epochs for training
the class-wise mask.

Table 1: Results for pruning ResNet-56 on CIFAR-10.
Model Top-1 Acc. Acc.] FLOPs |

HRank (CVPR’20) 93.26% — 93.17% 0.09% 50.0%
SCP (ICML20) 93.69% — 93.23% 0.46% 51.5%
SFP (1JCATI’18) 93.59% — 92.26% 1.33% 52.6%

LFPC (CVPR’20) 93.26% — 93.24% 0.02% 52.9%
DSA (ECCV’20) 93.12% — 9291% 0.21% 53.2%

FPGM (CVPR’19) 93.59% — 92.93% 0.66% 53.6%

CRTPruner (Ours) 93.26% — 93.54% -0.28% 55.6%

mask Mic € RP of the ¢-th channel in the I-th layer, each
item in this tensor represents this channel’s ability for classi-
fying one corresponding category of the dataset, thus we can
measure this channel’s contribution to overall classification
performance by simply summing up these class-wise mask

scores. We denote all scores of M! as S' € RCout:
D
Sh=> M., c=1..0Cl,, (11)
d=1

which then will serve as importance criterion for this chan-
nel.

Given a global pruning rate «, after obtaining all chan-
nels’ importance scores S in the whole network, we it-
eratively remove the least-impact channels and calculate
FLOPs pruning rate @ of the current model until @ > «.

After voting, we integrate the left class-wise mask M into

W to conduct fine-tuning for performance recovery. Partic-
ularly, as we soften the label obeying a standard normal dis-
tribution A/ (g = 0.5,0 = 1) during training except for the
ground-truth related current input, the overall pruned M can
be mixed into V/be

D
W= Wx> M. (12)
d=1

Lastly, we spend more epochs to fine-tune the pruned
model for further performance recovery.

Experiments
Implementation Details

We conduct extensive experiments on two representative
datasets including CIFAR-10 (Krizhevsky, Hinton et al.
2009) and ILSVRC-2012 (Russakovsky et al. 2015) to
demonstrate the efficacy of the proposed CRTPruner. We
prune prevailing CNN models ResNet-56 (He et al. 2016)
on CIFAR-10 and ResNet-50 (He et al. 2016) on ILSVRC-
2012. We set the sparse parameter \ as 5x 10~4 for all exper-
iments. Then, We train our class-wise masks using the orig-
inal full network with a learning rate of 0.1 for 30 epochs on
CIFAR-10 and 9 epochs on ILSVRC-2012. After the global
voting, the pruned model is then fine-tuned via the SGD op-
timizer. The momentum, batch size are set to 0.9, 256, re-
spectively, in all experiments. On CIFAR-10, we iterate 300
epochs to fine-tune the pruned model with an initial learn-
ing rate of 0.1, that is divided by 10 at the 150-th and 225-th

Table 2: Results for pruning ResNet-50 on ILSVRC-2012.

Method Top-1 Acc. Top-1 Acc. | Top-5 Acc. Top-5 Acc. | FLOPs FLOPs]
CP (ICCV’17) 76.15% — 72.30% 3.85% 92.96% — 90.80% 2.16% 273B 34.1%
SFP (IICAI’18) 76.15% — 74.61% 1.54% 92.87% — 92.06% 0.81% 239B 41.8%
GAL (CVPR’19) 76.15% — 71.95% 4.20% 92.96% — 90.79% 2.17% 2.33B 43.7%
SSS-32 (ECCV’18) 76.12% — 71.82% 4.30% 92.86% — 90.79% 2.07% 233B 43.7%
HRank (CVPR’20) 76.15% — 75.01% 1.14% 92.96% — 92.33% 0.63% 230B 43.9%
CRTPruner (Ours) 76.15% — 75.32% 0.83% 92.96% — 92.43% 0.53% 222B 45.6%
FPGM (CVPR’19) 76.15% — 74.13% 2.02% 92.96% — 92.87% 0.09% 1.90B 53.5%
RRBP (CVPR’19) 76.15% — 73.00% 3.15% 92.96% — 91.00% 1.96% 1.86B 54.5%
ThiNet ICCV *17) 72.88% — 71.01% 1.87% 91.06% — 90.02% 1.12% 1.71B 58.7%
LFPC (CVPR’19) 76.15% — 74.18% 1.97% 92.96% — 91.92% 1.04% 1.61B 60.8 %
HRank (CVPR’20) 76.15% — 71.98% 4.17% 92.96% — 91.01% 1.95% 1.55B 62.6%
CRTPruner (Ours) 76.15% — 74.21% 1.94% 92.96% — 92.01% 0.95% 1.50B 63.5%

epochs. On ILSVRC-2012, ResNet-50 is fine-tuned for 90
epochs with step scheduler learning rate, which begins at
0.1 and is divided by 10 every 30 epochs. All experiments
are implemented with Pytorch (Paszke et al. 2019) and run
on NVIDIA Tesla V100 GPUs.

Pruning ResNet-56 on CIFAR-10

We first demonstrate the superiority of CRTPruner on
CIFAR-10 dataset. We evaluate the network pruning per-
formances of various methods on ResNet (He et al. 2016),a
predominant deep CNN with residual modules, as shown in
Table 1. As can be observed, our CRTPruner increases the
performance of original ResNet-56 by 0.28% and removes
around 55.60% computation burden, while the other meth-
ods suffer the accuracy degradation more or less, even re-
ducing less FLOPs.

Pruning ResNet-50 on ILSVRC-2012

We further demonstrate the efficacy of CRTPruner for prun-
ing ResNet-50 (He et al. 2016) on the large-scale ILSVRC-
2012. For fair comparison with many competitors , in Tab. 2,
we list the performance of CRTPruner under similar pruning
rates. Both the top-1 and top-5 accuracy along with FLOPs
and FLOPs pruning rate of the pruned model are reported.
As can be seen, in comparison with the SOTAs, CRTPruner
shows the best performance under different pruning rates.
Specifically, by setting the global pruning rate « to 0.45,
CRTPruner reduces the FLOPs to around 2.22B while ob-
taining the top-1 accuracy of 75.32% and top-5 accuracy
of 92.43%. In contrast, the recent SOTA, HRank (Lin et al.
2020), bears more computation of 2.30 FLOPs and poor top-
1 accuracy of 75.01% and top-5 accuracy of 92.33%. Fur-
ther, we increase pruning rate o to 0.63, where our CRT-
Pruner shows the least accuracy drops of 2.02% in top-1 ac-
curacy and 1.03% in top-5 accuracy. With less FLOPs reduc-
tions, LFPC (He et al. 2020) shows poor top-1 accuracy of
74.18% and top-5 accuracy of 91.92%. These results demon-
strate the advantage of our CRTPruner for pruning the clas-
sic ResNet-50 on large-scale datasets.

Table 3: Top-1 accuracy comparison with/without class-wise
mask for pruning ResNet-56 on CIFAR-10 under similar
FLOPs pruning rate.

Setting Top-1 Acc. | FLOPs |
CRTPruner -0.28 % 55.6%
w/o Class-wise mask 1.43% 53.3%
w/o Soft mask 2.12% 54.7%

Ablation Study

Effect of Class-wise Mask. In this section, we prune
ResNet-56 and test its performance on CIFAR-10 as an ex-
ample to investigate the influences of individual components
in the proposed class-wise mask. We first train each channel
with a single mask for all categories of images, denoted as
w/o Class-wise mask in Table 3. In addition, we conduct ex-
periments without the smooth operation for mask activation,
which is referred to as w/o Soft mask in Table 3. Our em-
pirical observation shows that such an implementation leads
to the over-fitting problem that the network will converge in
one epoch. As a result, the trained mask cannot well con-
tribute to discriminating different categories, which leads
to an even worse top-1 accuracy drop than w/o Class-wise
mask under a similar FLOPs pruning rate. Both experiments
show remarkable efficacy of our class-wise mask.

Conclusion

Based on visualization and analysis of the deep feature in
CNNs, we proposed a new perspective of channel pruning
that one should preserve channels activating discriminative
features for more categories in the dataset. We further carry
out channel pruning in an explainable manner by devising
a class-wise mask for each channel. During training, differ-
ent sub-masks are activated for model inference, respecting
to the current label of input images. A global voting and
a fine-tuning are then performed to obtain the compressed
model. Extensive experiments demonstrate the superiority
of our new explainable perspective of network pruning. This
work suggests new directions for more exploration of ex-
plainable neural network pruning.

References

Ding, X.; Hao, T.; Liu, J.; Han, J.; Guo, Y.; and Ding, G. 2020.
Lossless CNN Channel Pruning via Gradient Resetting and Con-
volutional Re-parameterization. arXiv preprint arXiv:2007.03260

Dong, C.; Loy, C. C.; He, K.; and Tang, X. 2015. Image super-
resolution using deep convolutional networks. TPAM) 38(2): 295—
307.

Girshick, R. 2015. Fast r-cnn. In ICCV, 1440-1448.

Girshick, R.; Donahue, J.; Darrell, T.; and Malik, J. 2014. Rich
feature hierarchies for accurate object detection and semantic seg-
mentation. In CVPR, 580-587.

Guo, J.; Ouyang, W.; and Xu, D. 2020. Channel pruning guided by
classification loss and feature importance. In AAAI, 10885-10892.

Han, S.; Pool, J.; Tran, J.; and Dally, W. 2015. Learning both
weights and connections for efficient neural network. In NeurIPS,
1135-1143.

Hayashi, K.; Yamaguchi, T.; Sugawara, Y.; and Maeda, S.-i. 2019.
Exploring Unexplored Tensor Network Decompositions for Con-
volutional Neural Networks. In NeurIPS, 5552-5562.

He, K.; Gkioxari, G.; Dollar, P.; and Girshick, R. 2017. Mask R-
CNN. In CCV.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual learn-
ing for image recognition. In CVPR, 770-778.

He, Y.; Ding, Y.; Liu, P;; Zhu, L.; Zhang, H.; and Yang, Y. 2020.
Learning Filter Pruning Criteria for Deep Convolutional Neural
Networks Acceleration. In CVPR, 2009-2018.

He, Y.; Liu, P.; Wang, Z.; Hu, Z.; and Yang, Y. 2019. Filter prun-
ing via geometric median for deep convolutional neural networks
acceleration. In CVPR, 4340-4349.

Hinton, G.; Vinyals, O.; and Dean, J. 2015. Distilling the knowl-
edge in a neural network. arXiv preprint arXiv:1503.02531 .

Hu, H.; Peng, R.; Tai, Y.-W.; and Tang, C.-K. 2016. Network
trimming: A data-driven neuron pruning approach towards efficient
deep architectures. arXiv preprint arXiv:1607.03250 .

Huang, Z.; and Wang, N. 2018. Data-driven sparse structure selec-
tion for deep neural networks. In ECCV, 304-320.

Hubara, I.; Courbariaux, M.; Soudry, D.; El-Yaniv, R.; and Bengio,
Y. 2016. Binarized neural networks. In NeurIPS, 4107-4115.

Krizhevsky, A.; Hinton, G.; et al. 2009. Learning multiple layers
of features from tiny images .

Li, B.; Wu, B.; Su, J.; Wang, G.; and Lin, L. 2020. EagleEye: Fast
Sub-net Evaluation for Efficient Neural Network Pruning. arXiv
preprint arXiv:2007.02491 .

Li, H.; Kadav, A.; Durdanovic, I.; Samet, H.; and Graf, H. P. 2017.
Pruning filters for efficient convnets. In /CLR.

Lin, M.; Ji, R.; Wang, Y.; Zhang, Y.; Zhang, B.; Tian, Y.; and Shao,
L. 2020. HRank: Filter Pruning using High-Rank Feature Map. In
CVPR, 1529-1538.

Liu, Z.; Li, J.; Shen, Z.; Huang, G.; Yan, S.; and Zhang, C. 2017.
Learning efficient convolutional networks through network slim-
ming. In ICCV, 2736-2744.

Liu, Z.; Luo, W.; Wu, B.; Yang, X.; Liu, W.; and Cheng, K.-T.

2020. Bi-real net: Binarizing deep network towards real-network
performance. IJCV 128(1): 202-219.

Liu, Z.; Mu, H.; Zhang, X.; Guo, Z.; Yang, X.; Cheng, T. K.-T.; and
Sun, J. 2019a. MetaPruning: Meta Learning for Automatic Neural
Network Channel Pruning. In ICCV, 3296-3305.

Liu, Z.; Sun, M.; Zhou, T.; Huang, G.; and Darrell, T. 2019b. Re-
thinking the value of network pruning. In /CLR.

Luo, J.-H.; and Wu, J. 2020. Autopruner: An end-to-end train-
able filter pruning method for efficient deep model inference. PR
107461.

Molchanov, P; Tyree, S.; Karras, T.; Aila, T.; and Kautz, J. 2016.
Pruning convolutional neural networks for resource efficient infer-
ence. arXiv preprint arXiv:1611.06440 .

Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan,
G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. 2019. Py-
torch: An imperative style, high-performance deep learning library.
In NeurIPS, 8026-8037.

Peng, B.; Tan, W.; Li, Z.; Zhang, S.; Xie, D.; and Pu, S. 2018.
Extreme network compression via filter group approximation. In
ECCV, 300-316.

Redmon, J.; Divvala, S.; Girshick, R.; and Farhadi, A. 2016. You
only look once: Unified, real-time object detection. In CVPR, 779—
788.

Romero, A.; Ballas, N.; Kahou, S. E.; Chassang, A.; Gatta, C.; and
Bengio, Y. 2014. Fitnets: Hints for thin deep nets. arXiv preprint
arXiv:1412.6550 .

Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma,
S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al. 2015.
Imagenet large scale visual recognition challenge. IJCV 115(3):
211-252.

Simonyan, K.; and Zisserman, A. 2015. Very Deep Convolutional
Networks for Large-Scale Image Recognition. In /CLR.

Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; and Wojna, Z.
2016. Rethinking the inception architecture for computer vision.
In CVPR, 2818-2826.

Wu, T.; Li, X.; Song, X.; Sun, W.; Dong, L.; and Li, B. 2017. In-
terpretable r-cnn. arXiv preprint arXiv:1711.05226 2.

Xiao, X.; Wang, Z.; and Rajasekaran, S. 2019. Autoprune: Au-
tomatic network pruning by regularizing auxiliary parameters. In
NeurIPS, 13681-13691.

Yosinski, J.; Clune, J.; Nguyen, A.; Fuchs, T.; and Lipson, H.
2015. Understanding neural networks through deep visualization.
In ICML.

Zeiler, M. D.; and Fergus, R. 2014. Visualizing and understanding
convolutional networks. In ECCV, 818-833. Springer.

Zhang, Q.; Nian Wu, Y.; and Zhu, S.-C. 2018. Interpretable convo-
lutional neural networks. In CVPR, 8827-8836.

Zhang, Y.; Li, K.; Li, K.; Wang, L.; Zhong, B.; and Fu, Y. 2018.
Image super-resolution using very deep residual channel attention
networks. In ECCV, 286-301.

Zhou, B.; Khosla, A.; Lapedriza, A.; Oliva, A.; and Torralba, A.
2015. Object Detectors Emerge in Deep Scene CNNs. In ICLR.

