Face Recognition Based on MTCNN and FaceNet

Rongrong Jin, Hao Li, Jing Pan, Wenxi Ma, and Jingyu Lin

Abstract

Face recognition performance improves rapidly with the re-
cent deep learning technique developing and underlying large
training dataset accumulating. However, face images in the
wild undergo large intra-personal variations, such as poses,
illuminations, occlusions, and low resolutions, which cause
great challenges to face-related applications.This paper ad-
dresses this challenge by proposing a deep learning frame-
work which is based on MTCNN and FaceNet, which can
recover the canonical view of face images. In our project, we
build our own Face Recognition System, which achieves high
accuracy on the LFW benchmark.We use the inherent cor-
relation between detection and calibration to improve their
performance under the multi-task framework of deep cascad-
ing. In particular, we use a three-tiered architecture combined
with a well-designed roll neural network algorithm to detect
faces and roughly locate key points.In the FaceNet method,
it directly learns the mapping from a face image to a com-
pact Euclidean space, where distance directly corresponds
to a measure of facial similarity.Once this space is gener-
ated, face recognition, validation and clustering can be eas-
ily implemented using the standard FaceNet embedding tech-
nique as the feature vector.This approaches dramatically re-
duce the intra-person variances, while maintaining the inter-
person discriminativeness. Maybe there is something not that
perfect during our experiments, but we are going to summa-
rize our experiments and present some challenges lying ahead
in recent face recognition.

1. Introduction

With the rapid development of artificial intelligence in re-
cent years, facial recognition gains more and more attention.
Compared with the traditional card recognition, fingerprint
recognition and iris recognition, face recognition has many
advantages, including but limit to non-contact, high concur-
rency, and user friendly. It has high potential to be used in
government, public facilities, security, e-commerce, retail-
ing, education and many other fields.

Traditional face recognition methods use feature oper-
ators to model face, which is simple and easy to imple-
ment. However, with the further research, these algorithms
can show strong effectiveness in finding linear structures,

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

but when facing potential nonlinear structures, they often
achieve unsatisfactory recognition results.

With the development of deep learning and the introduc-
tion of deep convolutional neural networks, the accuracy and
speed of face recognition have made great strides. However,
the results from different networks and models are very dif-
ferent. Previous face recognition approaches based on deep
networks use a classification layer(Taigman et al. 2014; Tang
2015), they regard face recognition as a classification task.
The number of softmax output is the number of face tags.
Therefore, every time a new sample comes in, the whole
model needs to be retrained. While FaceNet directly trains
its output to be a compact 128-D embedding using a triplet-
based loss function based on LMNN(Schroff, Kalenichenko,
and Philbin 2015). The triplets consist of two matching
face thumbnails and a non-matching face thumbnail and the
loss aims to separate the positive pair. The thumbnails are
tight crops of the face area, no 2D or 3D alignment, other
than scale and translation is performed. The benefit of this
approach is much greater representational efficiency: they
achieve state-of-the-art face recognition performance using
only 128-bytes per face. So we use FaceNet, 128 dimen-
sional vector to represent face, and then recognize face by
calculating vector distance.

In order to achieve better performance, we first use
MTCNN(Zhang et al. 2016) to do face detection. Then use
the result of MTCNN as the input of FaceNet to perform face
recognition. MTCNN network, which is a mainstream target
detection network with high detection accuracy, lightweight
and real-time.

So our face recognition process is mainly divided into two
steps: face detection and face recognition. Firstly, MTCNN
is used for face detection to get accurate face coordinates.
Based on the results of the previous step, FaceNet is used
for face recognition. The processing flow of MTCNN is as
follows: First of all, the test image is continuously resized to
get the image pyramid. Then the image pyramid is input into
P-Net to get a large number of candidates. The candidate
images screened by P-Net are fine tuned by R-Net. After
many candidates are removed by R-Net, the images are input
to O-Net. Finally, the accurate bbox coordinates are output.
Compared with DeepFace, FaceNet retains face alignment,
abandons feature extraction steps, and directly uses CNN to
train end-to-end after face alignment.

2. Related Work
Face detection

Face detection are essential to many face applications, such
as face recognition and facial expression analysis. However,
the large visual variations of faces, such as occlusions, large
pose variations and extreme lightings, impose great chal-
lenges for these tasks in real world applications.

The cascade face detector proposed by Viola and
Jones(Viola and Jones 2004) utilizes Haar-Like features and
AdaBoost to train cascaded classifiers, which achieves good
performance with real-time efficiency. However, quite a few
works(Yang et al. 2014; Pham et al. 2010) indicate that this
kind of detector may degrade significantly in real-world ap-
plications with larger visual variations of human faces even
with more advanced features and classifiers. Besides the
cascade structure(Zhu and Ramanan 2012), introduce de-
formable part models (DPM) for face detection and achieve
remarkable performance. However, they are computation-
ally expensive and may usually require expensive annota-
tion in the training stage. Recently, convolutional neural net-
works (CNNs) achieve remarkable progresses in a variety
of computer vision tasks, such as image classification and
face recognition(Sun, Wang, and Tang 2014). Inspired by
the significant successes of deep learning methods in com-
puter vision tasks, several studies utilize deep CNNs for face
detection. Yang et al.(Yang et al. 2016) train deep convolu-
tion neural networks for facial attribute recognition to ob-
tain high response in face regions which further yield can-
didate windows of faces. However, due to its complex CNN
structure, this approach is time costly in practice. Li et al.(Li
et al. 2015) use cascaded CNNs for face detection, but it
requires bounding box calibration from face detection with
extra computational expense and ignores the inherent corre-
lation between facial landmarks localization and bounding
box regression.

Face recognition

Using deep neural networks to learn effective feature rep-
resentations has become popular in face recognition(Sun,
Wang, and Tang 2013). With better deep network archi-
tectures and supervisory methods, face recognition accu-
racy has been boosted rapidly in recent years. Previous face
recognition approaches based on deep networks use a clas-
sification layer (Taigman et al. 2014) trained over a set of
known face identities and then take an intermediate bottle-
neck layer as a representation used to generalize recognition
beyond the set of identities used in training. The downsides
of this approach are its indirectness and its inefficiency: one
has to hope that the bottleneck representation generalizes
well to new faces; and by using a bottleneck layer the rep-
resentation size per face is usually very large (1000s of di-
mensions). Some recent work has reduced this dimensional-
ity using PCA, but this is a linear transformation that can be
easily learnt in one layer of the network.

3. Method

For accurate face recognition, we train two networks,
MTCNN and FaceNet. MTCNN is used to detect the face

NMS &
Bounding box regression

?

[

Stage 1
P-Net

B NMS &
o meS= Bounding box regression |)

= I F

Stage 2
R-Net —

e NMS &
: = Bounding box regression
-

Stage 3
O-Net
s

Figure 1: Pipeline of MTCNN cascaded framework that in-
cludes three-stage multi-task deep convolutional networks.
Firstly, candidate windows are produced through a fast Pro-
posal Network (P-Net). After that, we refine these candi-
dates in the next stage through a Refinement Network (R-
Net). In the third stage, the Output Network (O-Net) pro-
duces final bounding box.

and get the exact coordinates of the face. Based on the re-
sults of face detection, face recognition is performed using
FaceNet.

FaceNet directly learns a mapping from face images to
a compact Euclidean space where distances directly corre-
spond to a measure of face similarity. Once this space has
been produced, tasks such as face recognition, verification
and clustering can be easily implemented using standard
techniques with FaceNet embeddings as feature vectors.

3.1. MTCNN

MTCNN is a deep cascaded multi-task framework which ex-
ploits the inherent correlation between detection and align-
ment to boost up their performance. The framework of
MTCNN leverages a cascaded architecture with three stages
of carefully designed deep convolutional networks to pre-
dict face and landmark location in a coarse-to-fine manner.
In addition, a new online hard sample mining strategy that
further improves the performance in practice.

3.1.1. Overall Framework

The overall pipeline of MTCNN is shown in Figure. 1. Given
an image, we initially resize it to different scales to build an
image pyramid, which is the input of the following three-
stage cascaded framework:

Stage 1: We exploit a fully convolutional network, called
Proposal Network (P-Net), to obtain the candidate facial
windows and their bounding box regression vectors. Then
candidates are calibrated based on the estimated bound-
ing box regression vectors. After that, we employ non-

- _ PNe RNet .
| Conv: 33 Cony: 3x3 Comnv: 3x3 face | r Conv: 3x3 Comv: 3%3 Cony:2x2 fully I] ace classificati
MP: wu classification | | WP 3x3 MP: 3x3 cotnect face classification |
| IxIx2 T 2 |
| ‘ bounding box | | = = houndipghm
| ru,ru'\lmi | | regression |
input size Sx5x 10 1\3\15 1x1x32 r"lc.H] landmark | | input size 11x11x28 Axdxd8 3x3x64 128 Facial I'.l_ndm:u'k |
| 12x12x3 localization 24x24x3 localization
o '_1-\'0____J|____________“_____|
____________ ONet __ __ _ _
| Conv: 3x3 Cony: 3x3 Cony: 3x3 Conv:2x2 fully i .) L
I MP: 3x3 MP: 3x3 MP: B2 commect [| face classification |
el
| . .| . = I] [| bounding box regression :
| input size 2332332 10x10x64 dxdx64 3xIIR 256 [I Facial landmark localization |
48x48x3

Figure 2: The architecture of P-Net, R-Net, and O-Net. Where “MP” means max pooling and “Conv” means convolution. The

step size in convolution and pooling is 1 and 2, respectively

maximum suppression (NMS) to merge highly overlapped
candidates.

Stage 2: All candidates are fed to another CNN, called
Refine Network (R-Net), which further rejects a large num-
ber of false candidates, performs calibration with bounding
box regression, and conducts NMS.

Stage 3: This stage is similar to the second stage, but in
this stage we aim to identify face regions with more super-
vision. In particular, the network will output five facial land-
marks’ positions.

3.1.2. CNN Architectures

We use 3x3 filter rather than 5x5 filter to reduce the comput-
ing while increase the depth to get better performance. With
these improvements, compared to the previous architecture
in(Li et al. 2015), we can get better performance with less
runtime. The CNN architectures are shown in Figure. 2. We
apply PReLU(He et al. 2015) as nonlinearity activation func-
tion after the convolution and fully connection layers(except
output layers).

3.1.3. Training

We leverage three tasks to train our CNN detectors:
face/non-face classification, bounding box regression, and
facial landmark localization.

1) Face classification: The learning objective is formu-
lated as a two-class classification problem. For each sample
x; , we use the cross-entropy loss:

det

L = —(ylog(p;) + (1 — yi) (1 — log(p'))) (1)

where p; is the probability produced by the network that in-
dicate sample z; being a face. The notation y¢** € {0, 1}
denotes the ground-truth label.

2) Bounding box regression: For each candidate window,
we predict the offset between it and the nearest ground truth.

The learning objective is formulated as a regression prob-
lem, and we employ the Euclidean loss for each sample x;:

L?om — |Aboz _ boa:”2 (2)
where §%°7 is the regression target obtained from the net-
work and y?°? is the ground-truth coordinate.

3) Facial landmark localization: Similar to bounding box
regression task, facial landmark detection is formulated as a
regression problem and we minimize the Euclidean loss:

~landmark

Llanddma'r‘k | il
%

landmark ||2
2

—Y;

3)

where glandmark jg the facial landmark’s coordinates ob-
tained from the network and y!*"4me7% ig the ground-truth
coordinate for the i-th sample.

4) Multi-source training: Since we employ different tasks
in each CNN, there are different types of training images
in the learning process, such as face, non-face, and partially
aligned face. In this case, some of the loss functions (i.e.,
Eq. (1)-(3)) are not used. The overall learning target can be
formulated as:

N
min Z Z ajﬁfo

i—1jeU

“4)

where U = {det, box, landmark}, and N is the number of
training samples and aj denotes on the task importance.

= B

Batch
Figure 3: FaceNet model structure.

Triplet

DEEP ARCHITECTURE [

3.2. FaceNet

FaceNet is adopted in our face recognition truncation.
FaceNet directly trains its output to be a compact 128-D em-
bedding using a tripletbased loss function based on LMNN.
Our triplets consist of two matching face thumbnails and a
non-matching face thumbnail and the loss aims to separate
the positive pair from the negative by a distance margin. The
thumbnails are tight crops of the face area, no 2D or 3D
alignment, other than scale and translation is performed.And
it is based on learning a Euclidean embedding per image us-
ing a deep convolutional network. The network is trained
such that the squared L2 distances in the embedding space
directly correspond to face similarity: faces of the same per-
son have small distances and faces of distinct people have
large distances.

3.2.1 End-to-end learning

Instead of using the traditional softmax method to do classi-
fication learning, FaceNet extracted a certain layer as a fea-
ture to learn a coding method from the image to The Eu-
ropean space, and then do face recognition face verification
and face clustering based on this code.Given the model de-
tails, and treating it as a black box (see Figure 3), the most
important part of our approach lies in the end-to-end learn-
ing of the whole system. To this end we employ the triplet
loss that directly reflects what we want to achieve in face
verification, recognition and clustering. Namely, we strive
for an embedding f(x), from an image x into a feature space
Rd, such that the squared distance between all faces, inde-
pendent of imaging conditions, of the same identity is small,
whereas the squared distance between a pair of face images
from different identities is large.

3.2.2 Triplet Loss

The triplet loss is more suitable for face verification. The
motivation is that the loss from(Sun, Wang, and Tang 2014)
encourages all faces of one identity to be projected onto a
single point in the embedding space. The triplet loss, how-
ever, tries to enforce a margin between each pair of faces
from one person to all other faces. This allows the faces for
one identity to live on a manifold, while still enforcing the
distance and thus discriminability to other identities.

The embedding is represented by f(x) € R?. It em-
beds an image x into a d-dimensional Euclidean space.
Additionally, we constrain this embedding to live on the
d-dimensional hypersphere, i.e.||f(z)z2]] = 1 This loss is
motivated in(Weinberger 2009) in the context of nearest-
neighbor classification. Here we want to ensure that an im-
age z{ (anchor) of a specific person is closer to all other
images z¥ (positive) of the same person than it is to any im-
age z}' (negative) of any other person. This is visualized in
Figure 4.

Thus we want,

If @) = F@D); +a < If @) = f@; O

V(f(2?), f(2), f(x}) € T (6)

where « is a margin that is enforced between positive and
negative pairs. T is the set of all possible triplets in the train-
ing set and has cardinality N. The loss that is being mini-
mized is then L =

N

ST — F@DE — 1) = fEDs +als (D

K3
Generating all possible triplets would result in many
triplets that are easily satisfied. These triplets would not con-
tribute to the training and result in slower convergence, as
they would still be passed through the network.
Negative 7 X\
Anchor g " LeARNING e

*—_ —_ Negative
. o— g

Arnrhar

Figure 4: The Triplet Loss minimizes the distance between
an anchor and a positive, both of which have the same iden-
tity, and maximizes the distance between the anchor and a
negative of a different identity.

3.2.3 Triplet Selection

In order to ensure fast convergence it is crucial to select
triplets that violate the triplet constraint in Eq. (5). This
means that, given z{ , we want to select an xf (hard pos-

itive) such that argmax,» | f(27) — f(z}) H; and similarly

7 (hard negative) such that argmaz,» || f(xf) — f(z}') H;

It is infeasible to compute the argmin and argmax across
the whole training set. Additionally, it might lead to poor
training, as mislabelled and poorly imaged faces would
dominate the hard positives and negatives. There are two ob-
vious choices that avoid this issue:

* Generate triplets offline every n steps, using the most
recent network checkpoint and computing the argmin and
argmax on a subset of the data.

¢ Generate triplets online. This can be done by selecting
the hard positive/negative exemplars from within a mini-
batch.

Instead of picking the hardest positive, we use all an-
chorpositive pairs in a mini-batch while still selecting the
hard negatives. We don’t have a side-by-side comparison
of hard anchor-positive pairs versus all anchor-positive
pairs within a mini-batch, but we found in practice that the
all anchorpositive method was more stable and converged
slightly faster at the beginning of training. Selecting the
hardest negatives can in practice lead to bad local minima
early on in training, specifically it can result in a collapsed
model (i.e. f(x) = 0). In order to mitigate this, it helps to
select z7' such that

1f (@) = FE)Z < If (=2 — FED? @®)

To sum up, Correct triplet selection is crucial for fast con-
vergence. On the one hand we would like to use small

mini-batches as these tend to improve convergence during
Stochastic Gradient Descent (SGD). On the other hand, im-
plementation details make batches of tens to hundreds of ex-
emplars more efficient.

Figure 5: Enhanced image and the original image. The first
line is enhanced by four contrast changes. The second line is
the enhanced image with random operations and the original
image

3.3. Data Augmentation

Large-scale datasets are the prerequisite for the successful
application of deep neural networks. The image augmenta-
tion technology uses a series of random changes to the train-
ing images to generate similar but different training samples,
thereby expanding the size of the training dataset.

Another explanation for image augmentation is that ran-
domly changing the training samples can reduce the model’s
dependence on certain attributes and improve the general-
ization ability of the model. For example, we can crop the
image in different ways to make the objects of interest ap-
pear in different positions, thereby reducing the dependence
of the model on the position of the object. We can also adjust
factors such as contrast ratio to reduce the model’s sensitiv-
ity to brightness.

In order to enhance the robustness of the model when pre-
dicting, we decide to apply image augmentation to datasets
with random operations when training. The methods we use
here are: random fixed ratio cropping, mirror flipping, turn-
ing left 45°, turning right 45°, etc. Some samples see in Fig-
ure 5.

4. Experiments
4.1. MTCNN Backbone networks

Before the experiment, we notice the performance of multi-
ple CNNs might be limited by the following facts:

(1) Some filters in convolution layers lack diversity that
may limit their discriminative ability.

(2) Considering face detection is a challenging binary
classification task, so it may need less numbers of filters
per layer. To this end, we reduce the number of filters and
change the 5x5 filter to 3x3 filter to reduce the comput-
ing while increase the depth to get better performance. With
these improvements, compared to the previous architecture,

we can get better performance with less runtime which are
shown in Table I.

Table 1: COMPARISON OF SPEED AND VALIDATION
ACCURACY OF OUR CNNs AND PREVIOUS CNNs

Group CNN l3300xForward Validation Accuracy
ropagation
Groupl 12-Net 0.043s 93.10%
P-Net 0.040s 93.70%
Group2 24-Net 0.738s 93.80%
R-Net 0.466s 94.50%
Group3 48-Net 3.601s 92.10%
O-Net 1.411s 93.50%

So in the MTCNN part, with the cascade structure, our
method can achieve high speed in joint face detection and
alignment. We compare our method with some classic tech-
niques on GPU and the results are shown in Table II.

Table 2: SPEED COMPARISON OF OUR METHOD AND
OTHER METHODS

Method GPU Speed
Ours NIVIDIA Titan Black 93FPS

Casacade CNN NIVIDIA Titan Black 100FPS

Faceness NIVIDIA Titan Black 20FPS

DP2MFD NIVIDIA Tesla K20 0.285FPS

4.2. FaceNet Deep Architecture

We use three backbone networks, which are ZeilerFergus
with 1x1 convolution and norm, ResNet50, and ResNet101.
Below we use NN1, NN2, and NN3 to replace them re-
spectively as is shown in Table 3. Among them, NN1 uses
model pre-trained on ImageNet, and the other two backbone
networks do not use pre-trained models. In NN1, we adds
1x1xd convolutional layers, between the standard convolu-
tional layers of the ZeilerFergus architecture and results in
a model 22 layers deep. It has a total of 140 million param-
eters and requires around 1.6 billion FLOPS per image. We
retain the original architecture for the other two backbone
networks.

4.3. Performance on LFW

We evaluate our model on LFW using the standard proto-
col for unrestricted, labeled outside data. Nine training splits
are used to select the L2-distance threshold. Classification
(same or different) is then performed on the tenth test split.
The selected optimal threshold is 1.242 for all test splits
except split eighth (1.256). We achieve a classification ac-
curacy of 89.52%=0.18, 90.16%+0.15 and 92.86%+0.12
when using NN1, NN2 and NN3 respectively.

layer size-in size-out layer param | FLPS
kernal

convl 220x220x3 110x110x64 Tx7x3,2 9K 115M
pooll 110x110x64 | 55x55x64 3x3x64,2 0

rnorml 55x55x64 55x55x64 0

conv2a 55x55x64 55x55x64 1x1x64,1 4K 13M
conv2 55x55x64 55x55x192 3x3x64,1 111K 135M
rnorm2 55x55x192 55x55x192 0

pool2 55x55x192 28x28x192 3x3x192,2 0

conv3a 28x28x192 28x28x192 1x1x192,1 37K 29M
conv3 28x28x192 28x28x384 3x3x192,1 664K 521M
pool3 28x28x384 14x14x384 3x3x384,2 0

convéda 14x14x384 14x14x384 1x1x384,1 148K 29M
conv4 14x14x384 14x14x256 3x3x384,1 885K 173M
convSa 14x14x256 14x14x256 1x1x256,1 66K 13M
convs 14x14x256 14x14x256 3x3x256,1 590K 116M
convba 14x14x256 14x14x256 3x3x256,1 66K 13M
convb 14x14x256 14x14x256 3x3x256,1 590K 116M
pool4 14x14x256 TxT7x256 3x3x256,2 0

concat 7x7x256 7x7x256 0

fcl Tx7x256 1x32x128 maxout p=2 103M 103M
fc2 1x32x128 1x32x128 maxout p=2 | 34M 34M
fc7128 1x32x128 1x1x128 524K 0.5M
L2 1x1x128 1x1x128 0

total 140M 1.6B

Table 3: FaceNet Deep Architectures. This table compares
the performance of the different backbones we used on the
LFW dataset. NN1 is ZeilerFergus with 1x1 convolution and
norm, NN2 is ResNet50 , and NN3 is ResNet101. Reported
are the mean validation rate VALs at 10E-3 false accept rate.
The input image size is set to 160x160.

5. Conclusion

In this paper, we have proposed a multi-task cascaded
CNNs based framework combine with a unified embedding
for face detection and recognition. Ex-perimental results
demonstrated that the method linger around the state-of-the-
art methods across challenging AFLW benchmark for face
alignment. The three main contributions for performance
improvement are carefully de-signed cascaded CNNs archi-
tecture, online hard sample mining strategy, and joint face
alignment learning.

What’s more, We use the a unified embedding method
to directly learn an embedding into an Euclidean space for
face verification.This sets it apart from other methods who
use the CNN bottleneck layer, or require additional post-
processing such as concate-nation of multiple models and
PCA, as well as SVM classification. Our end-to-end training
both simplifies the setup and shows that directly optimizing
a loss relevant to the task at hand improves performance.

Three different recognition tricks chosen for their out-
performed results to our work were as follows: end-to-end
learning, triplet loss, and data augmentation; All three com-
bined with one another by convolutional neural networks
that return the main features of detected faces.

Future work will focus on better understanding of the er-
ror cases, further improving the model, and also reducing
model size and reducing CPU requirements. We will also

look into ways of improving the currently extremely long
training times, e.g. variations of our curriculum learning
with smaller batch sizes and offline as well as online pos-
itive and negative mining.

References

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2015. Delving
Deep into Rectifiers: Surpassing Human-Level Performance
on ImageNet Classification. In Proceedings of the IEEE In-
ternational Conference on Computer Vision (ICCV).

Li, H.; Lin, Z.; Shen, X.; Brandt, J.; and Hua, G. 2015. A
convolutional neural network cascade for face detection. In
Computer Vision Pattern Recognition.

Pham, M. T.; Gao, Y.; Hoang, V. D. D.; and Cham, T. J.
2010. Fast polygonal integration and its application in ex-
tending haar-like features to improve object detection. In
Computer Vision and Pattern Recognition.

Schroff, F.; Kalenichenko, D.; and Philbin, J. 2015. FaceNet:
A Unified Embedding for Face Recognition and Clustering.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR).

Sun, Y.; Wang, X.; and Tang, X. 2013. Hybrid Deep Learn-
ing for Face Verification. In IEEE International Conference
on Computer Vision.

Sun, Y.; Wang, X.; and Tang, X. 2014. Deep Learning
Face Representation by Joint Identification- Verification. Ad-
vances in neural information processing systems 27.

Taigman, Y.; Yang, M.; Ranzato, M.; and Wolf, L. 2014.
DeepFace: Closing the Gap to Human-Level Performance
in Face Verification. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR).

Tang, Y. S. W. 2015. Deeply learned face representations
are sparse, selective, and robust. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR).

Viola, P.; and Jones, M. J. 2004. Robust Real-Time Face

Detection. International Journal of Computer Vision 57(2):
137-154.

Weinberger, K. Q. 2009. Distance Metric Learning for Large
Margin Nearest Neighbor Classification. Jmir 10.

Yang, B.; Yan, J.; Lei, Z.; and Li, S. Z. 2014. Aggregate
channel features for multi-view face detection .

Yang, S.; Luo, P;; Loy, C. C.; and Tang, X. 2016. From
Facial Parts Responses to Face Detection: A Deep Learning
Approach. In IEEE International Conference on Computer
Vision.

Zhang, K.; Zhang, Z.; Li, Z.; and Qiao, Y. 2016. Joint Face
Detection and Alignment Using Multitask Cascaded Convo-
lutional Networks. IEEE Signal Processing Letters 23(10):
1499-1503. doi:10.1109/LSP.2016.2603342.

Zhu, X.; and Ramanan, D. 2012. Face Detection, Pose Es-
timation, and Landmark Localization in the Wild. In Com-
puter Vision and Pattern Recognition (CVPR), 2012 IEEE
Conference on.

