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Abstract

Generation methods (especially GANs) are currently being
used for data expansion in different places and have great po-
tential; they can learn to mimic any distribution of data across
any domain: photographs, drawings, music, and prose. Re-
cently, an idea about using GANs to generate pictures of dogs
attracted our interest. In this paper, we first introduce the five
known GANs architectures in detail, and train these five dif-
ferent GAN under the dataset provided by Kaggle, compare
the results of the generated dog images, and put these gener-
ated images into the article. Finally, it is found that the effect
of BigGAN model is the best.

Introduction

With the step-by-step learning and understanding of deep
learning in the classroom, we are more eager to use the
knowledge learned in the classroom to explore more prac-
tical applications of deep learning. After searching through
Kaggle for competitions and datasets, we found a compe-
tition called ”Generative Dog Images”, hoping to combine
the knowledge we learned in the classroom, use the data set
in the competition, and use the Generative Adversarial Net-
work (GAN) [1] to generate dog images.

Compared with common face generation tasks, such as
”CelebFaces Attribute”, a dataset of celebrity face attributes,
the human face is always facing the camera, and there is
little difference in facial features between humans. The data
set used in this article includes 20,580 pictures of 120 kinds
of dogs, and each dog has a large difference in color, size,
and appearance. The biggest challenge is that our target is
not only the face of the dog, but also the body shape of the
dog. This requires our GAN network to have strong learning
and generation capabilities.

In the past few years, GAN has become more and more
popular because of its great potential in simulating data dis-
tribution. Gan was first described in the paper Generative
Adversarial Nets, proposed by Ian Goodfellow and other re-
searchers at the University of Montreal in 2014. GAN under-
stands the world through neural networks and creates new
images like never before. It has two components: the gen-
erator used to create the image and the discriminator used
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to evaluate the image. The job of the generator is to gen-
erate ”fake” images that look like real samples. The job of
the discriminator is to determine whether the image is a real
training image or a fake image. In the training process, the
discriminator first learns the difference between real sam-
ples and fake images. Then the generator uses the currently
trained discriminator to learn and create fake images. Next,
the generated fake images and real samples are input to the
discriminator, making the discriminator a better detective to
identify more difficult real and fake samples. And the gener-
ator keeps trying to make the discriminator unable to judge
the authenticity by generating better and better forgeries.
Continue to iterate this process until the discriminator has
only a 50% probability of judging the authenticity of the fake
image, which means that the fake image from the generator
is indistinguishable from the real sample [1].

Our research focuses on using generative adversarial net-
works to generate images of dogs. We have also tried various
new technologies to improve the quality of the generated im-
ages.

Related works

Generative methods that produce novel samples from high-
dimensional data distributions, such as images, are find-
ing widespread use, for example in image-to-image trans-
lation , and image in painting. Generative models based on
deep learning are common, but GANs are among the most
successful generative models (especially in terms of their
ability to generate realistic high resolution images). GANs
are a framework to produce a model distribution that mim-
ics a given target distribution, and it consists of a genera-
tor that produces the model distribution and a discrimina-
tor that distinguishes the model distribution from the tar-
get. The concept is to consecutively train the model distri-
bution and the discriminator in turn, with the goal of reduc-
ing the difference between the model distribution and the
target distribution measured by the best discriminator possi-
ble at each step of the training. GANs have been applied
to many specific tasks, like text-to-image translation [2],
image-to-image translation [3], and image enhancement [4].
Despite the great successes GANs have achieved, improving
the quality of generated images is still a challenge.There are
a lot of works have been proposed to improve the quality
of images for GANs. Alecet al [4]. proposed deep convolu-



tional generative adversarial networks(DCGANs), that uti-
lizes deep convolutional layers in the generator and learns
a hierarchy of representations from object parts to scenes in
both the generator and discriminator.Mao et al [6]. proposed
the Least Squares Generative Adversarial Networks (LS-
GANs) which adopt the least squares loss function for the
discriminator. LSGANs not only are able to generate higher
quality images than regular GANs, but also LSGANs per-
form more stable during the learning process. The stability
of learning process is another critical issue for GANs. Many
works have been proposed to address this problem. Qi pro-
posed the Loss-Sensitive GAN whose loss function is based
on the assumption that real samples should have smaller
losses than fake samples and proved that this loss function
has non-vanishing gradient almost everywhere [5]. Takeru
et al [11]. proposed a novel weight normalization technique
called spectral normalization to stabilize the training of the
discriminator. We experimentally confirmed that spectrally
normalized GANs (SN-GANs) is capable of generating im-
ages of better or equal quality. Zhang et al.PROGAN pro-
posed by Tero utilizes a deeper architecture and the model
speeds the training up and greatly stabilizes it, and produce
high resolution images. The diversity of image generation
is the most challenging problem for GANs. It is very diffi-
cult for GANs to produce realistic diverse images such as
natural images [11]. In terms of architecture-variant GANs,
only SAGAN [12] and BigGAN [13] address such kind
of issue. Benefiting from self-attention mechanism, CNNs
in SAGAN and BigGAN can process large receptive field
which overcomes the components shitting problems in gen-
erated images. This enables such type of GANs are able to
produce diverse images.

Proposed Method

During the experiment, we found out that BigGAN has
achieved satisfactory performance, so we decided to have
a close look at it.

Increase the model

Simply increase the batch size can achieve a better perfor-
mance and verify this. The BigGAN first increases the batch
size from 256 to 2048 to cover more patterns, which not only
provide more accurate gradients but also reduce the num-
ber of iterations of training. And BigGAN also increases the
channels from 64 to 96 because increasing the number of
channels has achieved great results on both ImageNet and
JFT-300M.

Figure 1: Performance of BigGAN with different Batch size
and channels

It can be seen that when the batch size is increased to 8

times, the IS in the generation performance has increased
by 46%. The article speculates that this because covering
more patterns in each batch provides a better gradient for
generating and discriminating the two networks. Increasing
the batch size will bring about training a better performance
model in less time, but also reduce the stability of the model
in training. In experiments, the number of channels in each
layer of the article has also been increased. When the chan-
nel increases by 50%, it is about twice the number of pa-
rameters in the two models. This will result in a further 21%
increase in IS. Because the increase in model capacity rela-
tive to the complexity of the data set. Interestingly, the arti-
cle found in experiments that blindly increasing the network
depth will not bring better results, but there will be a certain
drop in generation performance.

The conditional label embedded under BatchNorm layer
will bring a lot of parameter increases. BigGAN uses a
shared embedding instead of setting each embedding sep-
arately for one layer. This embedding is linearly projected
to the bias and weight of each layer, which reduces compu-
tational and memory costs and increases the training speed.

BigGAN has made improvements one the embedding of
the prior distribution z. Common GANs directly embed z as
input into the generation network, while BigGAN sends the
noise vector z to multiple layers of generator instead of just
the initial layer. The latent space z can directly affect the
characteristics of different resolution and hierarchical lev-
els. The conditional generation of BigGAN is achieved by
dividing z into a block of each resolution and connecting
each block to the condition vector c, so that the performance
improves about 4% and the training speed increases by 18%
[13]. As shown in the picture, the noise vector z is divided
into multiple blocks by split and then connected with the
condition label to send to each layer of the generation net-
work. For each residual block of the generation network, it
can be further expanded into the right picture structure. The
block of the noise vector z and the condition label are sent to
the BatchNorm layer after concatenate operation under the
residual block.

Truncation technique

In addition, the truncation technique is also used, which is to
cut off the sampling of z by sampling from the prior distri-
bution and setting a threshold, where the values outsides the
range are resampled to fall within the range. This threshold
can be determined based on the IS and FID generated qual-
ity indicators. Through experiments, we can know that by
setting the threshold, the quality of the generation will get
better and better as the threshold decreases. However, due to
the decrease of the threshold and the narrowing of the sam-
pling range, the orientation of generation will become sin-
gular and the generation will be diverse the problem of lack
of diversity. Often IS can reflect the quality of image gener-
ation, while FID will pay more attention to the diversity of
generation.



Figure 2: (a)A typical architectural layout for G; details are
in the following tables. (b)A Residual Block in G. c is con-
catenated with a chunk of z and projected to the BatchNorm
gains and biases.

Figure 3: The effects of increasing truncation. From left to
right, threshold = 2, 1.5, 1, 0.5, 0.04.

Figure 4: Saturation artifacts from applying truncation to a
poorly conditioned model.

As the cutoff threshold decreases, the quality of the gen-
eration is improving, but the generation is also approach-
ing simplification. Therefore, according to the generation
requirements of the experiment, we need to weigh quality
and diversity. Often the decline of the threshold will cause
IS to rise all the way, but FID will get better first and then
get worse all the way. There are also some larger models that
are not suitable for truncation, which will produce saturation
artifacts when embedding truncation noise. As shown in Fig-
ure (b) above, in order to counteract this situation, the arti-
cle enforces truncation by adjusting the generator to smooth
Adaptability so that the entire space of z will be mapped to
good output samples. To this end, the article adopts orthogo-
nal regularization, which directly enforces the orthogonality
condition.

R�(W ) = �||WTW � I||2F
The original orthogonal regularization constraint is too

strong, because it restricts the norm of the matrix column
vector to 1. Therefore, a variant is used.

R�(W ) = �||WTW � (1� I)||2F

Training on large-scale data

In exploring the stability of the model, the article monitors a
series of weights, gradients, and loss statistics during train-
ing to find indicators that may indicate the beginning of
training collapse. The experiment found that the first three
singular values of each weight matrix �0, �1, �2 are the
most useful. In order to solve the training collapse on gener-
ator, the singular value �0 is adjusted appropriately to offset
the effect of spectral explosion. First, the maximum singu-
lar value of each weight is directly regularized. Second, use
partial singular value decomposition to truncate the largest
eigenvalue.

W = W �max(0,�0 � �clamp)v0u
T
0

Like the generator G, the behavior is revealed by analyz-
ing the spectrum of the weight matrix of the discriminator
D, and then the training process is stabilized by adding some
additional constraints. By observing the �0 of D, it is found
that, unlike G, the spectrum of D has a lot of noise. The sin-
gular value will grow throughout the training process, and
will jump when it crashes instead of exploding. The follow-
ing penalty terms are used in the experiment to explicitly
regularize the change of the Jacobian matrix of D.

R1 :=
�

2
EpD(x)[||5D(x)||2F ]

Experiment

Our task is to generate pictures of dogs with about 20K dif-
ferent pictures of dogs given. The data we used is Stanford
Dogs Dataset built from ImageNet. But, one of 20580 im-
ages doesn’t include, so we have 20579, which consist of
120 dog breeds, from 148 to 252 photos per breed, with 75%
quantile equal to 186 photos per breed.The interesting data
facts we have found are:

• There are pictures with more than one dog (even with 3
dogs);

• There are pictures with the dog (-s) and person (people);

• There are pictures with more than one person (even with
4 people);

• There are pictures where dogs occupy less than 1/5 of the
picture;

• There are pictures with text (magazine covers, from dog
shows, memes and pictures with text);

• Even wild predators included, e.g. African wild dog or
Dingo, but not wolves.



Let us visualize 9 random pictures of a given dataset.

Figure 5: 9 random pictures of the given dataset

Evaluation

The models we used are evaluated on MiFID
(Memorization-informed Fréchet Inception Distance),
which is a modification from Fréchet Inception Distance
(FID). The smaller MiFID is, the better your generated im-
ages are. FID and Inception Score (IS) are both commonly
used in recent publications as the standard for evaluation
methods of GANs.In FID, we use the Inception network to
extract features from an intermediate layer. Then we model
the data distribution for these features using a multivariate
Gaussian distribution with mean µ and covariance ⌃. The
FID between the real images r and generated images g is
computed as:

FID = ||µr � µg||2 + Tr(⌃r + ⌃g � 2(⌃r⌃g)
1
2 )

where Tr sums up all the diagonal elements. FID is calcu-
lated by computing the Fréchet distance between two Gaus-
sians fitted to feature representations of the Inception net-
work.

In addition to FID, we take training sample memoriza-
tion into account. The memorization distance is defined as
the minimum cosine distance of all training samples in the
feature space, averaged across all user generated image sam-
ples. This distance is thresholded, and it’s assigned to 1.0 if
the distance exceeds a pre-defined epsilon.

In mathematical form:

dij = 1� cos(fgi, frj) = 1� fgi · frj
|fgi||frj |

where fg and fr represent the generated/real images in fea-
ture space (defined in pre-trained networks); and fgi and frj
represent the ith and jth vectors of fg and fr, respectively.

d =
1

N

X

j

min
j

dij

defines the minimum distance of a certain generated image
(i) across all real images ((j), then averaged across all the
generated images.

dthr =

⇢
d, if d < ✏
1, otherwise

defines the threshold of the weight only applies when the (d)
is below a certain empirically determined threshold. Finally,
this memorization term is applied to the FID:

MiFID = FID · 1

dthr

GAN experiments Firstly, we used vanilla GAN to train
and generate the dog pictures. But the generative images was
so ambiguous and nauseating that we barely could tell there
is dog on the picture. The generative dog images shown
in figure 6. In order to generate the adorable puppy, we
tried six different variant GAN: CGAN, DCGAN, RalS-
GAN, WGAN, and BIGGAN. Alongside using MiFID to
test these models, we also present the generated dog images
from these models to show how good these models are. The
dog images that generated by these models are shown in the
following figures:

Figure 6: Generative dog images using vanilla GAN

Figure 7: Generative dog images using Conditional GAN



Figure 8: Generative dog images using Deep Convolutional
GAN

Figure 9: Generative dog images using RaLSGAN

Figure 10: Generative dog images using WGAN

Figure 11: Generative dog images using BIGGAN

In the course of the experiment, we found that Conditional
GAN can also generate pictures of endearing dogs, however,
the resolution of the generated pictures is not enough, and
the pictures generated by other network locks have very un-
satisfied effects that cannot be called Dogs. We think this is
related to the complexity of the data set used. The follow-
ing table 1 shows how we use MiFID to evaluate the perfor-
mance of each model. As you can see BigGAN can reach the
82.30464, which is the smallest MiFID among these models.

DATASET METHOD MiFID

Stanford Dogs Dataset

GAN 136.42730
CGAN 113.78694
DCGAN 187.42699
RaLSGAN 143.65150
WGAN 146.48429
BigGAN 82.30464

Table 1: Use MiFID to evaluate the performance of each
model

We also encounter mode collapse problem [14] when we
tried to train our BigGAN longer. As you can notice that
the dog images in figure12 are qualified when epoch = 70.
However, the mode collapse problem raised when epoch =
120.

Figure 12: The generative dog images when epoch = 70.

Figure 13: The mode collapse problem raised when epoch =
120.

Conclusion

In this paper, we used 6 kinds of gan networks to try to com-
plete our task of ”generating dog images”, and got different
experimental results. The biggan network is emphatically in-
troduced because its performance in our experiments is par-
ticularly prominent, which is also consistent with the exist-
ing research results. However, the capabilities of the gan net-
work are not limited to this. In the future, we will also try to
use the gan network to complete more challenges and try to
improve it.
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