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Abstract

Being a deep learning method, the application of Graph Neu-
ral Network(GNN) in recommendation systems brings about
new opportunities and challenges to this domain. The archi-
tecture of GNN is well suitable for data in graph format.
In this project, we dive deep into the Graph Convolutional
Matrix Completion(GCMC) model and analysis its limita-
tion in message passing step. Then we introduce the atten-
tion mechanism of Graph Attention Network(GAT) to the
graph encoder of GCMC, to further utilize the information
of node’s neighborhood. We propose a modified model, i.e.
Graph Convolutional with Graph Attention Network for Ma-
trix Completion, GCGAT for brevity. Experiment conducted
on MovieLens-100K dataset show that GCGAT outperforms
the performance of GCMC in RMSE metrics. Our code is
available at https://github.com/BitHub0OO/GCGAT.

1 Introduction

With the rapid growth of information on the Internet, recom-
mendation systems become increasingly important for help-
ing users alleviate information overload. The recommenda-
tion system’s success makes it prevalent in many applica-
tions, including E-commerce, online advertisement and me-
dia monitoring. The core of a recommendation system is to
predict how likely a user will interact with an item based on
the historical interactions, e.g., click, comment, rate, browse,
among other forms of interactions.

Recommendation systems collect and make use of vari-
ous sources of information. It manages to retrieve a balance
among factors like accuracy, disparity, and stability, which
is usually referred to as the exploration or exploitation chal-
lenge(Bobadilla et al. 2013). Typical traditional methods in-
clude Collaborative Filtering and Content-based Filtering.
These two methods are based on how us humans made the
decision that we rely mainly on our own experience. It is
widely believed that our friends’ or neighbors’ behavior also
plays an essential role in our decision-making process.

Collaborative Filtering assumes continuity in our action.
If we preferred an item, it is most likely that we will main-
tain this interest in the future. Given a rating profile, the
algorithm locate peer users/items with a similar rating his-
tory compared to the current user/item and then generate the
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recommendation. From the above process, we can see that
collaborative filtering algorithm does not require an under-
standing of the item recommended, thus makes it easy to
apply in many applications.

Analogous to recommendation systems, deep learning has
much impressed the world as well. The past few decades
have witnessed the tremendous success of deep learning in
various applications, including natural language processing
and computer vision. Both academia and industry are mak-
ing an effort to apply deep learning to a broader range of
applications since it is capable of solving many complex
tasks while providing state-of-the-art results. Therefore, the
introduction of deep learning in the research of recommen-
dation systems is an inevitable trend. In fact, it has revolu-
tionized the recommendation architectures and overcomes
obstacles faced by conventional models as well as achieving
a high-quality result(Zhang et al. 2019). The non-linearity
of deep learning makes it capable of capturing complicated
and high-order user-item relationships.

Graph Neural Networks(GNN), a method based on deep
learning that operates on graph domain, has received more
and more attention recently. Due to its high interpretabil-
ity and promising result, it has been widely used for graph
analysis. Graph is a kind of data structure that models enti-
ties as well as their relationship, using the notation of nodes
and edges, respectively. It is widely used in recommenda-
tion systems with nodes referring to user/item and edges re-
ferred to interactions. Many variants of GNN have been pro-
posed, such as Graph Convolutional Network(GCN), Graph
Attention Network(GAT), and Gated Graph Neural Net-
work(GGNN). In this paper, we will mainly focus on the
topic of GCN regarding its methodology and application,
specifically in recommendation systems.

2 Related Work

In this section, we will review some related work on graph
neural networks and their corresponding application in rec-
ommendation systems.

Graph Convolutional Network. Graph Convolutional
Network(GCN), proposed in 2017, is a semi-supervised
learning algorithm for graph-structured data(Kipf and
Welling 2017). GCN extends the idea of Convolutional
Neural Network(CNN)(Krizhevsky, Sutskever, and Hinton



2012) to extract features from non-euclidean structure data,
which conventional CNN architecture could not handle.
CNN uses kernel to calculate the weighted sum of the cen-
tral pixel and adjacent pixels of a picture to form a feature
map so as to achieve spatial feature extraction. The key is
to determine the coefficients of the convolutional kernel by
iterative optimization according to the loss function. GCN
adopts spectral graph theory(Chung et al. 1997) to realize
the convolution operation on graph.

More specifically, in order to represent the non-euclidean
graph data, the common way is to use an adjacency
matrixA € R™ ", where n is the number of nodes in the
graph, to represent the structure information in the graph.
Additionally, a feature description z; for every node 7 sum-
marized in a feature matrix H € R"*¥ where F is the num-
ber of input features. The goal of GCN is to learn a function
of signals/features on a graph. The model takes the adja-
cency matrix A and feature matrix H as input, and produces
a node-level output H' € R"* ¥ ', where F” is the number of
output features per node.

With the definition above, every neural network layer can
be written as a non-linear function

HHD = f(HD, A), (1)

with H® = X H@) = H/, L being the number of lay-
ers. So, the question is how to choose a proper function f().
In GCN, the author propose and simple but effective way of
choosing function f():

HD = fHO,A) = oD 2ADTHOWD), (2)

with A = A + I, where I is the identity matrix and D is the
diagonal degree matrix of A The normalization step A =
D-2AD"z is to prevent the scale of the feature vectors
from being changed after the multiplication with adjacency
matrix A.

The paper uses a two-layer GCN for semi-supervised
node classification and achieves quite a good result com-
pared to baseline models.The architecture can be expressed
as followed:

Z = softmax(A’ReLU(A’XW)W3), 3)

with Z € R"*¢ being the predicted labels for nodes in the
graph, where c is the class.

Despite the success in this task, deeper GCN actually has
a worse performance unlike CNN where deeper architec-
ture can result in better performance. In fact, over-fitting and
over-smoothing are two main obstacles of developing deep
GCN for downstream tasks. DroEdge(Rong et al. 2020) and
GCNII(Chen et al. 2020) are two methods proposed to re-
lieve these two problems.

DropEdge. DropEdge(Rong et al. 2020) is a novel and
flexible technique to alleviate the over-fitting and over-
smoothing issues. Over-fitting weakens the generalization
ability on small dataset, while over-smoothing impedes
model training by isolating output representations from the
input features with the increase in network depth. The
core of DropEdge is to randomly removes a certain num-
ber of edges from the input graph at each training epoch.

DropEdge technique resembles to the commonly adopted
Dropout technique when training deep neural network,
where Dropout randomly drop units (along with their con-
nections) from the neural network during training. The au-
thors provide theoretical analysis as well as empirical study
on servel datasets.

Simple and Deep Graph Convolutional Networks. GC-
NII(Chen et al. 2020) services as an extenison of the vanilla
GCN model with two modifications: Initial residual con-
nection and Identity mapping. It explains the limitation of
the vanilla GCN via spectral graph theory(Wu et al. 2019a).
The vanilla GCN model actually simulates a polynomial fil-

ter (leio 9;L!) of order K with fixed coefficient 6 on the
graph spectral domain. It’s the fixed coefficient that limits
the expressive power of a multi-layer GCN model and thus
leads to over-smoothing. The two modifications mentioned
above enable GCN to express a K order polynomial filter
with arbitrary coefficients.

Inherited from the definition above, the [ — th layer of
GCNII can be defined as

HHD — o(((l—al)A’H(Z)+alH(0)> ((1—ﬁ1)1n+ﬁzw<”)),

“)
Compared to the vanilla GCN model, GCNII combines the
l—th representation with an initial residual connection to the
first layer H(®), This combination simulates the skip connec-
tion in ResNet(He et al. 2016). Besides, it adds an identity
mapping I, to the [ — th weight matrix W) It is shown
in (Hardt and Ma 2017) that a linear ResNet of the form
HHD = HO(WO 4 1,)) allows the model to put strong
regularization on W' to avoid over-fitting. It’s more benefi-
cial when the training data is limited.

Graph Attention Network. Graph Attention Net-
work(GAT)(Velickovic et al. 2018) is an extension of GCN.
It introduces the attention mechanism(Vaswani et al. 2017)
to implicitly specify different weights to different nodes in a
neighborhood without knowing the graph structure upfront.
Differ from using elements of the adjacency matrix for the
weighted sum of all the feature vectors of all neighboring
nodes as GCN does. Therefore, it is readily applicable to
inductive as well as transductive problems.

Back to GCN, the input of the model consists of adjacency

. — —
matrix A and set of node features (hy,ha,...,hy), hi €
R, GCN layer will calculate a new set of features based
on gr%ph structure and characteristics of nodes, defined as

7 N e RF
(hy, hb, ..., k1), bl € RY . GCN layer first performs a fea-
ture transformation, represented by feature matrix \X which
transforms the feature vectors linearly by E) = Wh;. As for

the transformed feature vector, a common way is to combine
them so as to utilize the neighborhood information.

hy' = o< 3 aijg—;>, 5)
JEN;
with «;; represents the importance of node j’s feature to
node ¢’s feature, or a kind of weights in other words.
The main contribution of GAT is to implicitly calcu-
late the importance coefficient «;; by attention mechanism.



Moreover, the order-preserving property of GAT explains
its effectiveness. This property is proposed and proved by
Deeplnf(Qiu et al. 2018).

Order-preserving property. Given that (i, ), (i, k), (¢, j)
and (i',k) represents either edges or self-loops, and
aij, Qik, Qi §, Qi) are associated attention coefficients. Sat-
isfied that if Qi > Ak then Qirj > Qirk.

PROOF. The attention coefficient in GAT is defined as
a;; = softmax(e;;), where

ei; = LeakyReLU(p” Wh; + ¢" Wh;), (6)

Due to the strict monotonicity of softmax and LeakyReLU,
condition a;; > a; leads to qTWhj > qTWhy,.

The above property indicates that, even though each node
in the graph only focus on its neighbors in GAT, the calcu-
lated coefficients manage to maintain a global ranking.

Knowledge Graph Attention Network. Knowledge
Graph Attention Network(KGAT)(Wang et al. 2019a)
focuses on a different scenario: a hybrid structure of
knowledge graph and user-item graph, where connected
nodes have one or multiple linked attributes. The high-order
connectivities captured by KGAT is shown to be useful for a
successful recommendation. More specifically, KGAT first
uses TransR(Lin et al. 2015) for the embedding of entities
and relations in the graph. Then it extends the idea of GCN
and GAT for recursively propagate embeddings along with
high-order connectivity and reveal the importance of such
connectivity;

Neural Graph Collaborative Filtering. Neural Graph
Collaborative Filtering(NGCF)(Wang et al. 2019b) is a new
recommendation framework that combines collaborative fil-
tering with the neural network. The main difference lies in
the embedding component, where the traditional CF model
using matrix factorization to embed user/item ID as a vec-
tor(Koren, Bell, and Volinsky 2009), while the NGCF model
further integrates the deep representations learned from rich
side information of item(Wang, Wang, and Yeung 2015).
Moreover, it replaces the traditional interaction function of
inner product with non-linear neural networks.

Session-Based Graph Neural Networks. Aside from
static information like ratings, dynamic information like
session is also commonly seen in a recommendation sys-
tem. A session can be regarded as a transaction with mul-
tiple purchased items in one shopping event(Wang, Cao,
and Wang 2019). It can provide additional information on
a user’s short-term transactional patterns. The proposed
model, called SR-GNN(Wu et al. 2019b), inherits the main
idea of Long-Short Term Memory(Hochreiter and Schmid-
huber 1997) and Gated Graph Neural Network. The corre-
sponding vector for each session can be obtained through a
gated graph neural network. The next step is to combine the
global preference and current interest of each session with
an attention mechanism for representation.

3 Proposed Solution

In this section, we will give a illustration on how to use the
idea of Graph Convolutional Matrix Completion(GCMC) or
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Figure 1: Notation and construction of bipartite graph

user-item recommendation task in MovieLens-100K dataset.
Moreover, we analysis the limitation of GCMC and propose
our modified model GCGAT.

GCMC views the recommendation problem as a link pre-
diction problem on a bipartite graph. Take dataset Movielens
as example, the graph contains two types of nodes, one set
consists of user nodes and the other set consists of movie
nodes. There are two stages in the GCMC model. First, a
graph convolutional encoder is built to embed the represen-
tation of users and movies, using both a bipartite graph and
the node features. Then, the latent features are passed to a
bilinear decoder, which forms the predicting matrix.

Notation

In this part, we introduce necessary notations and defini-
tions and then formulate the problem of matrix completion
in user-item recommendation task.

A generic matrix completion problem regarding the rec-
ommender systems is to fill the unknown part of the rating
matrix M € RMXNo where N, is the number of users
and N, the number of items. The non-empty element in M
should be a rating r € R. In our experiment setting, the rat-
ing for MovieLens-100K dataset is R = {1,2,3,4,5}. The
region for all known elements in the rating matrix is denoted
as the set Q := {(4, j)|(M);; € R}

Constructing Bipartite Graph

The relationship between user and item can be directly indi-
cated by a bipartite graph G = (U UV, E, R), where U :=
{u;} N is the set of user nodes, V := {v;})\, is the set of
item nodes, and E := {(u;,v;,r)lu; € U,v; € V,r € R}
represents the set of nodes. The weight of the edge (u;, v;,7)
is 1 only if (M); ; = r, meaning that user u; gives item v; a
rating of r. Therefore, for a specific rating » € R, we denote
the adjacency matrix as M, € {0,1}"«*Nv The demon-
stration of the graph construction is shown in Fig 1.

GCGAT

Our model Graph Convolution with Graph Attention Net-
work for Matrix Completion(GCGAT) is mainly based
on the work of Graph Convolutional Matrix Comple-
tion(GCMC) (van den Berg, Kipf, and Welling 2017) while
introducing the key idea of Graph Attention Network(GAT)
(Velickovic et al. 2018). It mainly consists of: 1) a graph
encoder that embeds the user and item features by mes-
sage passing in the bipartite graph; 2) a bilinear decoder
that utilizes the embedded features to compute the predicted
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ratings. Our main contribution is introducing the attention
mechanism to the message passing step of the graph en-
coder. The model architecture is shown in Fig 2.

Generally, a graph encoder Z = f(X, A) takes a feature
matrix X € RV*P and a adjacency matrix A € RV*¥
as inputs, and ouputs an node embedding matrix H =
[h1,...,hx]T. The decoder predicts the missing entries in
the adjacency matrix based on the pairs of node embeddings
(hi, h;) it receives.

Graph Convolutional Encoder

The bipartite graph categories the user-item information
into serveral classes regarding each specific value of rating,
which allows us to encode the information through serveral
channels. Suppose user ¢ gives item j a rating of r, i.e. edge
(u;,v;,7) is connected. Then, the message from item j to
user ¢ is formulated in the following form:

T
mvj—>u,;,r = Wr Zj, (7)

where z; is the feature vector for the item j and W,. is the
linear transformation matrix for the rating level r. This for-
mulation of message passing aims to describe the user by
using the feature from the items once they are connected in
the bipartite graph. Similarly, the message can also be passed
from user to items.

At the specific level of rating, we can gather the informa-
tion from all the items which connect ot user ¢ in the bipar-
tite graph. The original operation in GCMC is to average the
messages:

1
Musr = o Y Moy suir ®)

Vil jén7,

with V; ,. represents the set of neighbors of user ¢ at the rat-
ing level r.

Once we acquire the message from each specific level of
rating, we can accumulate them by stacking into a single
vector representation, as proposed in GCMC:

huq‘, = U(Concat({mui,T}TER))v 9

where concat() is a matrix concatenation function and o () is
the non-linear activation function. The acquired vector h,,,
can be regarded as user ¢’s hidden feature. Analogously, the
hidden representation of item j can be calculated inversely.

Limitation
However, we analysis that the strategy adopted by GCMC

has some limitations. From another perspective, the averag-
ing accumulation used by GCMC can be seen as a weighted

sum of neighbor items’ features, where weights for each
neighbor item is assigned with the same value. It means
that every item in user ¢’s neighborhood has the same im-
portance. Apparently this observation contradicts with the
reality, where we have preference for certain item while oth-
€rs not.

Moreover, after acquiring the message from all rating lev-
els, the stacking operation adopted by GCMc does not utilize
the neighborhood of user or item as well. Consider the movie
rating scenario, our preference for movies will be similar to
people with the same ratings on the same movies. Regarding
to the neighbor information of both user and item, GCMC
simply recognizes which user/item belongs to the neighbor-
hood without fully utilizing them.

Regarding to the limitation of GCMC we analysis above,
we propose to introduce the idea of attention mechanism to
indicate the importance of node j’s features to node <.

Attention Mechanism

As we introduced, GAT implicitly specifies different
weights to different nodes in a neighborhood. Here, we fol-
low the same idea using a single-layer feedforward neural
network parametrized by a weight vector @ € R2¥, which
represents the attention mechanism a : R¥ x RF" — R.

More specifically, we first calculate the attention coeffi-
cient e;; based on node’s features, take user node as exam-
ple:

ei]‘ = a(Whui, WhuJ ), (10)
with weight matrix W being the shared linear transforma-
tion.

This formulation allows every node to attend on every
other node, resulting in dropping all the structure informa-
tion in the graph. Follow the modification of GAT, we inject
the graph structure by only calculating e;; for nodes j € V;,
where NN; is node ¢’s neighborhood. In order to fairly com-
pare the coefficients across different nodes, a normalization
step is adopted. Choosing LeakyReLU as non-linear activa-
tion function, the coefficient for measuring the importance
of node j’s feautres to node ¢ is defined as:

_ exp(e;;)
ZkeNi exp(eik)
~ exp(LeakyReLU(@ T [Wh,,||[Wh,,]))
"~ Yken, exp(LeakyReLU(@ T [Why, |[Why,]))’
(1D
We then combine the attention coefficient with hidden
representation of user/item node, to aggregate the informa-
tion from its neighborhood with weights being the attention
coefficient acquired:

Wy, =Y ijh,, (12)

JEN;

i = softmax; (e;;)

In this way, the hidden vector is able to encode and further
utilize the imformation of its neighborhood.

To arrive at the final embedding of user node i, we trans-
form the intermediate output h,,, as follows:

Ru; = O'(th;”), (13)
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Figure 3: The attention mechanism

The item embedding z,, can be computed analogously using
the same weights matrix W,.

Bilinear Decoder

We define the final embedding for user and item as U and
V respectively. The bilinear decoder is to produce the con-
fidence map at each level of rating. For the (7, j) position
in the confidence map P,. € [0, 1]«*Nv it should indicate
the probability that the user ¢ gives the item j a rating of r,
which can be predicted by the embedded feature via a soft-
max function:

exp(uiTQrvj)
Ysenexp(uf Qsv))’

where Q,. is a trainable parameter matrix, u} is the ith row
of U and v] being the jth row of V.

Utilizing this confidence map can make the rating predic-
tions, simply as:

(Pr)iy = (14)

M=) 1P, (15)
r€R
Loss Function

During model traning, we minimize the following negative
log likehood of the predicted rating matrix M:

R
L=— Z ZI[Mij:r]logp(M:r), (16)

(ij)eQr=1

with I[z = y] = 1 when 2 = y and zero otherwise. Here, we
follow the setting of GCMC to only optimize over observerd
ratings.

4 Experiment

We compare our modified model GCGAT with original
GCMC model. We evalute our model on a common bench-
mark dataset: MovieLens-100K!. The dataset consist of user

"https://grouplens.org/datasets/movielens/

Table 1: Dataset statistics

Dataset Users Items Ratings Rating Levels

ML-100K 943 1682 100,000 1,2,...,5

Table 2: Experiment Result

Model RMSE
GCMC 0.983
GCGAT  0.965

ratings for items (such as movies) and optionally incorpo-
rate additional user/item information in the form of features.
Dataset statistics are summarized in Table 1.

In our experiment setting, we randomly split the
MovieLens-100K dataset by a 4:1 ratio, into training and
test data. We use RMSE as the evaluation metirc for the task
of matrix completion. It can be calculated by:

Lo = | 3 (M- 00,) a7

(i,5)€02

Figure 4: Loss and RMSE curve of two model

The loss curve and rmse curve during training are shown
in Fig 4. The result is shown in Table 2. As indicated from
the result, our idea of introducing the attention mechanism
to the graph encoder works, it improves the model’s perfor-
mance since the model arrives at a lower value of RMSE.
Lower value of RMSE indicates that the model now has a
slightly better ability to predict whether and how much a
user will in favor of a item.

5 Conclusion

In this project, we inherit the idea from GCMC(van den
Berg, Kipf, and Welling 2017), that uses the graph convo-
lutional encoder and the bilinear decoder to solve the ma-
trix completion problem. Our main contribution is to intro-
duce the attention mechanism to the messing passing step
of graph encoder. The attention mechanism is used to im-
plicitly compute the importance of node j’s feature to node
1’s feature. We use the calculated coefficient as weights to
aggregate the information of node ¢’s neighborhood. The ex-
periment has shown that our model can reach a lower RMSE
of 0.965.
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