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Abstract

Multi-label Recognition is a major challenge in the field
of computer vision. Its task is to recognize the set of
label objects contained in an image. The key to this
problem is how to build the dependency between the
labels. The early method is to use Recurrent Neural
Networks(RNNs) and Long Short-Term Memory net-
works(LSTMs) to capture the dependency between the
two labels, but this method is too complicated. The cur-
rent popular method is to use graph neural networks
to model the relationship between the labels, such as
Graph Convolutional Networks(GCNs) or Hypergraph
Neural Networks(HGNNs). This paper uses a relatively
simple GCN to model the labels of anime illustrations,
where each label is regarded as a vertex in the graph,
and constructe a directed graph. And then capture the
dependencies between labels from the graph. The ex-
perimental results show that applying this method to our
anime illustration dataset, we obtaine better mAP then
the vanilla DenseNet and ResNet.

Introduction
Multi-Label Recognition is the most basic task in computer
vision. Its goal is to recognize a set of labels contained in
an image. Different from single-label image recognition, the
multi-label task is more challenging, that is, how to asso-
ciate multiple labels with image regions and the correlation
between multiple labels, as shown in 1.

Regarding the problem of how to associate multiple la-
bels with image regions, some works (Wei et al. 2015; Yang
et al. 2016) use object detection technology to extract the
corresponding image regions and enhance the feature learn-
ing of the regions. These tasks usually require additional ob-
ject boundary annotations in training, which will limit the
scope of practical applications. Other work(Yan et al. 2019;
Zhu et al. 2017) uses the Attention Mechanism(Xu et al.
2015) to capture the association between image regions and
labels under image-level supervision. However, this does not
consider the dependencies between different labels (Chen et
al. 2019b).

*Work done during the deep learning course.
Copyright © 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

As for how to determine the correlation between mul-
tiple labels, a popular method is to use Recurrent Neu-
ral Networks(RNNs) or Long Short-Term Memory net-
works(LSTMs) to construct the correlation between labels
(Chen et al. 2019a). Although it has achieved good perfor-
mance, its problem is that it can only model sequential la-
bel relationships (Chen et al. 2019c). Another method is
to capture the dependency of two labels based on a prob-
ability graph model, such as ChowLiu Tree(Chow and Liu
1968), PLEM(Li, Zhao, and Guo 2014), etc. These meth-
ods use label symbiosis pairs to construct a maximum span-
ning tree structure for Multi-Label Image Classification
Tasks(MLIC). However, the probability graph model has a
high computational complexity.

By modeling the dependence of labels, the recognition ac-
curacy of neural networks can be effectively improved. In re-
cent years, Graph Neural Networks(GNNs) have been intro-
duced into the task of multi-label recognition. A simple and
effective way is use Graph Convolutional Networks(GCNs)
to extract the correlation between nodes and neighbor nodes,
then calculate it with the image features extracted by CNNs
model to enhance the information transmission of the system
of labels and feature learning(Chen et al. 2019c). However,
this method only captures the dependency relationship be-
tween the two labels, and cannot model high-order semantic
dependencies(Wu et al. 2020).

Some works have used the hypergraph structure to model
the high-order relationships from data(Tang et al. 2019).
These methods treat each sample as a vertex and itera-
tively optimize each variable by fixing other variables. In
the task of multi-label image recognition, by treating each
label as a vertex, and integrating the adaptive hypergraph
into HGNN(Feng et al. 2019) for end-to-end training, using
label embeddings to use any number of hyperedges directly
to initialize the adaptive hypergraph, which can automati-
cally model high-order semantic relations. This method not
only avoids the rigidity of the correlation graph manually,
but also avoids the statistical bias caused by the imbalance
of the labels in the training set(Wu et al. 2020).

In this paper, we compared the graph convolutional net-
works and the hypergraph neural networks. The hypergraph
neural network model is too complex, difficult to implement
and train, and the effect achieved is similar to the graph con-
volutional networks in our dataset. Therefore, we choose



Figure 1: We can discover the relationship between labels
by constructing a directed graph. Where LabelA → LabelB
means that when LabelA appears, LabelB is likely to ap-
pear. in this figure, we can see that in the anime illustration
dataset, some label pairs actually have a strong correlation,
such as ”uniforms” and ”students”, ”swimsuit” and ”breast”.

simple and effective graph convolutional networks to cap-
ture the correlation between labels. The model learn the in-
terdependent object classifiers from the previous label rep-
resentation through the GCN mapping function, and then
apply the generated object classifiers to the image features
extracted by another CNN model to finish the task of multi-
Label image recognition. And we apply the model to the
anime illustration dataset we built, and get better experimen-
tal results.

In this paper, we do the following work:

• By writing a Python script, grabbing the anime illus-
trations on the Pixiv and categorizing them by labels,
constructing our own dataset(currently there are about
200,000 illustrations and nearly 2,00 labels).

• Use GCN model to model the correlation between la-
bels, and then combine the image features extracted by
the CNN model to achieve multi-label recognition.

• Evaluate our model on the dataset we constructed and
compare it with other traditional CNN models.

Related Works
With the rapid development of deep learning, the perfor-
mance of image classification is getting better and better,
and it has already reached the limit in single-label image
classification. In order to extend the convolutional neural
network for multi-label recognition of images, many efforts
have been made.

One of the most direct methods of multi-label recognition
is to train an independent two-classifier for each label, but
this method does not consider the relationship between the
labels. When the number of labels increases, the number of
predicted labels will increase exponentially.

Therefore, many researchers try to capture the dependen-
cies in labels to improve the recognition accuracy of neural
networks. (Wang et al. 2016) used Recurrent Neural Net-
works(RNNs) to convert labels into embedded label vectors,

so that the correlation between labels can be obtained. In ad-
dition, the attention mechanism has also been widely used to
find correlations in multi-label recognition tasks. (Wang et
al. 2017) introduced a spatial transformer layer and a Long
Short-Term Memorys(LSTMs) unit to capture the correla-
tion between labels.

Compared with the above-mentioned structure learning
method, the graph-based method is proved to be more ef-
fective in the modeling of label correlation. (Li et al. 2016)
reated a tree-structured graph in the label space by using the
maximum spanning tree algorithm. (Lee et al. 2018) intro-
duced a knowledge graph used to describe the relationship
between multiple labels.

With the great success of Graph Neural Network(GNN)
on visual tasks, GNN has been introduced to MLIC and
achieved impressive progress. For instance, (Chen et al.
2019c) propose a novel graph convolutional network based
model(ML-GCN) to learn the label relationships. (Wang et
al. 2020) add lateral connections between GCN and CNN
at different stages to enhance the information transmission
of feature learning and label system. Despite the significant
improvements have been achieved, these methods only cap-
ture the relations of two label, which can’t model high-order
semantic dependencies.

Some works introduced the hypergraph structure to
model high-level relationships between data. Recently,
HGNN(Feng et al. 2019) was proposed to learn multi-modal
and complex data through hyper-edge convolution opera-
tions. It satisfies the characteristics of high-order relation-
ships in multiple labels. A-GCN(Li et al. 2019) uses two
1 × 1 convolutional layers and a dot product operation
to learn a correlation matrix with fixed-size paired labels.
AdaHGNN(Wu et al. 2020) uses label embedding to directly
initialize the adaptive hypergraph with any number of hyper-
edges, which can automatically model high-order semantic
relations.

Hypergraph-based models can model high-order semantic
information of labels well, but the model structure is often
very complicated. Therefore, in this paper, we use the rel-
atively simple GCN to capture the correlation and depen-
dence between labels. First, pre-build a label relationship
graph from dataset. And then use GCN model to spread in-
formation between multiple labels, so as to build a mutually
dependent classifier for each label. These classifiers contin-
uously absorb the information of neighbor labels in the pro-
cess of image convolution. Finally, we apply them to the fea-
ture vectors extracted by CNN for multi-label recognition.

Method
Graph Convolutional Network Overview
The basic idea of GCN is to update the node representation
by spreading information between nodes. Unlike the convo-
lution operation on the image, the goal of GCN is to learn
the function f(., .) on the graph G, and describe the char-
acteristics H l ∈ Rn×d and the corresponding correlation
matrix A ∈ Rn×n as input (Where n represents the number
of nodes, and d represents the dimension of node features),
and update the node characteristics to H l+1 ∈ Rn×d. Each



Figure 2: The model structure of multi-label recognition task is composed of CNN image feature extraction module and GCN
multi-label classifier learning module. For the CNN image feature extraction module, we use the CNN to extract image features,
and the final output feature map ofD×h×w and use the global max pooling to obtain a feature vector of x ∈ RD. For the GCN
multi-label classifier learning module, we use GCN to convolve the pre-built label map from the dataset, and finally output the
matrix of W ∈ RD×C . Then do multiplication of the feature vector x and matrix W , namely ŷ = Wx ∈ RD, and finally
calculate the loss of ŷ and the real y.

GCN layer can be written as a nonlinear function, which is
the following equation

H l+1 = f(H l, A). (1)

After convolution operation, f(., .) can be expressed as

H l+1 = h(ÂH lW l) (2)

where W l ∈ Rd×d′
is the transition matrix that needs to be

learned, and Â ∈ Rn×n is the normalized correlation ma-
trix, h(.) is a non-linear operation, here we use LeakyReLU.
Therefore, we can use multiple GCN layers to learn and con-
struct complex correlations of nodes.

GCN for Multi-Label Recognition
GCN is proposed for semi-supervised classification, where
the node-level output is the prediction score of each node.
Therefore, it is necessary to perform certain processing on
the output of GCN, which is, design the final output of each
GCN node as a classifier of the corresponding label in the
task. In addition, because the multi-label image recognition
task does not provide the corresponding label map structure,
that is, the correlation matrix, it is necessary to construct
the correlation matrix from scratch. The method we use is
shown in the figure. It is divided into two modules, CNN
feature extraction module and GCN classifier learning mod-
ule, as shown in 2.

CNN feature extraction module We can use the CNN
model to learn an image feature, so DenseNet121 is used
in this paper. Therefore, for any image I with an input size
of 512 × 512, we can get feature maps of 1024 × 16 × 16.
Then perform global max-pooling on the obtained features
to obtain image-level features x

x = fGMP (fcnn(I; θcnn)) ∈ RD (3)
where θcnn are model parameters, and D = 1024.

GCN classifier learning module Based on the mapping
function of GCN, we learn interdependent object classifiers
from the label representation, that is, W = wi

C
i=1, where

C represents the number of labels. Multiple GCN layers are
used, where each GCN layer takes the node representation
of the previous layer as input. For the first layer, the input is a
matrix of Z ∈ RC×d, where d is the word-level embedding
dimension. For the last layer, the output is W ∈ RC×D,
whereD represents the dimension of the image. By applying
the learned classifier to the image features, we can get the
predicted score

ŷ =Wx (4)
We assume that the true label of the image is y ∈ RC ,

where yi = 0, 1 indicates whether the label i appears in the
image. The final loss function uses the traditional multi-label
classification loss function for training

Loss =

C∑
i=1

yilog(δ(ŷi)) + (1− yi)log(1− δ(ŷi)) (5)



Figure 3: Image of conditional probability between two la-
bels. As usual, when ”Cat ear” appears in the image, ”Girl”
will also occur with a high probability. However, in the con-
dition of ”Girl” appearing, ”Cat ear” will not necessarily oc-
cur.

where δ(.) is the sigmod function.

Calculation of Correlation Matrix
GCN back-propagates information is based on the correla-
tion matrix A, so how to construct the correlation matrix A
has become a crucial issue. We traverse the dataset to con-
struct the correlation matrix, the specific steps are as follows:

First calculate the conditional probabilities of the two la-
bels Pij = P (Lj |Li), which means the probability of the Lj

label appearing under the condition that theLi label appears.
By traversing the dataset, we can get all conditional proba-
bility between labels, namely P . As shown in 3, P (Li|Lj)
not equal P (Lj |Li). Thus, the correlation matrix is asym-
metrical.

Considering that there may be a small amount of noise in
the dataset, such as images of the wrong class, the condi-
tional probability of two irrelevant labels still exists, that is,
a wrong edge will appear in the graph. Therefore, we define
a hyper parameter γ to filter out some edges

Aij =

{
0, Pij < γ

1, Pij ≥ γ
(6)

where A is the binary correlation matrix. Using a binary
correlation matrix may cause excessive smoothing, so that
nodes from different classes become difficult to distinguish.
Therefore, we use the following weighting scheme

A′ij =


p∑C

j=1,i6=j Aij

, i 6= j

1− p, i = j

(7)

whereA′ is the new correlation matrix, and p determines the
weights assigned to the node itself and other related nodes.

When updating node features, we only modify the inher-
ent weight of the node itself, and the weight of related nodes
will be determined by the domain distribution.

Experiment
In this section, we use several common multi-label eval-
uation methods, such as mAP(mean average precision),
OF1(average overall F1), CF1(average per-class F1) to eval-
uate our model. Then we describe how to obtain the imple-
mentation details of the anime illustration dataset and model.

Finally, we compare our model with the vanilla Resnet and
DenseNet, and display the comparison and multi-label clas-
sification result of anime illustration respectively.

Datasets
We write a Python script to grab the anime illustrations on
the Pixiv, a famous Japanese manga website, and finally
classify the images through the labels of each illustration.
Since the size and dimensions of each illustration are incon-
sistent, the illustrations are also preprocessed, and the black
edges are filled to make the size of each illustration consis-
tent. Finally, we also open sourced our crawling script and
dataset to github.

Implementation details
Different from general neural networks, our model consists
of a CNN image feature extraction module and a GCN la-
bel object classifier learning module. For the CNN image
feature extraction module, we use DenseNet121 to extract
image features, and finally use global max pooling on the
output feature map of 1024×16×16 to turn it into a 1024×1
vector. For the GCN module, we use two layers of GCN to
capture the dependency relationship of the labels, and the fi-
nal output is adjusted to a C × 1024 matrix. Then we use
the onehot vector to represent the multi-label information of
an anime illustration, that is, an anime illustration has labels
{l1, l2, ..., ln}, then the value of 1 is assigned to the first li
of the vector, as follows

labels
(l1,l2,...,ln)
i = [0, 0, 1l1 , .., 1li , ..., 0]1×C , n ≤ C (8)

For the correlation matrix, by traversing the dataset, for
any two labels Li and Lj , calculate the number of images
that appear at the same time, and the number of images that
only appear in Li or Lj , and divide that you can get the cor-
responding P (Li|Lj) or P (Lj |Li), and then set γ = 0.002
and p = 0.2.

In the training phase, we set the size of each image to
512 × 512, and we use random horizontal flips for data en-
hancement operations. In the optimization phase, we use the
Adam optimization method, and the learning rate is set to
0.001, and the final number of training epochs is set to 30
respectively.

Finally, we use Pytorch to implement and train our model.

Experimental results
We apply the GCN model to the anime illustration dataset
and compare it with the traditional CNN models of
Resnet101 and Densenet121, and then evaluate our model
from several key aspects.

We extract the 40 most representative labels(about 40,000
anime illustrations) from the original anime illustration
dataset, of which 3/4 are used as the training set and the
remaining 1/4 are used as the validation set.

Table 1 and Table 2 show the multi-label recognition re-
sults of our model and Resnet101 and Densenet121. Our
model finally got 79.3% of mAP, 73.2% of CF1 and 75.2%
of OF1, which is better than the vanilla Resnet101 and
Densenet121. In addition, the recognition accuracy of each



Table 1: Comparisons of AP and mAP with state-of-the-art methods on ours dataset.
Method gril brest uniform black stockings black hair swimsuit cat ears maid mAp

Resnet101 80.1 68.1 66.3 62.6 60.4 63.2 55.4 64.0 65.1
Densenet121 82.0 69.5 66.7 65.3 61.2 64.1 60.2 58.3 66.4
GCN(Ours) 95.3 79.4 75.8 74.4 74.1 70.3 72.1 75.5 79.3

Figure 4: The predicted results on the top are based on ours model, while the results on the bottom are DenseNet121.

Table 2: Comparisons with state-of-the-art methods on ours
dataset.

Method All Top3
mAP CF1 OF1 CF1 OF1

Resnet101 65.1 62.3 60.2 62.6 59.2
Densenet121 66.4 64.5 63.7 63.3 60.2
GCN(Ours) 79.3 73.2 75.2 69.8 70.4

label is also better than the results obtained by vanilla
Resnet101 and Densenet121.

Classifier Visualization
We selected a few representative anime illustrations, and
compared our model with Densenet121. From the Figure
4, we can find that our model can recognize almost all the
labels of an image, especially the dependent labels. For ex-
ample, ”uniform” and ”student”, ”swim suit” and ”breast”,

but Densenet121 can only recognize some labels, and even
miss some dependent labels.

Conclusion
The key problem of multi-label image recognition is how to
model the dependence between labels. In this paper, we use
GCN to model the label dependence of anime illustrations.
Compared with the method of directly using CNN models
to get top k, our model makes full use of the information
of labels to predict the labels contained in an anime illustra-
tion more accurately. Although it is not possible to model
high-order semantic relations directly, this method is simple
and effective, and the model is easy to train. In addition, the
accuracy of the result is not high due to some anime illus-
tration labels have insufficient or incorrect information for
the small number of our datasets and the complete use of
scripts for the division of labels, and the number of illustra-
tions contained between labels is inconsistent.
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