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Abstract

Point cloud classification is a 3D task for point labeling,
which is widely used in autonomous driving, augmented real-
ity, robotics, etc. Since PointConv was proposed, deep convo-
lution on point sets has been the concentration of 3D research.
However, existing convolutional network on point cloud usu-
ally generate features regardless of density unevenness of the
point cloud. In this work, we propose a novel network called
PointConv++ for 3D object classification. With hierarchical
convolution and communication among multiple resolutions,
PointConv++ is able to extract robust features and general-
ize to point sets with varying density. One key process of
PointConv++ is the recursive application of PointConv on the
point cloud. With the learning of weight functions and density
estimation, convolution operation is simulated for local fea-
ture extraction. Another key process of PointConv++ is the
exploitation of multi-resolution(MR) block. By broadcast-
ing information across multiple resolutions, MR block allows
layers in different resolution branches to exchange informa-
tion with each other, which benefits the robust extraction of
global features as well as the integration of contextual infor-
mation. Experiments show that PointConv++ is able to learn
deep point set features efficiently and robustly. In classifica-
tion task of point cloud, PointConv++ network performs bet-
ter than or comparable with the state-of-the-art approaches.

Introduction
A point cloud is a set of data points in space. The points rep-
resent a 3D shape or object. Each point has its set of X, Y
and Z coordinates. Point clouds are generally produced by
3D scanners or by photogrammetry software, which mea-
sure many points on the external surfaces of objects around
them. Figure 1 shows a point cloud from a laser scanner.

With the developments of laser radar and other imaging
instruments, three-dimensional (3D) data is becoming much
more easily available. Consequently, the effective process-
ing and analysis methods should be investigated for 3D-
related applications. As the representative 3D data, point
cloud has been widely adopted in indoor navigation, autopi-
lot, and augmented reality, etc. The effective classification of
point clouds can be helpful for the better understanding of
intelligent systems to different complicated environments.
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Figure 1: A point cloud from a laser scanner.

Therefore, the accurate classification of point clouds plays
an important role in related practical applications.

With the improvement of computing power and the sub-
stantial increase of data, deep learning (LeCun, Bengio, and
Hinton 2015) has become more and more popular for point
cloud classification (Maturana and Scherer 2015; Qi et al.
2016; Su et al. 2015). State-of-the-art point cloud classifi-
cation methods are mostly based on deep neural networks.
Figure 2 shows the basic structure of point cloud classifi-
cation based on deep learning. Points in a point cloud are
irregular and unordered so they cannot be easily handled
by regular 2D CNNs. To address this problem, PointNet (Qi
et al. 2017a) uses multi-layer perceptrons (MLPs) to extract
features for each point separately. Then, it is followed by a
symmetric function to accumulate all point features. Subse-
quent methods, including (Qi et al. 2017b; Wang et al. 2019;
Shen et al. 2018), focus on effectively processing the infor-
mation of neighboring points jointly rather than individu-
ally. PointNet++ (Qi et al. 2017b) utilizes the PointNet in
sampled local regions and aggregates features hierarchically.
DGCNN (Wang et al. 2019) builds dynamic connections
among points in their feature level and updates point fea-
tures based on their neighboring points in the feature space.

Related Work
3D data has multiple popular representations, leading to var-
ious approaches for learning. The volumetric representation
encodes a 3D shape as a 3D tensor of binary or real val-
ues. The multi-view representation encodes a 3D shape as
a collection of renderings from multiple viewpoints. The
mesh representation encodes a 3D shape as a collection of



Figure 2: The basic structure of point cloud classification
based on deep learning. Point cloud data are fed into deep
neural networks in the feedforward pass and errors are prop-
agated in the backward direction. This process is conducted
iteratively until convergence. Labels are needed to update all
model parameters.

points, normal vectors and faces. Volumetric CNNs: (Wu
et al. 2015; Maturana and Scherer 2015; Qi et al. 2016)
voxelizes 3D point clouds into volumetric grids. The point
cloud data can be regularized and processed using convo-
lutional neural networks. However, volumetric representa-
tion is constrained by its resolution due to data sparsity and
computation cost of 3D convolution. (Riegler, Osman Ulu-
soy, and Geiger 2017) improves the resolution significantly
by using a set of unbalanced octrees where each leaf node
stores a pooled feature representation. Multiview CNNs: (Su
et al. 2015; Qi et al. 2016) proposed to project 3D point
clouds or shapes into several 2D images, and then apply
2D convolutional networks for classification. Although this
line of methods has achieved dominating performances on
shape classification and retrieval tasks (Savva et al. 2016),
it’s nontrivial to extend them to scene understanding or other
3D tasks such as point classification and shape completion.
Spectral CNNs: Some latest works (Bruna et al. 2013; Masci
et al. 2015) use spectral CNNs on meshes. However, these
methods are currently constrained on manifold meshes such
as organic objects and it’s not obvious how to extend them
to non-isometric shapes such as furniture.

In contrast to work converting irregular 3D point clouds to
2D images or 3D voxels that may cause loss of imformation,
some work (Qi et al. 2017a; Ravanbakhsh, Schneider, and
Poczos 2016; Hua, Tran, and Yeung 2018) directly use raw
point cloud as input. However, (Qi et al. 2017a) directly uses
MLP and max pooling to extract features from the whole
point cloud, it lacks the ability to capture the local struc-
ture. PointNet++ (Qi et al. 2017b) introduces a hierarchical
structure, it samples and groups the point clouds into small
neighborhoods, then uses pointNet to extract features from
each neighborhoods. This hierarchical structure improved
the PointNet’s ability to extract local structures, it is ana-
logue to the multiple convolution layers in CNN that extract
features from local structures and forms an overall feature.
However, PointNet++ still uses max pooling to obtain fea-
tures that only keep the strongest activation on features in a
region, which may lose some detailed information. Some re-
searchers tries to extend the 2D convolution operation to 3d
point clouds. The irregularity of point cloud makes it diffi-
cult to use convolution. (Su et al. 2018) implemented sparse
bilateral convolution in point cloud. PointCNN (Li et al.
2018) learns a χ-transformation from the input points, the

χ-transformation can weight the input features assosiated
with the points and permutate the points into a latent and
potentially canonical order. But PointCNN lacks the ability
to achieve permutation-invariance, which is important for
point clouds. (Jia et al. 2016) proposed a method to treat
the weight filter in 2d convolution as a continuous function,
which can be approximated using MLP. (Simonovsky and
Komodakis 2017) firstly introduced the idea into 3d graph
structure. (Lu et al. 2020) PointConv extend the dynamic fil-
ter to a new convolution operation to approximate the 3D
continuous convolution. It achieves permutation-invariance
and translation invariance, and density information is con-
sidered to reweight the convolution. (Le, Kokkinos, and Mi-
tra 2020) Extended the multi-resolution grouping of (Lu
et al. 2020) by adding Cross Links between different res-
olutions, which lead to the increase in both training speed
and performance. However, (Le, Kokkinos, and Mitra 2020)
still uses max pooling to capture features in local regions,
which causes the loss of detailed information. Our work im-
plements multi-resolution grouping and cross links in (Le,
Kokkinos, and Mitra 2020) and the convolution methond in
(Lu et al. 2020), can both capture muti-resolution informa-
tion and avoids the loss of detailed information caused by
maxpooling, is different from all the above methods.

Proposed Solution
Review of Multi-resolution
In PointNet (Qi et al. 2017a), given an unordered point set
{x1, x2, . . . , xn} with xi ∈ Rd , we can define a set of func-
tion f : χ → R that maps a set of points to a vector :
f (x1, x2, . . . , xn) = γ (MAXi=1 {h (xi)}) where γ and
h are usually multi-layer perception(MLP) networks. And
the set function f is invariant to input point permutations.
PointNet achieved impressive performance on a few bench-
marks, but it lacks the ability to capture local context at dif-
ferent scales. To solve the problem, PointNet++ (Qi et al.
2017b) builds a hierarchical grouping of points and progres-
sively abstract larger and larger local regions along the hier-
archy. The hierarchical structure is composed by a number
of set abstraction levels, each set abstraction level is made of
three key layers: Sampling layer, Grouping layer and Point-
Net layer. As we know, it is common that a point set comes
with non-uniform density in different areas. So PointNet++
introduces the Multi-resolution grouping(MRG) which sum-
marizes the features from different levels. As shown in Fig-
ure 3, the two vectors concatenated, one of them is obtained
from the lower level and the other one is obtained directly
from all point s. The fusion of local, fine-grained informa-
tion and global, semantic-level context can boost the dis-
criminative power of the resulting features (Le, Kokkinos,
and Mitra 2020).

Revisit PointConv
Previous works (Qi et al. 2017a,b) use maxpooling and
MLPs to extract features from point clouds, which will cause
loss of information. It is intuitive to extend the convolution
operation in 2D image tasks to 3D point clouds. However,
point clouds are unordered and do not conform to the regular



Figure 3: Multi-resolution grouping(MRG)

lattice grids as in 2D images, which makes it hard difficult
to implement 2D convolution directly.

The work of (Wu, Qi, and Fuxin 2019) firstly go back
to the continuous 3D convolution operation, which can be
written as Equation 1.

Conv(W,F )xyz =

∫∫∫
(δx,δy,δz)∈G

W (δx, δy, δz)F (x+ δx, y + δy, z + δz) dδxδyδz

(1)

where F (x+ δx′y + δy′z + δz) is the feature of a point
in the local region centered around point p = (x, y, z). A
point cloud canbe viewed as anon-uniform sample from the
continuous R3 space. In each local region, (δx, δy, δz) could
be any possible position in the local region. PointConv pro-
poses a special convolution operation which can be written
as Equation 2.

PointConv(S,W,F )xyz =
∑

(δx,δy,δz)∈G

S (δxδy, δz)W (δx, δy, δz)F (x+ δx, y + δy, z + δz)

(2)

Where S (δx, δy, δz) is the inverse density at point
(δx, δy, δz). Because of the density of points varies across
the whole point cloud, the density information added can
reduce the contribution of points in dense areas. The in-
verse density can be caculated using kernelized density esti-
mation. The weight function W (δx, δy, δz) can be approxi-
mated from the 3D coordinates (δx, δy, δz) using multi-layer
perceptrons.

The paper (Wu, Qi, and Fuxin 2019) also proposed a novel
reformulation to implement PointConv by reducing it to two
standard operations: matrix multiplication and 1x1 convo-
lution. This reformulation is less memory consuming and
more efficient. Figure 4 shows the efficient version of Point-
Conv.

Introduction of our model
In this section we first introduce our MRG method, then we
introduce our MultiReolution (MR) block, and the detail of
the implementation of feature combination.

Figure 4: The efficient PointConv structure in one local re-
gion proposed in (Wu, Qi, and Fuxin 2019). MLP1’ is used
to approximate the weight function, MLP2 is used to com-
pute Inverse Density Scale.

Figure 5: The processing of different resolutions.

Design of MRG We use three different resolutions in our
network to obtain features of different scales. Assume that
the number of points sampled at the three resolutions areN1

,N2 andN3 respectively. After passing through a MR block,
we get three features that respectively carry information of
N1, N2, N3 regions. The processing of different resolutions
is shown in Figure 5. Input the original point cloud data and
sample with different resolutions to extract features of dif-
ferent scales.

MutiReolution PointConv In this section we propose our
MutiReolution (MR) block as Figure 6 shows, which takes
a point cloud as input then sample and group the input into
different resolution. The sampling operation uses Farthest
Point Sampling (FPS) used in (Qi et al. 2017b) to pick out
centroid points. the grouping operation takes the k nearest
points from every centroid points and group them into one
local region. The PointConv takes points in every local re-
gion and extract their features. After the PointConv oper-
ation, only the centroid points are passed to the next MR
block, so that a hierarchical structure shown in Figure 7 can
be formed.

As it is shown in Figure 7. After every MR block, the
points are lesser and feature becomes larger. After the finnal
block, there will be only one point left and features from the
whole point cloud is combined in one 1x1024 feature. The
final feature is passed to a MLP to classify the point cloud.

Feature combination After getting features from differ-
ent resolutions, we need to merge them for the next step of
processing. We have two ways to accomplish this. First, we
can use a fully connected layer to transform the feature di-
mensions according to our needs. Second, we can achieve
upsampling from low resolution to high resolution by linear



Figure 6: Our MR Block: We first sample and group the
point cloud into different resolution, then use PointConv to
extract features in different local regions. Then we use a
bunch of SLPs to combine the features in different resolu-
tion.

Figure 7: The hierarchical network constructed using our
MR blocks.

interpolation in the spatial space using the Ku = 3 closest
neighbors. After getting back to the original resolution, we
can easily combine features by concatenation or addition.
These two ways are shown in Figure 8.

Experiments
In order to evaluate our new PointConv++ network, we con-
duct experiments on the widely used dataset ModelNet40.
In all experiments, we use the PyTorch framework to imple-
ment the proposed PointConv++ method, and a single GTX
TITAN X is used for training and testing. The batch size is
set to 32. ReLU and batch normalization are applied after
each layer except the last fully connected layer. We use the
SGD optimizer to minimize the loss. The Total training takes
50 epochs. The learning rate is set to 0.0005. Firstly, we
introduce the dataset we used to conduct the experiments.
Secondly, we compare the proposed PointConv++ method
with several state-of-the-art point cloud classification meth-
ods. Thirdly, we perform ablation studies to evaluate the key
components of the proposed PointConv++ method. Finally,
we visualize the output of MR block, which conduct multi-
resolution sampling on original data.

Dataset
ModelNet40 contains 12,311 CAD models of 40 categories
(mostly man-made). We use the official split with 9,843
shapes for training and 2,468 for testing. For fair compar-

Figure 8: (a)Use SLP to upsample. (b)Use interpolation to
upsample.

Figure 9: The ModelNet40 dataset consists of several CAD
objects from general classes including sofas, flower, pots,
and airplanes. These volumes can be augmented using stan-
dard image data augmentation techniques such as rotation
extended to three dimensions.

ison, we employ the same data augmentation strategy as
Pointnet by randomly rotating the point cloud along the z-
axis and jittering each point by a Gaussian noise with zero
mean and 0.02 standard deviation. Figure 9 show some sam-
ples of ModelNet40 dataset and how data augmentation is
employed.

Classification on ModelNet40

Table 1: Object classification accuracy on ModelNet40.

Method Accuracy(%)
PointNet (Qi et al. 2017a) 86.69

PointNet++ (Qi et al. 2017b) 89.81
PointConv (Wu, Qi, and Fuxin 2019) 90.86

Ours 90.67

For a fair comparison, the ModelNet40 datasets for our
experiments are preprocessed by (Qi et al. 2017a). By de-
fault, 2048 input points are used.Limited to computation
ability,all networks are trained with 50 epoches.Table 1
shows the classification accuracy of state-of-the-art meth-
ods on point cloud representation. In ModelNet40, our net-
work outperforms PointNet and PointNet++ by 90.67%. Al-
though the original PointConv presents the best result in



Figure 10: The visualization of MR block.

ModelNet40, its network is trained regardless of density un-
evenness and not generic to point clouds with non-uniform
sampling,while our proposed network is extendable to point
cloud classification task with varying density and the local
region features obtained by our method are compact and ro-
bust.

Effects of MR size

Table 2: Effects of MR size choice on ModelNet40 classifi-
cation.

MR size Accuracy(%)
(1024,512,256),(256,128,64),(1,1,1) 90.09
(512,256,128),(128,64,32),(1,1,1) 90.86

(256,128,64),(64,32,16),(1,1,1) 89.44

In this part, we experiment using different MR sizes on
the ModelNet40 dataset. For all experiments, three lay-
ers of MR block is adopted and the number of input
points is 2048. As shown in Table 2, the network with
smaller resolution sampling size is more effective and the
most beneficial MR block is constructed with size being
(256,128,64),(64,32,16),(1,1,1) for each MR layer.

Effects of MR layers

In this part, we mainly discuss the influence of the choice of
MR layers on model classification. As with the above exper-
iment, all other variables remain unchanged, mainly chang-
ing the number of MR layers. As shown in Table 3, in the
three cases of layers in the experiment, the model with an
MR layer of 3 performs best.

Table 3: Effects of layers of MR on ModelNet40 classifica-
tion.

Layers of MR Accuracy(%)
(512,256,128),(1,1,1) 90.01

(512,256,128),(128,64,32),(1,1,1) 90.86
(512,256,128),(128,64,32),(32,16,8),(1,1,1) 89.98

MR block visualization
At the end of the experiment. We have achieved the visu-
alization of each MR block, based on the model that per-
formed best in the above two test experiments, that is, three
MR layers, each with a resolution of (512, 256, 128) (128,
64, 32) (1, 1, 1). As shown in Figure 10, each MR block
extracts points and features in the upper layer with different
resolutions. For example, the first MR block extracts 512,
256, and 128 points from the original point cloud data set,
extracts their local features, and finally transfer the feature
fusion to the next layer.

Conclusion
We have proposed a multi-resolutional point cloud classifi-
cation method named PointConv++. Compared with tradi-
tional approaches that are not aware of point cloud density
variation, our method takes information interchange among
different resolutions into account ,thus enabling robust ex-
traction of point cloud features. Extensive experiments vali-
date the effectiveness and generality of our method.
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