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Abstract

Convolutional Neural Networks (CNN) have achieved im-
pressive performance in a wide range of fields such as im-
age classification, semantic segmentation or machine trans-
lation, where the underlying data representation has a grid-
like structure. When very deep CNN models can be trained
reliably, their success is due to large-scale push. Despite its
advantages, CNN cannot correctly solve the problem of non-
Euclidean data. In order to overcome this challenge, graph
convolutional networks (GCN) can construct graphs to rep-
resent non-Euclidean data, draw on the concept of CNN, and
apply it to training. GCN can handle many interesting tasks
involve data that can not be represented in a grid-like structure
and that instead lies in an irregular domain. This is the case
of 3D meshes, social networks, telecommunication networks,
biological networks or brain connectomes. GCN shows good
results, but since the vanishing gradient problem appears,
they are usually limited to very shallow models. In this pa-
per, we propose a method to train deeper GCN. We do this by
borrowing concepts from the residual connections of Resnet.
Experiments have shown the positive effects of these GCN
added with residual connections.

Introduction

Many interesting tasks involve data that can not be rep-
resented in a grid-like structure and that instead lies in
an irregular domain. This is the case of 3D meshes, so-
cial networks, telecommunication networks, biological net-
works or brain connectomes. Such data can usually be rep-
resented in the form of graphs.The rise of availability of
non-Euclidean data has recently shed interest into the topic
of Graph Convolutional Networks (GCNs). GCNs provide
powerful deep learning architectures for unstructured data,
like point clouds and graphs. GCNs have already proven to
be valuable in several applications including predicting in-
dividual relations in social networks [Tang and Liu, 2009],
modelling proteins for drug discovery [Zitnik and Leskovec,
2017, Wale et al., 2008], enhancing predictions of recom-
mendation engines [Monti et al., 2017b, Ying et al., 2018],
and efficiently segmenting large point clouds [Wang et al.,
2018].
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Learning with graph structured data, such as molecules,
social, biological, and financial networks, requires effec-
tive representation of their graph structure (Hamilton et al.,
2017b). Recently, there has been a surge of interest in Graph
Neural Network (GNN) approaches for representation learn-
ing of graphs (Li et al., 2016; Hamilton et al., 2017a; Kipf
& Welling, 2017; Velickovic et al., 2018; Xu et al., 2018).
GNNs broadly follow a recursive neighborhood aggregation
(or message passing) scheme, where each node aggregates
feature vectors of its neighbors to compute its new feature
vector (Xu et al., 2018; Gilmer et al., 2017). After k iter-
ations of aggregation, a node is represented by its trans-
formed feature vector, which captures the structural infor-
mation within the node’s k-hop neighborhood.

Convolutional Neural Networks (CNNs) have been suc-
cessfully applied to tackle problems such as image classifi-
cation (He et al., 2016), semantic segmentation (Jegou et al.,
2017) or machine translation (Gehring et al., 2016), where
the underlying data representation has a grid-like structure.
These architectures efficiently reuse their local filters, with
learnable parameters, by applying them to all the input posi-
tions.

A key reason behind the success of CNN is the ability to
design and reliably train very deep CNN models. In contrast,
GCN is not able to be designed very deep. Stacking more
layers into GCN will cause the vanishing gradient problem.
This means that back-propagation through these networks
will lead to over-smoothing, which will eventually cause the
features of the graph vertices to converge to the same value.

In the CNN world, the disappearing gradient is not an
alien phenomenon. This also limits the deeper development
of such networks. When ResNet introduces residual connec-
tions between the input and output layers, it has taken a big
step in the pursuit of a very deep CNN. These connections
greatly alleviate the disappearing gradient problem.

In this work,to address the above issues by adapting con-
cepts that were successful in training deep CNN. To show-
case these layer adaptations, we apply them to the popular
task. We show that adding residual connections enables suc-
cessful training of GCNs up to more layers.

We summarize our contributions as followed:

* We propose a new structure Deeper GCN by adapting
residual connections into the graph structure. Graph con-
volutional network layer that combines with residual con-



nections will go deeper. Thus, we solve the gradient ex-
plosion and vanishing problem of GCN.

* We conduct several extensive experiments on a number of
datasets and use the new GCN models called ResGCN to
these experiments and show availability and effectiveness
of the new models.

* We find a new way to design graph convolutional net-
work with CNN concepts. In the future, we will try to
design graph convolutional network structure with other
concepts and we believe it will bring inspiration to design
the structure.

Related work

We first review previous work on Graph convolutional Net-
work and ResNetThe residual block structure is shown in
Figure 1, followed by a review of recent developments in

training deep GCN.
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Figure 1: Residual block structure: The output of the resid-
ual structure is expressed as F(x) + x. Compared with using
multiple stacked nonlinear layers to directly learn the iden-
tity mapping F(x) = x, the residual structure directly learns
F(x) = 0 so that training is easier.

Graph Convolutional Networks. Kipf et al. propose the
Graph Convolutional Networks (GCNs) to define convolu-
tions on the non-grid structures. GCN is a method based on
deep learning that can perform convolution operations on the
graph. Compared with traditional CNN, GCN has a unique
convolution operator for irregular data structures. Generally,
GCN can be divided into two categories: spectrum-based
GCN and non-spectrum-based GCN. The latter attempts to
expand the spatial definition of convolution by rearranging
the vertices of the graph into a specific grid form so as
to be directly applicable to traditional convolution opera-
tions, while the former uses Fourier transform to perform
the convolution process. Generally, spectral GCN can handle
graphs with fixed topology well, while non-spectral GCN
can handle graphs with topological changes. Graph Con-
volutional Networks (GCNs). Current GCN algorithms can
be divided into two categories: spectral-based and spatial-
based. Based on spectral graph theory, Bruna et al. [2013]
firstly developed graph convolutions using the Fourier basis
of a given graph in the spectral domain. Later, many meth-
ods are proposed to apply improvements, extensions, and

approximations on spectral-based GCNs [Kipf and Welling,
2016, Defferrard et al., 2016, Henaff et al., 2015, Levie et
al., 2018, Li et al., 2018]. On the other hand, spatial-based
GCNs [Hamilton et al., 2017, Monti et al., 2017a, Niepert
et al., 2016, Gao et al., 2018, Xu et al., 2019b] define graph
convolution operations directly on the graph, by aggregat-
ing the information from neighbor nodes. To address the
scalability issue of GCNs on large-scale graphs, there are
mainly two categories of scalable GCN training algorithms:
sampling-based [Hamilton et al., 2017, Chen et al., 2018a,
Li et al., 2018, Chen et al., 2018b, Zeng et al., 2020] and
clustering-based [Chiang et al., 2019].

ResNet. Nowadays, CCN faces many difficulties (e.g.
vanishing gradient and limited receptive field). We bridged
this gap and showed that most of these drawbacks can be
compensated by borrowing a technique from CNN. Intro-
ducing ResNet, the performance of deep CNN is greatly
improved. By adding residual connections between the in-
put and output of the layer, ResNet tends to eliminate the
vanishing gradient problem. ResNet’s residual block adds a
shortcut connection between one or more convolutional lay-
ers. This shortcut connection will act as an identity map-
ping to solve the vanishing gradient and exploding gradient.
ResNetV2 performs a ReLU operation after the addition to
achieve nonlinear activation. Without this ReLU operation,
the residual block output is always non-negative, which re-
stricts the expressive ability of the model. ResNeXt adopts
the idea of grouped convolution and controls the number
of groups through variable cardinality, making the network
structure more efficient. SKNet proposes the idea that dif-
ferent images can get convolution kernels of different im-
portance. Therefore, SKNet uses different convolution ker-
nel weights for different images, that is, a dynamic gener-
ation of convolution kernels for images of different scales.
ResNeSt proposes a modular Split-Attention block, which
can disperse attention to several feature map groups, which
can be used directly for downstream tasks without adding
additional calculations. DenseNet proposes a more radical
dense connection mechanism, which connects all layers to
each other to achieve feature reuse and improve efficiency.

Training Deep GCNs. Despite the rapid and fruitful
progress of GCNs, most previous art employ shallow GCNs.
Several works attempt different ways of training deeper
GCNs [Hamilton et al., 2017, Armeni et al., 2017, Rahimi et
al., 2018, Xu et al., 2018]. All these works are however lim-
ited to 10 layers of depth before GCN performance would
degrade. Inspired by the benefit of training deep CNN-based
networks [He et al., 2016a, Huang et al., 2017, Yu and
Koltun, 2016], many researches seek to solve the vanish-
ing problem of deepGCN. A further obstacle to train deeper
GCNss is over-smoothing, Recent works focus on addressing
this phenomenon [Klicpera et al., 2019, Rong et al., 2020,
Zhao and Akoglu, 2020]. Klicpera et al. [2019] proposes a
PageRank-based message passing mechanism, involving the
root node in the loop. Alternatively, DropEdge [Rong et al.,
2020] proposes randomly removing edges from the graph,
and PairNorm [Zhao and Akoglu, 2020] develops a normal-
ization layer.
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Figure 2: (left) Our framework consists of three blocks: a GCN Backbone Block , a Fusion Block, and an MLP Predic- tion

Block . (right) Two types of GCN Backbone Block

Proposed Solution
Graph Definition

A Graph G could be represented by a tuple with a set of un-
ordered vertices and a set of edges: (G = V, ). We denote
vertices v; and v; are connected when e; ; € €.

Graph Convolution Network

GCNs also extract high-level features at a vertex by fus-
ing features of vertices from its neighborhood, like CNNs.
Given a feature vector h. € R for a vertex v, we can regard
the graph G as the concatenation of features of all the un-
ordered vertices, i.e. hg = [h,,, h,,,...,h,,]" € RV*D,
where NV is the number of set V and D is the feature dimen-
sion. So a standard graph convolution could be formulated
as the combination of aggregation and update operations like
this:

Gii1 = F (G, W) = Update (Agg (G, i) , ;7"

G; and Gy are the input graph and output graph at layer
i, W99 W% are the learnable weights. In most GCN net-
works, update functions means a non-linear transform on the
aggregated information, which used to calculate new vertex
representations, while aggregation functions are used to fuse
features from the neighborhood of vertices.

There are different variants of those two functions, e.g.
mean aggregator, max-pooling, attention aggregator or an
LSTM aggregator for aggregation function, and MLP, gated
network for opdate function.

For all v;4; € V41, the representation of vertices is cal-
culated by aggregating features from its neighbor vertices at
each layer:

hUl+1 = ¢ (h'Ul’p ({hul | u; € N(’Uz)} 5 hvszp) 7W¢)

where p is the aggregation function for feature aggrega-
tion and ¢ is the function to update vertex features at layer
I-th and [ + 1-th. N'(v;) and h,, are the set of neigh-
bor vertices of v and neighbor vertices parametrized by
W,, respectively. W, contains the weights of these func-
tions. Without generality, we can use max-pooling as the
feature aggregation function, to pool the difference of fea-
tures between vertex v; and all of its neighbors: p(.) =
max (h,, —h,, | w; € N (v;)). We model the feature up-
date operation ¢ as a MLP with BatchNorm and ReLLU, then
its input is formed by aggregating features from p(.).

Dtnamic Edges

Recent work shows that dynamic graph can learn better
graph representations compare to GCNs with fixed struc-
ture, which only update the vertex features at each iteration.
For example, ECC(Edge-Conditioned Convolution) uses dy-
namic ECC to learn edge-specific weight matrix. EdgeConv
reconstruct the graph after every EdgeConv layer by find-
ing the nearest neighbors Graph-Convolution GAN applies
k-NN graphs for learning point clounds by constructing the
neighbourhood of each vertex in each layer.

Our experiments shows that dynamically changing neigh-
bors in GCNs could help alleviate the over-smoothing and
thus results in an effective and larger receptive field when
GCNs going deeper. In our framework, we recompute edges
between vertices to increase the receptive field, via a Di-
lated kNN function.In the following content, we provide a
detailed description of the operation that can enable deeper
GCN training: residual connections.
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Figure 3: Experiment Result

Residual Learning for GCNs

How to design a deeper GCN architecture is also an open
problem. Recent work shows that GCNs do not perform well
on deep architectures, one reason might be stacking multiple
layers of graph convolutions would result in extremely high
complexity in back-propagation. As a result, there are no
more than 3 layers deep in most state-of-art models. Inspired
by the success of ResNet, we use residual structure to GCNs
to improve its ability of learning representation. This could
make GCNs deeper and reliably converge in training, thus
achieve superior performance in inference.

In the original graph learning framework, we need to learn
the underlying mapping F. Here, we learn an underlying
mapping H by fitting another mapping F. Vertex-wise ad-
dition is applied to obtain G, after transforming G; by F.
The residual mapping JF learns to obtain the redisual output
graph representation G; 7] by taking a graph as input, where
W, is the set of weights at [-th layer, we refer our model as
ResGCN:

G =HGW) =FGW)+G=G1+G

Experiments

We propose ResGCN to handle the vanishing gradient prob-
lem of GCNss. To evaluate our framework, we conduct exper-
iments on the task of point cloud segmentation and demon-
strate that our methods can improve performance.

Graph Learning on 3D Point Clouds Point cloud seg-
mentation is a challenging task because of the unordered
and irregular structure of 3D point clouds. Normally, each
point in a point cloud is represented by its 3D spatial coordi-
nates and possibly auxiliary features such as color and sur-
face normal. We treat each point as a vertex v in a directed
graph G and we use k-NN to construct the directed dynamic
edges between points at every GCN layer. In the first layer,

we construct the input graph Gy by executing a k-NN search
to find the nearest neighbor in 3D coordinate space. At sub-
sequent layers, we dynamically build the edges using k-NN
in feature space. For the segmentation task, we predict the
categories of all the vertices at the output layer.

Network Architectures As shown in Figure 2, all the net-
work architectures in our experiments have three blocks: a
GCN backbone block, a fusion block and an MLP predic-
tion block. The GCN backbone block is the only part that
differs between experiments. For example, the only differ-
ence between PlainGCN and ResGCN is the use of resid-
ual skip connections for all GCN layers in ResGCN. Both
have the same number of parameters. For fair comparison,
we keep the fusion and MLP prediction blocks the same for
all architectures. In the S3DIS semantic segmentation task,
the GCN backbone block takes as input a point cloud with
4096 points, extracts features by applying consecutive GCN
layers to aggregate local information, and outputs a learned
graph representation with 4096 vertices. The fusion block
is used to fuse the global and multi-scale local features. It
takes as input the extracted vertex features from the GCN
backbone block at every GCN layer and concatenates those
features, then passes them through a 1x1 convolution layer
followed by max pooling. The latter layer aggregates the ver-
tex features of the whole graph into a single global feature
vector, which in return is concatenated with the feature of
each vertex from all previous GCN layers (fusion of global
and local information). The MLP prediction block applies
three MLP layers to the fused features of each vertex/point
to predict its category.

¢ PlainGCN: This baseline model consists of a PlainGCN
backbone block, a fusion block, and a MLP prediction
block. No skip connections are used here.

* ResGCN: We construct ResGCN by adding dynamic k-
NN and residual graph connections to PlainGCN. These



Method OA mlIOU | ceiling floor wall beam column window door table chair sofa bookcase board clutter
PointNet 78.5 47.6 | 88.0 88.7 69.3 424 231 475 516 541 420 9.6 38.2 294 352
PointNet++ - 532 | 90.2 91.7 73.1 427 212 497 423 6277 59.0 19.6 458 482  45.6
DGCNN 84.1 56.1 - - - - - - - - - - - - -
ResGCN-28 (Ours) 859 60.0 | 93.1 953 78.2 339 374 56.1 682 649 51.0 346 515 511 544

Table 1: Comparison of ResGCN-28 with other Semantic Segmentation methods on S3DIS. We compare ResGCN-28 with
other Semantic Segmentation methods on S3DIS. It shows that out model performs better than other methods. The metrics
shown are overall point accuracy (OA) and mean IoU (mIoU).

connections between all GCN layers in the GCN back-
bone block do not increase the number of parameters.

Implementation We implement all our models using Ten-
sorflow. For fair comparison, we use the Adam optimizer
with the same initial learning rate 0.001 and the same learn-
ing rate schedule;the learning rate decays 50% every 3 X
10° gradient decent steps. The batch size is set to 8 for
each GPU. Batch Normalization is applied to every layer.
Dropout with a rate of 0.3 is used at the second MLP layer
of the MLP prediction block. We train our models end-to-
end from scratch.

Result Figure 3 shows results on S3DIS. As expected
from the results in Table 1,0ur ResGCN-28 perform well
on these situation. Rows 1-4 clearly show how ResGCN-28
are able to segment the board, beam, bookcase and door re-
spectively, while PlainGCN-28 fails.

Conclution

In this paper, we investigate how to expand GCNs with
the residual connections and expore how to make GCNs
be deeper.Then, extensive experiments show that by adding
skip connections to GCNs, we can alleviate the difficulty of
training, which is the primary problem impeding GCNs to
go deeper. Finally, draw a conclusion that by using residual
block structure, we can get a deeper GCN mdoel.
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