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Abstract

Medical electronic endoscope is one of the direct and effec-
tive medical devices for medical personnel to observe the in-
ternal pathological tissue of human body, which is known as
”the third eye of human beings”. In the process of endoscope
image acquisition, illumination is artificially added through
external equipment. Therefore, under the influence of light-
ing conditions, the initial image acquisition of endoscope will
show the effect of bright light sufficient area and dim light
insufficient area, which will lead to the degradation of en-
doscope image quality and affect the doctor’s diagnosis to a
certain extent. Based on the deep neural network, Retinex the-
ory, and the image enhancement model of bilateral grid, we
realize the real-time recovery of surgical video under insuffi-
cient light. (1) The most advanced image enhancement model
was applied to establish a new medical image data set through
gamma correction and manual processing, and minor changes
were made to the model to improve its performance in med-
ical image problems. (2) A new error function is generated
by referring to the linear combination of mean absolute error
and structural similarity error, and the weighted least square
filter is used to enhance the image contrast and improve the
image quality. By comparing multiple models on the data set
established by us, our model has achieved good recovery ef-
fect from both subjective analysis and objective evaluation.

Introduction
Low-illuminance images are images taken under low light.
Such images often have problems such as low brightness
and poor contrast. Therefore, the research of low-light im-
age enhancement has strong practical significance. This ar-
ticle mainly focuses on the two aspects of low-light image
and medical image.

The photos taken by the camera may be underexposed due
to low light and backlight. This kind of image cannot capture
what the user wants, because underexposed areas can hardly
see details, low contrast, and dim colors. However, low-light
image enhancement is a challenging task, because underex-
posed areas are usually hard to detect, and the enhancement
process is highly nonlinear and has subjective factors.

There are many methods to solve this problem. Early
research mainly focused on contrast enhancement. This
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method is not effective in restoring image details and col-
ors. Recent research uses data-driven methods to learn color,
contrast, and adjust the brightness to produce more expres-
sive results.

Different from low-light images, medical imaging refers
to a non-invasive image of internal tissues of the human
body or a certain part of the human body for medical or
medical research. At present, minimally invasive surgery
uses endoscopic equipment and technology. Compared with
traditional surgery, minimally invasive surgery has a wider
field of view. Because of this, it has strict requirements on
the level of vision of endoscopic technology. Nowadays, the
widely used 3D endoscope provides the color information of
the endoscopic image by illumination, and the image acqui-
sition process of the illumination endoscopy technology is
artificially added by external equipment (Chen et al. 2016).
Therefore, affected by the lighting conditions, the initial im-
age acquired by the endoscope will appear bright in the mid-
dle and dark around, resulting in degradation of the quality
of the image. Therefore, we need to restore the original im-
age collected by the endoscope to enhance the quality and
improve the recognizability of image details.

Related Work
Medical image quality enhancement
For thousands of years, due to the structure of the human
body, we cannot directly see the inside of the human body.
How to explore the inside of the human body has been a
difficult problem. In 1804, Philip Bozzini, the German doc-
tor who first proposed the idea of an endoscope, was hailed
as the ”first inventor of an endoscope”, and in 1806 he pro-
duced a candle that uses a candle as a light source and mir-
rors the light. The reflex function is used to observe the
equipment inside the bladder and rectum-”lighting device”
(Cunningham and Peterson 2003). Over the next 100 years,
scholars made improvements to light sources, lighting meth-
ods, and the invention of light bulbs, which led to a signif-
icant development in endoscopy technology. In 1983, the
Welcn Allyn Company in the United States developed an
electronic endoscope. The birth of an electronic endoscope
was another historic breakthrough in the history of endo-
scope development. The quality of endoscopic medical im-
ages has been greatly improved. In 2006, Olympus released



an endoscope system with integrated technology. In 2014,
Stryker launched the world’s first medical lens camera. The
image capture speed has increased by 33% compared to the
previous year, and the signal-to-noise ratio, brightness and
clarity have all made improvements.

Over the years, although the level of endoscopy technol-
ogy has been rapidly improved, the lighting method has al-
ways been a difficult obstacle to the development of en-
doscopes. Therefore, some scientists have thought of start-
ing with image processing to indirectly solve the problem
caused by the lighting method image problem. At the same
time, various medical companies are constantly develop-
ing image enhancement technologies. Including technolo-
gies such as Flexible Spectral Image Color Enhancement
from Fujinon and Storz Professional Image Enhancement
System from Karl Storz.

The basic principle of FICE technology (Togashi et al.
2009) is based on spectrum estimation technology. FICE
technology uses electronic spectroscopy technology to de-
compose and simplify the different color number elements
collected by the color image sensor, and provides an image
processing mode that generates any combination of wave-
lengths, which significantly improves the contrast between
the lesion and the surrounding tissue structure, and more ef-
fectively improves detection rate of lesions.

The SPIES system (Kamphuis et al. 2016) provides four
image enhancement methods: Chroma, Spectra A, Spectra
B, and Clara Chroma mode can sharpen the image and make
the image clearer. Spectra A uses a dedicated color conver-
sion algorithm to enhance the contrast between fine blood
vessels and blood vessels on the membrane surface. Spectra
B retains the blood vessels in the deep layer of the milk film
on the basis of Spectra A, making the image more detailed.
Clara mode can enhance the brightness of dark areas of the
image.

Low illumination image quality enhancement
Low-illuminance image enhancement is one of the popular
research directions in the field of computer vision. It mainly
deals with the problems of noise, low brightness, and low
contrast in images with insufficient lighting and uneven illu-
mination, so as to improve visual quality.

Low-light video enhancement technology is mainly to en-
hance each video frame in the video, so its core is still low-
light image processing technology. Traditional low-light im-
age enhancement algorithms mainly include the following:

• The image enhancement algorithm based on histogram
equalization redistributes the pixel values of the image by
stretching the dynamic range of the gray scale, so that the
number of pixels in a certain gray scale range is almost
the same.

• The image enhancement algorithm based on wavelet
transform decomposes the image into the low-frequency
sub-band of the image approximate signal and the high-
frequency sub-band of the image detail signal. Non-linear
image enhancement of low frequency subbands can en-
hance contrast and suppress background. Denoising pro-
cessing on high frequency subbands can effectively re-

duce the influence of noise. However, these methods are
very difficult to reconstruct high-frequency components
and low-frequency components, and the amount of calcu-
lation is huge.

• The Retinex theory was proposed by Edwin.H.Land et al.
in 1963. It is based on the idea that the color of the image
of an object is influenced by the reflection properties of
the object’s surface and the environmental lighting. It be-
lieves that the essence of the color of the object’s imaging
is not the environmental lighting, but the reflection of the
incident light on the target scene itself.

In recent years, with the rapid development of artificial in-
telligence technology, deep learning has achieved far better
results than previous technologies in the recognition of text
and speech, as well as image recognition and processing. At
present, the use of deep learning for low-illumination image
quality enhancement research has also made some progress.

In terms of low-light image enhancement, K.G. Lore et
al. proposed a deep autoencoder method (Lore, Akintayo,
and Sarkar 2017) for low-light image enhancement, which
can extract image features, enhance image brightness, and
remove image noise. Shen Liang et al. proved that the tradi-
tional MSR (Multi Scale Retinex) method can be regarded
as a feedforward convolutional neural network with differ-
ent Gaussian convolution kernels, and proposed a MSR-Net
(Shen et al. 2017) that can directly learn the end-to-end map-
ping from dark images to bright images.

Inspired by the Retinex theory, Chen Wei et al. proposed
RetinexNet (Wei et al. 2018). Its overall structure mainly in-
cludes two networks: DecomNet and RelightNet. DecomNet
is used to decompose the picture into reflection components
and illumination components, and RelightNet is used to cor-
rect the illumination components and reconstruct them with
the reflection components to obtain the corrected image. At
the same time, they put forward the idea of collecting data
in real scenes for the first time, which not only enhances the
brightness of the image, but does not destroy the image tex-
ture details and boundary information.

Wang Ruixing et al. proposed a new end-to-end network
for enhancing underexposed photos (Wang et al. 2019).
They introduced intermediate lighting in the network, and
correlated the input with the expected enhancement result,
thereby using the simple nature of the lighting in natural im-
ages to enhance the ability of network to learn complex pho-
tographic adjustments from modified images. Through these
means, their network can restore clear details, sharp contrast
and vivid colors in underexposed photos.

Methodology
Data augmentation
Experiments need to imput the impaired images of well-
exposed surgical images and corresponding underexposed
images. Image enhancement based on natural image gener-
ally includes underexposed images and expert modified im-
ages for training. Because of the small number of medical
image data sets and the lack of corresponding images mod-
ified by experts, we propose an under-exposure image pro-



Figure 1: Normal light image and low light image after
gamma transform processing

cessing method based on the characteristics of endoscope
images to establish image pairs.

Gamma Correction The human eye’s perception of
brightness change is nonlinear and approximate to power
function, and more sensitive to the details of the darker re-
gion.Gamma Correction was originally used to correct the
storage and display of images, using the nonlinearity of hu-
man eye cognition color and brightness, so that the images
can retain more details of the lower brightness regions and
ignore the details of some higher brightness regions. In order
to produce the image which is more consistent with the im-
age obtained by endoscope with the characteristics of light in
the middle and dark in the sides, Gamma Correction is used
to correct different parameter values, The picture is nonlin-
early adjusted to darker, while ensuring that the dimmed im-
age is closer to the real endoscope observed by the doctor.
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Network structure
First, the image is down-sampled to 256 × 256 resolution,
and extracted the local and global features on low-resolution
images, After feature fusion, the bilateral network is gener-
ated by point-by-point convolution, and then the color affine
transformation matrix is obtained with the same resolution
as the original input image by using the guidance map in-
terpolation upsampling. For each pixel on the original input
image, the affine transformation matrix is applied to obtain
the predicted input brightness image S, and the modified im-
age is obtained by combining the original input low light
image.

Low-level features the input image is uniformly scaled to
256× 256 resolution by bilinear interpolation, and then by
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extracting low-level features while further reducing the res-
olution of the data space (filter 3 × 3, stride2), c and c’
are the RGB channels for each convolutional layer. After
ns layer convolution calculation, the extracted feature map
size is further reduced by 2ns times. ns control the degree of
down-sampling from the low-resolution input image to the
bilateral grid, and also affect the complexity of the model.
The bigger ns is, the richer the extracted information.

Local features and Global features The fusion of local
features and global features is very important for extract-
ing sufficient semantic information. The extraction of local
features can provide the spatial position information of the
input image. On the basis of the extracted low-dimensional
features, the convolution kernel of different sizes (stride=1)
is used in each layer to extract the semantic information of
different sizes. Ensure the spatial size of the output feature
map unchanged, to accomplish local feature extraction. The
global feature consists of x layer convolution layer and y
layer full connection layer. Let the information contained in
the feature map is integrated into a vector with equal number
of channels and local feature channels, which facilitates the
next feature fusion and provides the prior information of the
whole input image.

feature fusion After splicing the local and global features
along the depth dimension, the features are fused by point
convolution to generate a new feature map, and the spatial
size of the feature map is adjusted, and then activated by the
ReLU function
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Outputting the faature matrix of 16× 16× 64, and then the
coefficients of the pixel value transformation affine function
are predicted by a linear regression prediction model of 1×
1× 64, and the expanded coefficient matrix of 16× 16× 96
is obtained.

Ac[x, y] = bc + Σc′Fc′ [x, y]wcc 4

Bilateral grid Compress the coefficient matrix along the
third dimension,Adc+z[x, y] ↔ Ac[x, y, z], Bilateral grid
depth d=8, bilateral grid size 16 × 16 × 8, Each grid con-
tains 12 parameters, that is, the parameters of the 3/4 affine
color transformation matrix. From the change of feature map
size, combined with the extraction process of low-level fea-
tures, it can be seen that the stepwise convolution on the x,y
dimension combines the information on the c and z dimen-
sions, and enhances the communication between the data.

Slicing After obtaining the bilateral grid A, we need to
do the upsampling operation to obtain the output result with
the same resolution as the original input image. A low-
resolution bilateral grid A and a gray image with the same
resolution as the original input image guidance map (He,
Sun, and Tang 2010) g are used as inputs. The slicing opera-
tion of the proposed guidance map based on Paris (Paris and
Durand 2009) and so on obtains the new feature map Ã with
the same spatial domain resolution as the same spatial do-
main resolution. This operation is differentiable for both A
and g, i.e. A and g can be adjusted by error backpropagation
algorithm.

Ãc[x, y] =

∑
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)
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τ(·) = max(1 − | · |, 0) the linear interpolation kernel
function,sx, syis the sampling rate on the wide and high di-
mensions of the grid and the original resolution input image;
The x,y is the spatial coordinate of a point on the g, which
is determined by the gray value of the store on the g by the



Figure 2: network structure

third dimension coordinate of the projection point of the low
resolution bilateral grid, that is, the frequency domain coor-
dinate.

Loss function

Figure 3: The result of image enhancement of the endo-
scopic image. The upper left corner is the original image
under the endoscope. The loss function of the upper right
image is Lm, the loss function of the lower left image is
Lm+2Ls, and the loss function of the lower right image is
LMAE+LSSIM .

In order to measure errors in many aspects, a linear com-
bination of multiple loss functions is used as the loss func-
tion, and different weights are set according to experience.
It is expressed as

L = wmLm + wtLt + wsLs 6

Mean square error We use the mean square error as the
loss function. As shown in Equation 7, where N is the num-
ber of pixels in the image, I is ground true, S is the brightness
map of the input picture predicted by the model, I is the in-
put underexposed picture, and the pixel values of the picture
are all normalized to [0,1]. The restricted conditions ensure
that the enhanced image will not be larger than the bound-
ary value 1, nor will it be darker than the original image. The
mean square error fully takes into account the difference in
the number of pixel points of the picture, but it is easy to
overfit the model and cannot allow the model to learn some
deep features.
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s.t. (Ii)c ≤ (Si)c ≤ 1, ∀channelc 8

Smoothing loss Zccv Harbman et al. (Farbman et al.
2008) proposed a weighted least square to enhance the edge
information of the picture. Smoothing loss can enhance the
generalization ability of the model and at the same time en-
hance the contrast of the output image. In order to make the
output image u retain the edge information of the input im-
age g as much as possible, the original problem is regarded
as a filter model that minimizes the value of the following
formula:
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Among them, (up − gp) is used to measure the similarity
between u and g, and ∂u

∂x ,
∂u
∂y is the gradient of image u at

points x and y is used to measure the degree of smoothness.
Therefore, the loss function to measure the smoothness of a
point on the image is:
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Structural loss Zhou Wang et al. (Wang et al. 2004) pro-
posed a structural similarity image quality enhancement in-
dex, considering the similarity between two pictures from
the three aspects of brightness L, contrast C, and structure
S. SSIM is defined as

SSIM(x, y) =
[
L(x, y)

α · C(x, y)
β · S(x, y)

γ
]

11

When the loss function is SSIM and mean absolute error,
the performance of the model is better than using one of
them alone. Therefore, the structure loss function is defined
as shown in Equation 14, LMAE is the average absolute er-
ror between the two images.

LSSIM (I) = 1− SSIM(I, Ĩ) 12
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1
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Lt = αLSSIM + (1− α)LMAE 14

The human eye’s perception of brightness change is non-
linear and approximate to power function, and is more sen-
sitive to the details of the darker region. Gamma Correc-
tion was originally used to correct the storage and display
of images, using the nonlinearity of human eye cognition



color and brightness, so that the images can retain more de-
tails of the lower brightness regions and ignore the details
of some higher brightness regions. In order to produce the
image which is more consistent with the image obtained
by endoscope with the characteristics of middle bright and
dark, Gamma Correction is used to correct different param-
eter values. The picture is nonlinearly adjusted to darker,
while ensuring that the dimmed image is closer to the real
endoscope observed by the doctor.

Experiment
Evaluation index
In the image enhancement problem, PSNR(Peak Signal to
Noise Ratio) and SSIM(Structural Similarity) are generally
used to objectively evaluate the performance of the model.
PSNR is based on the error between corresponding pixels.
The larger the value, the smaller the distortion. However, it
does not take into account that the visual characteristics of
the human eye may be inconsistent with human subjective
perception. The larger the value of SSIM, the more simi-
lar the two images in brightness, contrast, and structure. Be-
cause the endoscopic image has the characteristics of bright
areas with sufficient light and dim areas with insufficient
light. After image enhancement, in the subjective visual per-
ception of the human eye, the overall brightness of the med-
ical image is improved, the texture details are more obvious,
and the contrast is greater.

Figure 4: The results of four different models processing the
medical images of the test set. The upper left corner is the
result of FEQE, the lower left corner is the result of DPED,
the upper right corner is the result of RetinexNet, and the
lower right corner is the result of our model.

Comparison
The images enhanced by our model is compared with the
images obtained by the other three image enhancement al-
gorithms FEQE (Vu et al. 2018), RetinexNet (Wei et al.
2018) and DPED (Ignatov et al. 2017). FEQE first down-
samples low-quality images, samples the features into a low-
resolution space, and then inputs the features into a series of
N residual blocks for instance normalization and ReLU ac-
tivation, and finally up-samples the output image. The entire

model of RetinexNet can be divided into three parts: decom-
position model, adjustment model and reconstruction model.
The decomposition model decomposes an image into illu-
mination components and reflection components; the adjust-
ment model suppresses the noise of the reflection component
of the low-light image, and enhances the illumination com-
ponent of the low-light image; the reconstruction model re-
stores the processed reflection component and illumination
component to a normal illumination image. DPED is divided
into three steps. First, use the generation and decomposition
of two networks to learn multiple loss functions. Second, use
the combined perception error function to combine multiple
losses to improve the quality of the picture. Finally, use the
effective method of calibrating the image to make the pic-
ture perform Self-learning to further improve the quality of
the picture. The results obtained are shown in Figure 4. Cal-
culate the average PSNR value and average SSIM value of
the test set images respectively, and get Table 1. It can be
seen that compared with other models, the expressiveness of
our model has been significantly improved.

PSNR SSIM
Our model 24.5800 0.8862

DPED 23.4647 0.8851
RetinexNet 20.3577 0.5260

FEQE 12.5424 0.3725
Table 1. The average PSNR value and average SSIM value

of the results obtained by the four different models

Conclusion
Based on the deep neural network, Retinex theory, and
the image enhancement model of bilateral grid, we real-
ize the real-time recovery of surgical video under insuf-
ficient light. (1) The most advanced image enhancement
model was applied to establish a new medical image data
set through gamma correction and manual processing, and
minor changes were made to the model to improve its per-
formance in medical image problems. (2) A new error func-
tion is generated by referring to the linear combination of
mean absolute error and structural similarity error, and the
weighted least square filter is used to enhance the image
contrast and improve the image quality. By comparing mul-
tiple models on the data set established by us, our model has
achieved good recovery effect from both subjective analysis
and objective evaluation.
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