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Abstract

The primary aim of single-image super-resolution is to con-
struct a high-resolution (HR) image from a correspond-
ing low-resolution (LR) input. Previous approaches have
achieved very high-quality results, but they are unable to
accurately retain identity on face images. We present a
image-to-image translation framework addressing this prob-
lem, pSp(Pixel2Style2Pixel). Firstly, pSp framework is based
on a novel encoder network that directly generates a series
of style feature vectors that can reconstruct a given image
while preserving the identity and other attributes, forming the
extended YW+ latent space. Then ,JW+ are fed into a pre-
trained StyleGAN generator. Our encoder can directly embed
real images into YW+, with no additional optimization. No-
tably, the advantage of the intermediate style representation is
the inherent support of multi-modal synthesis for tasks such
as low-resolution images. Moreover, We introduce a dedi-
cated identity loss which is shown to achieve improved per-
formance in the reconstruction of an input image. We demon-
strate that pSp can be trained to construct high-resolution im-
ages from corresponding low-resolution images. Finally, We
show experimental results demonstrating the efficacy of our
approach in the domain of face super resolution.

Keywords super-resolution, Generative adversarial net-
work, Identity preserving

Introduction

In many areas (such as medicine, astronomy, microscopy,
and satellite imagery), sharp, high-resolution images are dif-
ficult to obtain due to issues of cost, hardware restriction, or
memory limitations (Singh and Singh 2016). This leads to
the capture of blurry, low-resolution images instead. In other
cases, images could be old and therefore blurry, or even in
a modern context, an image could be out of focus or a per-
son could be in the background. In addition to being visu-
ally unappealing, this impairs the use of downstream anal-
ysis methods (such as image segmentation, action recogni-
tion, or disease diagnosis) which depend on having high-
resolution images (Ronneberger, Fischer, and Brox 2015; Si-
monyan and Zisserman 2014). In addition, as consumer lap-
top, phone, and television screen resolution has increased
over recent years, popular demand for sharp images and
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video has surged. This has motivated recent interest in the
computer vision task of image super-resolution, the creation
of realistic high-resolution (henceforth HR) images that a
given low-resolution (LR) input image could correspond to.
In this work, we aim to transform blurry, low-resolution im-
ages into sharp, realistic, high-resolution images. Notably,
the output image can retain identity. Here, we focus on im-
ages of faces, but our technique is generally applicable.

Several methods have been proposed to improve the vi-
sual quality of SR results. For instance, perceptual loss
(Zhang et al. 2018b) is proposed to optimize super-
resolution model in a feature space instead of pixel space.
Generative adversarial network is introduced to SR by
(Ledig et al. 2016) to encourage the network to favor so-
lutions that look more like natural images. StyleGAN (Kar-
ras, Laine, and Aila 2020) proposes a novel stylebased gen-
erator architecture and attains state-of-the-art visual quality
on high-resolution images. Moreover, it has been demon-
strated that it has a disentangled latent space, WW (Yang,
Shen, and Zhou 2019), obtained from the initial latent space
Z via a Multi-Layer Perceptron (MLP) mapping network,
which may offer control and editing capabilities. pix2pixHD
(Wang et al. 2018) is able to obtain good results. However,
visually, its results appear less photo-realistic. Although
PULSE (Menon et al. 2020) is able to achieve very high-
quality results, they are unable to accurately retain identity.

In this paper, we focus on latent space embedding, which
aims at the retrieval of the latent vector that generates a de-
sired image. Firstly, We do so by introducing a novel en-
coder architecture tasked with encoding an arbitrary im-
age directly into W+, which can reconstruct a given im-
age while preserving the identity and other attributes. The
encoder is based on a Feature Pyramid Network (Lin et al.
2017), where style feature vectors are extracted from differ-
ent pyramid scales and inserted directly into a fixed, pre-
trained StyleGAN generator in correspondence to their spa-
tial scales. Besides the simplification of the training pro-
cess, as no adversary discriminator needs to be trained,
using a pretrained StyleGAN generator offers several in-
triguing advantages over previous works. Our encoder into
W, together with the StyleGAN decoder, form a encoder-
decoder network that benefits many image-to-image trans-
lation tasks. Then, We introduce a identity loss which is
shown to achieve improved performance in the reconstruc-
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Figure 1: The mapping network f consists of 8 layers and
the synthesis network g consists of 18 layers—two for each
resolution (42 — 10242). The output of the last layer is con-
verted to RGB using a separate 1 x 1 convolution, similar to
Karraset al.

tion of an input image. Focusing on face images, we demon-
strateour method’s ability to successfully reconstruct a given
image while preserving the identity and other attributes and
retain identity on face images. In a sense, our method per-
forms Pixel2Style2Pixel translation, as every image is first
encoded into style feature vectors and then into an image,
and is therefore dubbed pSp.

Related Work

Latent Space Embedding With the rapid evolution of
GANs, many works have tried to understand and control
their latent space. A specific task that has received substan-
tial attention is GAN Inversion — where the latent vector
from which a pretrained GAN most accurately reconstructs
a given, known image, is sought. Motivated by its state-
of-the-art image quality and latent space semantic richness,
many recent works have used StyleGAN for this task (Kar-
ras, Laine, and Aila 2020). Generally, inversion methods ei-
ther directly optimize the latent vector to minimize the error
for the given image (Abdal, Qin, and Wonka 2020), train an
encoder to map the given image to the latent space (Antonia
et al. 2018), or use a hybrid approach combining both (Zhu
et al. 2020). Typically, methods performing optimization are
superior in reconstruction quality to a learned encoder map-
ping, but are costly and require a substantially longer time.

Focusing on the more general task of latent space embed-
ding, Nitzan et al. (Nitzan et al. 2020) trained an encoder to
infer a latent vector from which StyleGAN can directly gen-
erate an image with the identity of one image and the pose,
expression, and illumination of another. While this shows
the potential of latent embedding, their method solves only a
specific application and cannot be used to solve other image-
to-image translation tasks.

Image-to-Image Translation techniques aim at learning a
conditional image generation function that maps an input
image of a source domain to a corresponding image of a
target domain. Isola et al. (Isola et al. 2017) first introduced
the use of conditional GANS to solve various image-toimage
translation tasks. Since then, their work has been extended
for many scenarios: high-resolution synthesis (Wang et al.
2018), unsupervised learning (Liu, Breuel, and Kautz 2017;
Lira et al. 2020), multi-modal image synthesis (Huang et al.
2018; Choi et al. 2020), multi-domain image synthesis (Choi
et al. 2018, 2020), and conditional image synthesis (Yang,
Shen, and Zhou 2019; Zhu et al. 2019; Chen et al. 2020;
Liu et al. 2019). The aforementioned works have constructed
dedicated architectures for their tasks which require training
the generator network. This is in contrast to our method that
utilizes a fixed pretrained StyleGAN generator, enjoying its
state-of-the-art image quality.

Super-Resolution Recently, supervised neural networks
have come to dominate current work in super-resolution.
Dong et al. (Dong et al. 2014) proposed the first CNN ar-
chitecture to learn this non-linear LR to HR mapping using
pairs of HR-LR images. Several groups have attempted to
improve the upsampling step by utilizing sub-pixel convo-
Iutions and transposed convolutions (Shi et al. 2016). Fur-
thermore, the application of ResNet architectures to super-
resolution (started by SRResNet (Ledig et al. 2016)), has
yielded substantial improvement over more traditional con-
volutional neural network architectures. In particular, the use
of residual structures allowed for the training of larger net-
works.

Method
StyleGAN Generator

The complete architecture is illustrated in Figurel. Given
a latent code z in the input latent space Z, a non-linear
mapping network f : Z — W first produces w € W .
For simplicity, we set the dimensionality of both spaces to
512, and the mapping f is implemented using an 8-layer
MLP. Learned affine transformations then specialize w to
v = (¥s,¥s) that control adaptive instance normalization
(AdalN) (Isolaet al. 2017; Lin et al. 2017; Huang et al. 2020;
Karras et al. 2017) operations after each convolution layer of
the synthesis network g-shown in Figure 3.The AdaIN oper-
ation in is defined as

AdaIN(x;,y) = ys,iw + Yo
o(x;)
where each feature map x; is normalized separately, and
then scaled and biased using the corresponding scalar com-
ponents from style y. Thus the dimensionality of y is twice
the number of feature maps on that layer.

The pSp FrameWork

Our pSp framework builds upon the representative power of
a pretrained StyleGAN generator and the V4 latent space.
To utilize this feature representation one needs a strong en-
coder that is able to match each input image to an accu-
rate encoding in the latent domain. In StyleGAN, the au-
thors have shown that the different style inputs correspond
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Figure 2: The architecture of our model.
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Figure 3: AdaIN

to different levels of detail, which are roughly divided into
three groups — coarse, medium, and fine. Following this
observation, in pSp, we extend an encoder backbone with
a feature pyramid (Lin et al. 2017), generating three lev-
els of feature maps from which styles are extracted using
a simple intermediate network—map2style — shown in Fig-
ure 2. The styles, aligned with the hierarchical representa-
tion, are then fed into the generator in correspondence to
their scale to generate the output image, thus completing the
translation from input pixels to output pixels, through the
intermediate style feature representation. Therefore, our ar-
chitecture, pSp, is an end-to-end image-to-image translation
framework. The complete architecture is illustrated in Fig-
ure2. We note that while we found the feature pyramid to
best match the StyleGAN architecture, other possible varia-
tions could also work. For example, generating all the style
vectors from the largest feature map would mostly affect the
model size without hindering model accuracy. Conversely,
generating the style vectors from the smallest feature map
is also feasible without limiting performance as long as its
dimensionality is large enough.

Loss Functions

Our encoder is trained using a weighted combination of sev-
eral objectives. First, we utilize the pixel-wise L loss,

Lo(x) = |lx = pSp(x)|2

where x denotes the input image and pSp(x) = G(E(x))
is the output returned by pSp defined by the encoder net-
work, E(), and generator network, G(-). In addition, to
learn perceptual similarities, we utilize the LPIPS (Zhang
et al. 2018a) loss, which has been shown to better preserve
image quality compared to the more standard perceptual
loss. Formally,

Lipips(x) = [|[F(x) — F(pSp(x))ll2

where F'(-) denotes the perceptual feature extractor.

The Identity Loss

One of the main challenges of face generation tasks is the
ability to preserve identity between the input and output im-
ages. Since identity preservation is a crucial part of face re-
construction tasks, it is important to integrate this objective
into the overall loss function. Therefore, as the aforemen-
tioned loss functions are less sensitive to the preservation of
facial identity, we incorporate a dedicated recognition loss
measuring the cosine similarity between the output image
and its source,

Lip(x) =1— < R(x), R(pSp(x)) >

where R is a pretrained ArcFace (Deng, Guo, and
Zafeiriou 2018) network for face recognition. The input im-
age, x, and corresponding generated image, pSp(x), are
cropped around the face and resized to 112 x 112 before
being fed into R.

In summary, the total loss function is defined as

L(x) = A La(x) + Ao Lipips(x) + AsLip(x)

where A1, Ao, and A3 are constants defining the loss
weights.



Experiment
Datasets

We evaluated our procedure on the well-known highreso-
lution face dataset CelebA HQ (Karras et al. 2017), which
contains 30,000 high quality images. (Note: this is not to
be confused with CelebA, which is of substantially lower
resolution.) We use a standard train-test split of the dataset,
resulting in approximately 24,000 training images.

Baselines

Here we show that our framework can be used to construct
high-resolution (HR) facial images from corresponding low-
resolution (LR) input images. PULSE approaches this task
in an unsupervised manner. Specifically, for a given LR input
image, PULSE traverses the HR image manifold in search
of an image that downscales to the original LR image. Al-
though PULSE takes an unsupervised approach to this prob-
lem, in this work we focus on applying pSp in a supervised
manner for solving this task as obtaining paired data is im-
mediate. We show that our method achieves comparable re-
sults, especially with respect to identity preservation.

Methodology and details

We train our super-resolution model in a supervised fashion,
where for each input, we perform random bicubic down-
sampling of X1 (i.e. no sub-sampling), X2 ; x4 ; x8 and
% 16 and set the original, full resolution image as the target.

Qualitative Image Results

Figure 4 demonstrates the visual quality of the resulting im-
ages from our method along with those of the previous ap-
proaches. Although PULSE is able to achieve very high-
quality results due to their usage of StyleGAN to generate
images, they are unable to accurately retain identity even
when performing down-sampling of x8. Contrary to these
previous works, we are able to obtain high-quality, photo-
realistic images while successfully preserving identity, even
when down-sampling by x32.

Quantitative Comparison

Table 1: MOS Score for various algorithms at 128 x 128.
Higher is better.

Methods FSRNet PULSE pix2pixHD pSp
MOS 2.92 3.60 3.67 3.70

Here we present a quantitative comparison with state-
ofthe-art face super-resolution methods. We conducted a
mean-opinion-score (MOS) test as is common in the percep-
tual super-resolution literature (Duan et al. 2020). For this,
we had 40 raters examine images upscaled by 5 different
methods (FSRNet, PULSE, pix2pixHD and our pSp). For
this comparison, we used a scale factor of 8§ and a maximum
resolution of 128 x 128, despite our method’s ability to go
substantially higher, due to this being the maximum limit for
the competing methods. After being exposed to 20 examples
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Figure 4: Visual comparison of super resolution results on
CelebA-HQ.

of a 1 (worst) rating exemplified by nearest-neighbors up-
sampling, and a 5 (best) rating exemplified by high-quality
HR images, raters provided a score from 1-5 for each of the
240 images. All images fell within the appropriate e = 1le—3
for the downscaling loss. The results are displayed in Table
1.

pSp outperformed the other methods and its score ap-
proached that of the HR dataset. Note that the HR’s 3.74
average image quality reflects the fact that some of the HR
images in the dataset had noticeable artifacts. All pairwise
differences were highly statistically significant by the Mann-
Whitney-U test. The results demonstrate that pSp outper-
forms current methods in generating perceptually convinc-
ing images that downscale correctly.

Conclusion

In this work, we proposed a novel encoder architecture that
can be used to directly map a face image into the W+ la-
tent space with no optimization required. The encoder archi-
tecture, motivated by StyleGAN, consists of a hierarchy of
three levels that correspond to the coarse, medium, and fine



groupings of the 18 style vectors defining the input in the
W+ latent space. Styles are then extracted from the encoder
in a hierarchical fashion and fed into the corresponding in-
puts of a fixed StyleGAN generator. Notably, our network
is trained with an identity similarity loss, which encourages
better preservation of identity compared to previous direct
approaches. Finally, We show experimental results demon-
strating the efficacy of our approach in the domain of face
super resolution and our method can retain identity on face
images.
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