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Abstract

Convolutional neural networks (CNNs) have made
great breakthroughs in 2D computer vision.
Consequently, CNN has been also applied to 3D
geometry, inspired by 2D CNNs. There are several
for 3D data, such as point cloud, voxel, mesh and
some implicit representations. Among the
representations above, polygonal meshes provide a
relatively efficient representation for 3D shapes.
Compared with point cloud, they explicitly capture
topology of a shape, while compared with voxel, they
only represent the boundary of an object, and does
not have redundant elements representing the object’
s interior. Meshes leverage non-uniformity to
represent large flat regions as well as intricate
features. However, this nonuniformity and
irregularity inhibits mesh analysis efforts using
CNNs. Based on MeshCNN, which present special
edge-based convolution and pooling, we attempt to
improve the method of MeshCNN, since it has
limited receptive field and can not capture global
features. In this project, we still utilize the unique
properties of the triangle mesh for a direct analysis of
3D shapes, including classification and segmentation,
using an improved edition of MeshCNN, a
convolutional neural network designed specifically
for triangular meshes

Introduction
The great success of deep convolutional neural
networks (CNNs) in 2D computer vision has led to
their generalisation to various disciplines, including
3D geometry. For computational reasons, and to
facilitate data processing, various discrete
approximations for 3D shapes have been suggested
and utilized to represent shapes in an array of
applications. PointNet [1] is a pioneering and
representative approach for learning a feature
representation of a point cloud, followed by more
successful work in this domain .Apart from point
clouds,3D geometry learning has been extended to
other forms of 3D data, such as voxels and meshes .
In this project, we consider the neural network

MeshCNN, which aim to tap into the natural
potential of the native mesh representation. The
network adequately utilize the unique property,
every edge is incident to exactly two faces (triangles),
which defines a natural fixed-sized convolutional
neighborhood of four edges. But we find a defect of
the special convolutional operation. The convolution
kernel of MeshCNN has a receptive field which is
limited to the adjacent four edges of a given edge. We
try to improve this defect. However, unlike
conventional edge collapse, which removes edges
that introduce a minimal geometric distortion, mesh
pooling delegates the choice of which edges to
collapse to the network in a task-specific manner. The
purged edges are the ones whose features contribute
the least to the used objective(see examples in figures
1 and 2).

Figure1
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Figure2

Related Work

Many of the operators that MeshCNN presents or uses
in their work are based on classic mesh processing tec-
hniques [8][9][10], or more specifically, mesh simplific-
ation techniques [11][12][13].In particular, they use the
edge-collapse technique [13] for the task-driven poolin-
g operator. While classic mesh simplification techniqu-
es aim to reduce the number of mesh elements with m-
inimal geometric distortion[14][15], in MeshCNN, they
use the mesh simplification technique to reduce the re-
solution of the feature maps within the context of a ne-
ural network. In the following, we briefly review relev-
ant work on 3D geometric learning ,organized accor-
ding to input representation type.

Multi-view 2D projections. One way of applying deep
learning to geometric data is to transform 3D shapes
into images. Consequently, the method of transform
3D data into 2D projection has been exploited.
Additionally, leveraging existing techniques and
architectures from the 2D domain is made possible by
representing 3D shapes through their 2D projections
from various viewpoints. These sets of rendered
images serve as input to subsequent processing by
standard CNN models.[16] were the first to apply a
multi-view CNN for the task of shape classification,
however, this approach cannot perform semantic-
segmentation. Then [17] presented a more
comprehensive multi-view framework for shape
segmentation which fix the defect above.

Volumetric. Transforming a 3D shape into voxels
provides a grid-based representation that is analogous
to the 2D grid of an image, so that operations that are
applied on 2D grids can be extended to 3D grids in a
straight-forward manner, thus allowing common
image-based approaches apply to 3D. [18] pioneered
this concept, and presented a CNN that processes
voxelized shapes for classification and completion.
Following that, [19] tackled shape reconstruction using
a voxel-based variational autoencoder, and[20]
combined trilinear interpolation and Conditional
Random Fields (CRF) with a volumetric network to
promote semantic shape segmentation.[21] used voxel
to train a network to regress grid-based warp fields for

shape alignment, and applied the estimated deformation
on the original mesh.

Point clouds. The point cloud is a classic candidate for
data analysis attributed to the close relationship to data
acquisition and ease of conversion from other
representations. [1] proposes to use 1x1 convolutions
followed by global max pooling for order invariance. In
its followup work, [3], points are partitioned to capture
local structures better.

Meshes. A mesh representation is based on three types
of geometric primitive: vertices, edges, and faces. We
classify mesh deep learning methods according to which
of these is treated as the primary data. The first is the
vertex-based approach. One popular approach performs
deep learning on 3D shapes by locally encoding in the
neighborhood of each vertex into a regular domain, wh-
ereupon convolution operations (or kernel functions)can
imitate those used for images, such as [22][23][24].The
second is the edge-based method. In a 2-manifold mesh,
every edge is adjacent to two faces, and the four other
edges of those two triangles. This property is exploited
by [25] to define an order invariant convolution. PD-
MeshNet[26] first constructs a primal graph and a dual
graph from the input mesh, then performs convolutions
on these graphs using a graph attention network[27]. M-
eshWalker [29] employs random walks along edges to
extract shape features, instead of exploiting regular nei-
ghborhood structures. The last one is face-based method.
Face-based methods focus on how to efficiently and effe-
ctively gather information from neighboring faces.[30]
propose a rotationally invariant face based method cons-
idering ring neighbors.[31] propose MeshNet. It adopts
graph-constrained mesh-cell nodes to integrate local-to-
global geometric features. DNF-Net [32] denoises mesh
normals on cropped local patches using multi-scale em-
bedding and a residual learning strategy. TextureNet [33]
parameterizes mesh patches and high-resolution textur-
es as quadrilaterals to employ grid convolution.
SubdivNet[34],which is presented this year, achieves the
state-of-art result on tasks of shape classification and
segmentation.

Proposed Solution

Applying CNN on Meshes

The most fundamental and commonly used 3D data
representation in computer graphics is the non-uniform
polygonal mesh; large flat regions use a small number of
large polygons, while detailed regions use a larger
number of polygons. A mesh explicitly represents the
topology of a surface: faithfully describing intricate
structures while disambiguating proximity from nearby
surfaces (see Figure 3).
Realizing our goal to apply the CNN paradigm dire-



ctly onto triangular meshes, necessitates an analogous
definition and implementation of the standard build-
ing blocks of CNN: the convolution and pooling layers.
As opposed to images which are represented on a reg-
ular grid of discrete values, the key challenge in mesh
analysis is its inherent irregularity and non-uniformity.

Figure3

Methods

Mesh Convolution.We define a convolution operator
for edges, where the spatial support is defined using
the four incident neighbors (Figure 3). Recall that conv-
olution is the dot product between a kernel k and a nei-
ghborhood, thus the convolution for an edge feature e
and its four adjacent edges is:

Mesh Pooling.We extend conventional pooling to irre-
gular data, by identifying three core operations that to-
gether generalize the notion of pooling:
1) define pooling region given adjacency
2) merge features in each pooling region
3) redefine adjacency for the merged features

Mesh Unpooling.Each mesh unpooling layer is paired
with a mesh pooling layer, to upsample the mesh topo-
logy and the edge features. The unpooling layer reins-
tates the upsampled topology (prior to mesh poo-
ling),by storing the connectivity prior to pooling. Note
that upsampling the connectivity is a reversible opera-
tion (just as in images). For unpooled edge feature co-
mputation, we retain a graph which stores the adjace-
ncies from the original edges (prior to pooling) to the
new edges (after pooling). Each unpooled edge feature
is then a weighted combination of the pooled edge
features. The case of average unpooling is demonstr-
ated in Figure 4.

Figure4
Plan

Our project is based on MeshCNN. Considering the

limitation of the convolution in MeshCNN which is
mentioned above, we attempt to modify the original
convolution pattern or the pipeline of the network to
obtain better experiment results on the tasks of 3D shape
classification and segmentation.

Experiments

Data Processing

Geometric mesh decimation helps to reduce the input
resolution and with it the network capacity required for
training , so we simplidied each mesh to roughly the
same number of edges.Since our task is shape classifica-
tion,the requirement of the shape resolution is relatively
low(about 750 edges).

Augmentation. Since our input features are similarity-
invariant, applying rotation, translation and isotropic
scaling does not generate new input features.However ,
applying anisotropic scaling on the vertex locations in x ,
y and z can generate new features.Moreover, we shift
vertices of each mesh to different locations and augment
the tessellation of each object by performing random
edge flips.

Mesh Classification

SHREC.We performed classification on 30 classes from
the SHREC dataset , with 20 examples per class. Split 16
and 10 of the SHREC dataset are the number of training
examples per class and we use the split 16 in our
task.We stop training after 200 epochs.Figure 5 shows
the test results.

Figure5

We also visualize some examples of mesh pooling
simplifications of this dataset in Figure 6.

Figure6



Cube engraving. The dataset of cubes is modeled with
shallow icon engravings(see Figure 7)

Figure7

We train our network to classify the cubes.We show
the test accuracy in Figure 8 and visualize the effect of
mesh pooling in Figure 9.

Figure8

Figure9

Conclusion

DISCUSSION AND FUTURE WORK

We have presented MeshCNN, a general method for
employing neural networks directly on irregular
triangular meshes. The key contribution of our work is
the definition and application of convolution and
pooling operations tailored to irregular and non-
uniform structures. These operations facilitate a direct
analysis of shapes represented as meshes in their
native form, and hence benefit from the unique
properties associated with the representation of surface

manifolds with non-uniform structures.
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