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Abstract

Recently, the technological breakthrough in Generative Ad-
versarial Networks (GAN) are driving advances in Al-based
content generation applications such as painting, style con-
version, and music composition. However, few teams are tar-
geting the ACGN group. The preference for animated and
comic character designs has always accurately reflected each
person’s ACGN concentration. In this study, we present Ac-
GAN — Acg avatar Generation network, a simple yet power-
ful generative adversarial architecture that can generate the
preferred Acg wife directly. In this work, the picture gen-
eration function of GAN network is applied to the task of
ACG character generation, which uses a variety of GAN net-
works and compares the advantages and disadvantages of var-
ious networks horizontally. At the end of the paper, we point
out the areas and prospects for the future development of the
GAN.

Introduction

Generative modeling is an unsupervised learning task in ma-
chine learning that involves automatically discovering and
learning the regularities or patterns in input data so that mod-
els can be used to generate or output new examples that
might be extracted from the original dataset. Generative ad-
versarial network (GAN) (Goodfellow et al. 2014) is an ap-
proach to generative modeling using deep learning methods.

GAN is committed to generate data that did not exist in
the real world, similar to making Al creative or imaginative
and it has shown great potential to generate Al-based sam-
ples since its first introduction in 2014. And GAN’s core
ideas derive from the Nash equilibrium in game theory, with
Generator (the generator G responsible for generating the
image) and Discriminator (the judge D responsible for judg-
ing the authenticity of the picture). D’s aim is to get a low
score on a “fake” image that G “forges” and G’s aim is to
”spoof” D into getting a high score by imitating the real im-
age to the maximum extent possible. Participating parties in
this game continue to complete their own optimization in
the competition, thus achieving their respective identifica-
tion and generation capabilities, until the two sides reach a
dynamic balance.
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Many people in the world like ACGN, and many heavy
two dimensions want to have a Acg wife. Based on this we
propose AcGAN — Acg avatar Generation network. The
network is able to generate the user’s preferred Acg wife
based on the desired hair length, hair color, and pupil color
entered by the user.

We can think that all the painters in the painting of the
Acg girls are subject to a fixed regulation, such as the posi-
tion of the eyes, hair direction, according to some people feel
comfortable proportions to draw a beautiful image. From
the perspective of neural networks, however, the picture is
achieved by means of a pixel matrix, that is, all the beauty
of the girl is subject to a complex distribution. We take sam-
ples from this distribution to get the positive samples that we
hope them with positive distribution of the five officials. And
outside of this distribution, we can get a variety of negative
images. Therefore, the generator G has to do is find out the
distribution and simulate it so that the image generated by
random noise after passing through the generator can satisfy
this distribution. On the other side, the discriminator D is re-
sponsible for determining whether the distribution generated
is positive.

During training, the goal of generating Network G is to
generate as many real pictures as possible to spoof Network
D, and the goal of D is to separate the pictures generated by
G from the real pictures. Thus, G and D constitute a dynamic
”game process’. The result of the final game is that, ideally,
G can generate enough picture G(z) to “fake the truth”. For
D, it is difficult to determine whether the picture generated
by G is real or not, and in this state D(G(z)) is 0.5.

The whole formula consists of two. In the case of gener-
ating a picture, X represents a real picture, z represents the
noise of the input G network, and G(z) represents a picture
generated by the G network. D(x) represents the probabil-
ity that the D network will judge whether the real picture
is true (because X is real, the closer this number is to 1, the
better for D). D(G(z)) is the probability that the D network
will determine whether the picture generated by G is real.
The purpose of G is to make D (G(z) as large as possible,
at which point V(D, G) becomes smaller. So we want to get
the minimum value of G, which is minG. The stronger D’s
ability, the larger the D(x) and the smaller the D(G(x). V(D,
G) becomes larger, so the formula is the largest (i.e. maxD)
for D.
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Figure 1: The GAN training process. The black dashed line in the figure represents the distribution of the real sample, the blue
dashed line represents the distribution of the probability of the differential discrimination, and the solid green line represents
the distribution of the resulting sample. Z represents noise, and Z to x represents the mapping of the distribution after passing

through the generator.

From the figure 2, our goal is to use the generated sample
distribution (green solid line) to fit the real sample distri-
bution (black dashed line) to produce a false sample. You
can see that when (a) is in its initial state, the distribution
generated by the generator differs greatly from the real dis-
tribution, and the probability of the dissiferr distinguishing
the sample is not very stable, so the dissenter is trained to
better distinguish the sample. (b) sample status is achieved
by training the discriminator several times, at which point
the distinguishing sample is very significant and well distin-
guished. The generator is then trained. Train the generator
to reach the (c) sample state, where the generator distribu-
tion is approximated compared to the previous real sample
distribution. After many iterations of repeated training, it is
hoped that the (d) state can be reached, that the resulting
sample distribution fits the real sample distribution, and that
the D cannot tell whether the sample is generated or true (the
probability of identification is 0.5). This means that a very
real sample can be generated at this point.

Related work

Generative adversarial networks is only able to synthe-
size low-resolution images, the follow-ups improved it with
multiple discriminators (Durugkar, Gemp, and Mahadevan
2016; Zhao et al. 2020; Theagarajan and Bhanu 2019), self-
attention mechanism (Brock, Donahue, and Simonyan 2018;
Zhang et al. 2019; Emami et al. 2020) and progressive train-
ing strategy (Karras et al. 2017).So, now GANs have enabled
photorealistic synthesis for many vision and graphics appli-
cations (Ledig et al. 2017; Isola et al. 2017; Pathak et al.
2016; Zhao et al. 2020). As image quality and compute ca-
pacity have increased, we have computational costs and in-
ference time.

Image generation via GANs.There are two major ways
of using GANs for image generation: (1) The DCGAN (Rad-
ford, Metz, and Chintala 2015) was trained so that it was
able to generate high-quality secondary images. A large
number of samples are then produced, which we manually
label to turn the problem into a classification problem. Put

these labeled samples into a CNN-based classification net-
work for classification; (2) conditional GANs (Isola et al.
2017; Liu, Breuel, and Kautz 2017; Lee et al. 2018; Zhu
et al. 2017), which learn to directly translate an input im-
age into a target domain. In this work, we aim to learn effi-
cient generators for getting high-quality generated pictures,
which can control the progress of the project accurately. In
this work, we tried three models as the primary network,
namely SAGAN, BigGAN and StyleGAN.

DCGAN. Image recognition has always been a hot re-
search topic in the scientific community and industry(Fang
et al. 2018). The advent of convolutional neural networks
(CNN) has made this technology a focus of research in the
field of computer vision, especially in the field of image
recognition. But it makes the identification results largely
dependent on the quantity and quality of the training sam-
ples. Recently, DCGAN has become a cutting-edge method
for generating images, sounds, and videos. DCGAN’s eval-
uators and generators use convolutional neural networks
(CNN) to replace multi-layer sensors in GAN, while remov-
ing the pooled layer from CNN in order to make the entire
network micro, and replacing the full-connected layer with
a global pooled layer to reduce computation.

Proposed Solution
SAGAN

Self-Attention Generative Adversarial Networks. Convo-
Iutional GAN can effectively handle textures which in pic-
tures in general, but underperform when dealing with the
structural characteristics of the whole (e.g. the texture of the
dogs’ hair and the structure of the limbs), often resulting
the part of eyes asymmetric when creating a human face.
The reason for it should be that the local perception do-
main of the convolution kernel is small, which cannot see
the effect of the right eye on the left eye when convolution
is done in the area of the left eye, thus resulting in a picture
that lacks the integrity of the structural features of the face.
Although high-dimensional abstraction and global grip can
be achieved through multi-layer convolution, how to train
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Figure 2: SAGAN network structure

such a multi-layer network becomes a challenge, and if a
large convolution kernel is used, it will reduce the compu-
tational and statistical advantage of convolution kernel rela-
tive to fully connected neurons. As a result, SAGAN intro-
duces self-attention mechanism into convolutional GAN to
balance the overall structural information and computational
and statistical efficiency better.

Self-attention (Mi et al. 2020; Parmar et al. 2018).
In order to achieve self-attention mechanism, the attention
layer is added to the network. Suppose the characteristics of
the image are output from the previous hidden layer, where
C is the number of channels, N is the number of features,
and the image size equals wide X high.
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Indicates how much attention the model pays to position
i when it generates position j, at which point a connection is
established between different locations. In order to increase
the descriptive power of the attention layer, the output of the

attention layer introduces more parameters:
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and W, € RY*C, are achieved by a 1 x 1 convolutional

kernel. C' can be self-made, you can specify a number less

than C to reduce the amount of calculation. The final output

o is added to the image feature by a scale factor ~y to achieve
attention-to-image adjustment:
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SAGAN uses two techniques to make training more sta-
ble. First, SAGAN uses spectral normalization to implement
Lippschitz constraints at every layer of generators and dif-
ferentiators compared to previous work. The advantage of

spectral normalization is that it does not rely on additional
hypersorginant fine-tuning (spectrum normalization works
well when all layers are set to 1) and the computational over-
head is small. And using spectral normalization on both the
generator and the evaluator also makes it possible to have a
fewer updates to the evaluator after the update of each gen-
erator, reducing computational overhead.

Because regularization sometimes slows down the learn-
ing curve of the GAN, in practice, the method of using reg-
ularization judgment requires multiple update steps (for ex-
ample, five) per generator during training typically. Indepen-
dently, Heusel advocates the use of separating learning rates
(TTRs) for generators and raters. We recommend that TTUR
be used specifically to compensate for slow learning prob-
lems in regularized disparaters, making it possible to use a
fewer generator steps for each disparate step. With this ap-
proach, we can produce better results in the same unit time.

The above is the self-attention mechanism for solving the
problem of getting global information proposed by SAGAN,
which not only considers the global information at each
layer, but also does not introduce too many parameters, find-
ing a good balance between improving the perception of
wild and reducing the amount of parameters.

BigGAN

BigGAN(Chang and Lu 2020)is implemented on the in-
frastructure of SAGAN, focusing primarily on training
large-scale GNs, with considerable improvements that pre-
serves the ability of recognition even for poorly trained im-
ages, but with up to 1.6 billion network parameters, it also
brings significantly increased computing overhead. The im-
provements of BigGAN are mainly reflected in three as-
pects: model structure, timely truncation and processing of
the prior distribution z, and the control of model stability.
The model structure. Simply increasing the batch-size
can improve the performance. The reason may be that the
more patterns are overwritten per batch the better gradient
will be provided for generating and identifying the two net-
works by increasing the batch-size. However, it also leads
to a decrease in the stability of the model in training. At
the same time, based on the results of the experiment, the
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Figure 3: BigGAN network structure

number of channels per layer should also be increased. The
increase of parameters with the increase of channels makes
the capacity of the model more complex than the dataset. In
general, GAN embeds z as input into the built network(Bao
et al. 2017; Lu et al. 2018), while BigGAN connects the
noise vector z and bar label C to the various layers of the
generator, affecting the characteristics of different resolution
and hierarchy levels by affecting the weights and offsets of
each layer.

Timely truncation and treatment of a priori distribu-
tion z. GAN is known to assume a prior distribution z as
the excitation input to the network. Depending on the qual-
ity metrics IS and FID, you can set the appropriate threshold
to truncate the sample of z, and the out-of-range values can
be resampled(Qian et al. 2018). As the threshold decreases,
the image quality gets better and better, but as the sampling
range narrows, the resulting images become monolithic, re-
sulting in insufficient diversity of the resulting images. IS
generally reflects the quality, and FID reflects the diversity,
therefore there are trade-offs in threshold decisions. In ad-
dition, some large models produce saturated artifacts when
the truncation noise z is embedded, so orthogonalization is
introduced, enforcing orthogonal conditions to smooth the
generator:

2
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W is the weight which requires proper relaxation, because

the rule is often too strict. The best constraints by experi-
mentation are:

Rs(W)=g8|[WwTWo (-1 ©6)
The control of model stability(Hou and Xiong 2019;
Berberich et al. 2020). For the generator, the experiment at-
tempted to avoid crashes by adjusting the first three singular
values of each weight matrix, but the results were not ideal.
Therefore, the steering is to control the dissector. Experi-
ments have found that the spectra of the disspirator contain
noise and assume that it is related to training crashes. And
by using R1 zero center gradient penalty:
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And we found that the higher penalty for the dissitortor,
the training will be more stable, but the performance will be
Worse.

Ry

StyleGAN

Style-Based Generator Architecture for Generative Ad-
versarial Network(Karras et al. 2020; Nie et al. 2020).
StyleGAN can be said to draw on some of the ideas of
VEA (Variational Autoencoder)(Pu et al. 2016), whose main
contribution is to provide a framework that can be involved
in the image generation process of the generator, and to add
details to the picture in a more efficient way, making it more
efficient for the generator to generate pictures with specific
styles with more details.
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Figure 4: Style-based generator contrasts with traditional
structures

Style-based generator(Karras, Laine, and Aila 2019)..
StyleGAN replaces the initial input layer with a constant
layer in the generator and adds a fully connected mapping



network to generate inputs with a set of style control vectors
w:
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The generation of certain features is controlled separately
by each element of w to reduce feature entanglement. The
resulting w transforms A into style with a learnable affine
after truncation:

Y= (Ys, ) ©)

Thus, at each level of AdaIN (Adaptive Instance Normal-
ization):

AdalN (z;,y) = ys,iwz—u(xl) + Yb,i (10)
o (z;)

The result generated at each layer is machined so that the
resulting picture is globally controlled by style y. In addition,
layer-by-layer normalization allows the operation to affect
only a portion of the final result.

Style mixing(Karras et al. 2020; Mikolajczyk and Gro-
chowski 2018; Shorten and Khoshgoftaar 2019). To local-
ize the style further, mixing regularization controls different
high-level properties by randomly switching different styles
of w at some layers during the build process after two ws
are calculated nonlinearly. This approach can transition from
one style to another in a coherent way.

Stochastic variation. Traditional generator inputs have
only the input layer, so generator itself must look for a
way to generate pseudo-random numbers to produce random
transformations, but it consumes the ability of network and
makes hiding the periodicity of the generated signals dif-
ficult. Therefore, the image can control local characteristics
randomly and directly by introducing Gaussian noise B. The
method makes it possible to enrich the details of the image,
thus making it more realistic and diverse.

Experiment

Experimental data and loss. We used 34,093 original sec-
ondary images with a resolution of 128 x 128 as our dataset.
Due to length issues, we only select the training results of
SAGAN, which has relatively good training results, for pre-
sentation.
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Figure 5: The test error of the discriminator.
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Figure 6: The test error of the generator.

Conclusion

In order to generate ACG images, we tried to build AcGAN
using three GAN structures in this experiment. Through this
experiment, our team members learned about the develop-
ment of GAN and their variants, forming their own knowl-
edge network in the field of image generation, but also have
their own views. Although everyone’s research direction is
different, the idea of confrontation and rivalry can be trans-
ferred to various fields, which opens up scientific research
and innovative thinking for us. We are also happy to ap-
ply what we have learned to the ACG areas of interest to
us. At the same time, it boldly predicted that most of the
work in the field of comics (two-dimensional) in the future
will be replaced by artificial intelligence. We believe that the
innovative applications of artificial intelligence in the field
of comics include: (1) Intelligent coloring; (2) Generating
images frame by frame according to the text description of
the script to form animation; (3) Generating animation and
movies directly from novels in the film and television indus-

try.

Figure 7: Some of the Acg images generated.
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