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Abstract

Salient Object Detection(SOD) aims to identify the most
obvious and significant objects in the images. Traditional
SOD methods rely too much on hand-crafted features, so
they are gradually abandoned. Existing CNN-based methods
are still facing challenges in complex scenes, such as blurry
boundaries and unbalanced confidence. To solve the above
problems, we propose Boundary Aware PoolNet(BAPoolNet)
by improving PoolNet with deep supervision and hybrid loss.
Deep supervision makes the shallow part of the network su-
pervised more effectively and helps to locate the salient ob-
jects more accurately. Hybrid loss allows the network to pre-
dict the location and boundary of the salient objects from the
perspective of the pixel/patch/image-level respectively. Ex-
periment results show our BAPoolNet exceeds other methods
without bells and whistles.

1 Introduction

Salient Object Detection(Gupta et al. 2020) can identify
the most obvious and significant objects in the images. Un-
like object detection, SOD divides the images into fore-
ground pixels and background pixels, where the foreground
represent the salient objects. SOD can extract effective in-
formation from massive images, which can provide con-
venience for other tasks in the computer vision, such as
image classification, semantic segmentation, image super-
resolution, image retrieval, and so on. Therefore, SOD can
promote the development of computer vision.

The rise of deep learning provides a new paradigm for
SOD. Researchers have proposed a large number of CNN-
based SOD methods. CNN-based SOD methods are far su-
perior to traditional methods in terms of salient object’s loca-
tion accuracy and pixel accuracy. However, existing methods
also have some shortcomings, such as performance needs to
be improved in complex backgrounds and model complexity
needs to be reduced.

PoolNet is a U-Net structured network based on full
convolutional network(FCN) and feature pyramid net-
work(FPN). PoolNet contains a global guidance mod-
ule(GGM) and a feature aggregation module(FAM). GGM
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uses short connection to achieve lossless transmission and
further processing of the deep features. FAM ensures the ef-
fective fusion of deep and shallow features.

However, PoolNet has two drawbacks. First, PoolNet only
uses the final output for gradient descent supervision and
does not fully utilize the output of other layers. 2nd, PoolNet
uses a binary cross-entropy loss function during training. So
the pixels near the boundary of the salient object usually
have a low confidence score, resulting in blurred boundary
of the salient object.

Considering the above-mentioned shortcomings of Pool-
Net, we conduct the following improvements:

* Deep supervision. The losses of the multi-layer features
in the top-down path of PoolNet are summed for gradi-
ent descent, which helps more accurately predict the lo-
cations and boundaries of salient targets.

* Hybrid loss. The binary cross-entropy 1oss(BCE loss),
structural similarity loss(SSIM loss), and Intersection
over Union loss(IoU loss) are combined together, which
helps to predict the location and boundary of salient ob-
jects from pixel/local/global level.

2 Related Work

Most SOD methods adopt FCN as basic architecture to
achieve saliency learning in an end-to-end manner. Typi-
cal architectures can be further classified into: single-stream
network, multi-stream network, side-fusion network, and
bottom-up/top-down network.

Now bottom-up/top-down network is the most popular ar-
chitecture, such as PoolNet, so we take PoolNet as our base-
line.

2.1 Single-stream Network

Single-stream network is the most standard architec-
ture, which has a stack of convolution layers, intermediated
with pooling and non-linear activation operations. It takes
a whole image as input, and directly outputs a pixel-wise
probabilistic map highlighting salient objects. UCF(Zhang
et al. 2017) makes use of an encoder-decoder network ar-
chitecture for finer-resolution saliency prediction. It incor-
porates a reformulated dropout in the encoder for learning



uncertain features, and a hybrid up-sampling scheme in the
decoder for avoiding checkerboard artifacts.

2.2 Multi-stream Network

Multi-stream network, typically consists of multiple net-
work streams to explicitly learning multi-scale saliency fea-
tures from multi-resolution inputs. Multi-stream outputs are
fused to form a final prediction. MSRNet(Li et al. 2017) has
three streams to process three scaled versions of input im-
ages. The three outputs are finally fused through a learnable
attention module.

2.3 Side-fusion Network

Side-fusion network fuses multi-layer responses of a
backbone network together for SOD prediction, making use
of the inherent multi-scale representations of the CNN hier-
archy . Side-outputs are typically supervised by the ground-
truth, leading to a deep supervision strategy(Xie and Tu
2015). DSS(Hou et al. 2017) adds short connections from
deeper side-outputs to shallower ones. Thus higher level fea-
tures help lower side-outputs better locate salient regions,
and lower-level features can enrich deeper side-outputs with
finer details.

2.4 Bottom-up/top-down network

Bottom-up/top-down network refines rough saliency
maps in the feed-forward pass by gradually incorporating
spatial-detail-rich features from lower layers, and produces
the finest saliency maps at the top-most layer . DGRL(Wang
et al. 2018) purifies low-level features before combining
them with the high-level ones. The combined features are
refined recurrently in a top down pathway. The final out-
put is enhanced by a boundary refinement submodule. Pi-
CANet(Liu, Han, and Yang 2018) hierarchically embeds
global and local pixelwise contextual attention modules into
the top-down pathway of a U-Net(Ronneberger, Fischer, and
Brox 2015) structure.

3 Boundary Aware PoolNet

Based on FCN(Long, Shelhamer, and Darrell 2015) and
FPN, PoolNet achieves excellent trade-off between speed
and quality. Considering the disadvantages of PoolNet, we
plan to improve it from two aspects.

3.1 Overall Architure

FPN(Lin et al. 2017) can handle multi-scale objects. In
the top-down path of PoolNet, shallower layers focus on lo-
cating salient objects while deep layers focus on refining de-
tails. However, PoolNet only supervises the prediction of the
final layer. Therefore, As shown in Figure 1, we may super-
vise multiple layers in the top-down path. With this deep su-
pervision strategy(Lee et al. 2014), the shallower and deeper
layers of the network are effectively supervised simultane-
ously.

Deep Supervision With Hybrid Loss
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Figure 1: The model structure of Boundary Aware PoolNet

3.2 PoolNet

PoolNet uses BCE loss(Boer et al. 2005) in the training
process, so the pixels near the boundary of the salient ob-
ject usually have low confidence, which results the blurred
boundary of the salient object. Inspired by BASNet(Qin
et al. 2019), we combine BCE loss, SSIM loss(Wang, Si-
moncelli, and Bovik 2003), and IoU loss(Mattyus, Luo, and
Urtasun 2017) into a hybrid loss function. With this hybrid
loss function, PoolNet can learn the salient objects from the
pixel/local/global level respectively.

3.3 Boundary Aware Training

We define our training loss as a summation of all output
layers form the top-down path:

K
L= Zaklk
k=1

where I¥ is the loss of k-th output, oy, denotes a coefficient
for I*, we set K = 5 as shown in Figure 1.

For the sake of locating the salient object precisely and
obtaining a high-quality salient object boundary, we will de-
fine it as a hybrid loss:

" =hep + s + lou
where I%0p, %672, and 155, denote BCE loss (Boer et al.
2005), SSIM loss(Wang, Simoncelli, and Bovik 2003) and
IoU loss (Mattyus, Luo, and Urtasun 2017), representing
pixel, local and global level loss functions respectively.
Combining the loss functions of the three levels, the binary
cross entropy loss provides a gentle gradient for each pixel.
The structure similarity loss is based on the image structure
to make the boundary loss greater. The use of intersection is
more than the loss. Focus on the salient objects in the image.

Binary Cross Entropy In binary classification and seg-
mentation tasks, the binary cross entropy loss function (Bi-
nary Cross Entropy Loss, BCE Loss) (Boer et al. 2005) is
the most commonly used loss function, and its formula is:

lscr = Y _[G(r,c)log(S(r,e)+(1=G(r,c)log((1=S(r,))]
(r0)



where G(r, c) is the label of the pixel and S(r,c) is the
probability that the pixel predicted by the algorithm is a
salient object.

BCE Loss (Boer et al. 2005) is a pixel-level loss function.
It doesn’t consider the ground truth of surrounding pixels,
which means the weights of foreground pixels and back-
ground pixels are the same. It is helpful for the convergence
of all pixels.

Structural Similarity Loss SSIM, as known as Structural
Similarity Loss (Wang, Simoncelli, and Bovik 2003) was
used for image quality evaluation when it was proposed. For
each image, it can extract the inner structure information,
which means it can be used as part of the hybrid loss to ob-
tain structure information of the salient object. Suppose we
have label two vectors X = {z; : i = 1,2,..., N?} and
Y ={y;:j =1,2,..., N?}. the Structural Similarity Loss
can be define as follow:

(2papty + C1)(200y + Ca)
pi + py + C1)(oF + oy + Ca)

where i, 1, and o, 0, are means and variances of x and
y respectively, o, is covariance. C; and C are constants
and set to be 0.012 and 0.032.

SSIM is a local-level loss function, which considers the
local neighbors of each pixel and has a higher weight on the
boundary. Even if the probability of being predicted as the
foreground is the same, the loss of pixels near the boundary
in the image is higher than the loss of pixels near the non-
object boundary in the image.

lssim =1— (

Intersection over Union Loss Intersection over Union
Loss (IoU Loss) (Mattyus, Luo, and Urtasun 2017) was used
to measure the similarity of two sets when it was proposed,
and was later used as a standard evaluation index for object
detection and segmentation. In order to ensure that it can be
differentiated, this paper defines its formula as:

S e, S(r,0)G(r, )

lrov =1—
Sl S [S(re) + Glrc) = S(r,e)G(r, o)
where G(r, c) is the label of the pixel and S(r,c) is the
probability that the pixel predicted as a salient object.
IOU is a global level loss function, which can give more
attention to the salient objects in the image.

4 Experiments
4.1 Implementation Details

The PyTorch was used for algorithm implementation,
training, and evaluation. The DUTS(Wang et al. 2017)
dataset was used for model training and testing. The train-
ing set contains 10553 images and the test set contains 5019
images. The training set and test set contain a large number
of scenarios for salient object detection.

In addition to the improvements made to PoolNet in this
paper, other implementation details and experimental de-
tails of BAPoolNet (Boundary Aware PoolNet) are consis-
tent with PoolNet. The BAPoolNet proposed in this paper is

trained for 24 epochs, and the Adam optimizer is used during
the training process (the weight decay value is 5x10-4, the
initial learning rate is 5x10-5, and the learning rate is divided
by 10 when the epoch is 15) . The model’s backbone network
is ResNet50, and its parameters are initialized by the cor-
responding model pre-trained on the ImageNet(Krizhevsky,
Sutskever, and Hinton 2012) dataset. The other parameters
in the model are initialized randomly by normal distribu-
tion. In terms of data enhancement, this paper only flips the
training set images horizontally with a probability of 50%.
During training and testing, the size of the model’s input im-
age remains unchanged. In addition to qualitative compari-
son, we use PR curve, F-measure curve, max F-measure and
MAE to measure our model.

4.2 Qualitative Comparasion
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Figure 2: Qualitative comparison of the performance of dif-
ferent methods

In order to visually illustrate the performance difference
between the BAPoolNet proposed in this paper and other
methods, Fig.2 shows and compares the prediction results
of these methods on different categories of images. The
BAPoolNet proposed in this paper can capture various types
of salient objects, and predict accurate location and bound-
ary with high confidence.

The salient objects in the 1st and 2nd rows of Fig.2 are
small objects. The salient object in the 1st row of images is
very small, the difference between the foreground and the
background is implicit, and the 2nd row of images has mul-
tiple salient objects. It can be seen that even when the differ-
ence between the salient object and the background is very
implicit, BAPoolNet can more accurately capture the loca-
tion of the salient object with a small area than the other
methods.

The salient objects in the 3rd and 4th rows of Fig.2 have
large area and rich details. As can be seen from the figure,
BAPoolNet captures the most complete and large area of the
salient objects compared to the other methods, and success-
fully captures their rich details.

The background of the 5th row of Fig.2 is complicated,
and multiple objects in the background are very similar to
the salient object structure. As can be seen from the figure,



DUTS-TE

Method Conference Backbone Size(MB) MAE] max F57
CapSal CVPRI19 ResNet-101 - 0.063 0.826
PiCANet CVPRI18 ResNet-50 197.2 0.050 0.860
DGRL CVPRI18 ResNet-50 646.1 0.049 0.828
BASNet CVPRI19 ResNet-34 348.5 0.047 0.860
U2Net CVPR20 RSU 176.3 0.044 0.873
CPD CVPR19 ResNet-50 183.0 0.043 0.865
PoolNet CVPR19 ResNet-50 260.0 0.040 0.880
BAPoolNet - ResNet-50 260.7 0.035 0.892

Table 1: Quantitative comparison of the performance of different models

BAPoolNet captures the salient object more accurately than
the other methods and has fewer confusion.

The structure of the salient object in the 6th row of Fig.2
is very complex, and part of it is similar to the object struc-
ture in the background (vertical cylinder). As can be seen
from the figure, BAPoolNet completely captures the entire
salient object compared to the other methods and the pre-
dicted structural details are more accurate.
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Figure 4: F-measure Curves

4.3 Quantitative Comparison
4.3.1 MAE & Max Fp

Tab.1 shows the quantitative results of BAPoolNet and
other methods. In this table, the BAPoolNet’s MAE and F-
measure marked in red are the best, so it shows that the per-
formance of the BAPoolNet proposed in this paper on the
DUTS-TE dataset exceeds other methods.

4.3.2 PR Curves

In addition to quantitative comparison, we also compares
the PR curves of BAPoolNet and other methods, as shown
in Figure 3. It can be seen from the figure that the PR curve
(red solid line) of the BAPoolNet on the DUTS-TE data set
is significantly better than other methods.

4.3.3 F-measure Curves

We also compares the F-measure curves of BAPoolNet
and other methods, as shown in Figure 4. It can be seen
from the figure that the F-measure curve (red solid line) of
BAPoolNet on the DUTS-TE dataset is significantly better
than the previous method with the best performance.

5 Conclusion

In this paper, we propose Boundary Aware PoolNet to
improve PoolNet with deep supervision and hybrid loss.
On the one hand, deep supervision helps to locate the
salient objects more accurately. On the other hand, hy-
brid loss allows the network to predict the location and
boundary of the salient objects from the perspective of
the pixel/patch/image-level respectively. Comparative ex-
periments show that our method substantially exceeds other
methods.
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