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Abstract

Many direct and easy approaches have been proposed
to solve the registration problem for pose estimation,
which work with data from the same modality, i.e.,
image-to-image and point cloud-to-point cloud. How-
ever, these approaches have several limitations in terms
of cost, accuracy, and the memory complexity, etc. Few
approaches solve the cross-modality registration due to
the difficulty in establishing cross-modality correspon-
dences. In this paper, we proposed the I2PMatch: an im-
proved end-to-end deep network architecture to jointly
learn the descriptors for keypoints from image and point
cloud, respectively. As a result, we are able to directly
match and establish 2D-3D correspondences from the
query image and 3D point cloud reference map for vi-
sual pose estimation. We references I2PMatch (Feng
et al. 2019) and recurrent it. Meanwhile, we create our
own 2D-3D patches datasets from the Oxford Robotcar
dataset with the ground truth camera poses and 2D-3D
image to point cloud correspondences for training and
testing the deep network.

Instruction
Image-to-point cloud registration refers to the process of
finding the rigid transformation, i.e., rotation and transla-
tion that aligns the projections of the 3D point cloud to the
image. This process is equivalent to finding the pose, i.e.,
extrinsic parameters of the imaging device with respect to
the reference frame of the 3D point cloud; and it has wide
applications in many tasks in computer vision, robotics, aug-
mented/virtual reality, etc.

Although the direct and easy approach to solve the regis-
tration problem is to work with data from the same modal-
ity, i.e., image-to-image and point cloud-to-point cloud, sev-
eral limitations exist in these same-modality registration
approaches. For point cloud-to-point cloud registration, it
is impractical and costly to mount expensive and hard-to-
maintain Lidars on large fleet of robots and mobile devices
during operations. Furthermore, feature-based point cloud-
to-point cloud registration (Deng, Birdal, and Ilic 2018a;
Zeng et al. 2017; Li and Lee 2019; Yew and Lee 2018) usu-
ally requires storage of D-dimensional features (D ≫ 3) in
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addition to the (x, y, z) point coordinates, which increases
the memory complexity. For image-to-image registration,
meticulous effort is required to perform SfM (Ullman 1979;
Triggs et al. 1999; Fischler and Bolles 1981) and store the
image feature descriptors (Rublee et al. 2011; Lowe 1999)
corresponding to the reconstructed 3D points for feature
matching. Additionally, image features are subjected to il-
lumination conditions, seasonal changes, etc. Consequently,
the image features stored in the map acquired in one sea-
son/time are hopeless for registration after a change in the
season/time.

Cross-modality image-to-point cloud registration can be
used to alleviate the aforementioned problems from the
same modality registration methods. Specifically, a 3D point
cloud-based map can be acquired once with Lidars, and then
pose estimation can be deployed with images taken from
cameras that are relatively low-maintenance and less costly
on a large fleet of robots and mobile devices. Moreover,
maps acquired directly with Lidars circumvents the hassle
of SfM, and are largely invariant to seasonal/illumination
changes.

In this proposal, we propose the I2PMatch - a deep net-
work approach to jointly learn the keypoint descriptors of
the 2D and 3D keypoints extracted from an image and a
point cloud. We use the existing detectors from SIFT (Deng,
Birdal, and Ilic 2018b) and ISS (Dorai and Jain 1997) to
extract the keypoints of the image and point cloud, respec-
tively. Similar to most deep learning methods, an image
patch is used to represent an image keypoint, and a local
point cloud volume is used to represent a 3D keypoint. We
propose a triplet-like deep network to concurrently learn the
keypoint descriptors of a given image patch and point cloud
volume such that the distance in the descriptor space is small
if the 2D and 3D keypoint are a matching pair, and large oth-
erwise. The descriptors of the keypoints from both the image
and point cloud are generated through our trained network
during inference. The EPnP (Engel, Koltun, and Cremers
2017) algorithm is used to compute the camera pose based
on the 2D-3D correspondences.

Related Work
Image-to-Image Registration. Images-to-image registra-
tions (Shavit and Ferens 2019; Sattler, Leibe, and Kobbelt
2012) are done in the P 2 space because of the lack of depth



information. This is usually the first step to the computa-
tion of the projective transformation or SfM. Typical meth-
ods are usually based on feature matching. A set of features
such as SIFT (Lowe 1999) or ORB (Rublee et al. 2011) are
extracted from both source and target images. Correspon-
dences are then established based on the extracted features,
which can be used to solve for the rotation, translation us-
ing Bundle Adjustment (Triggs et al. 1999; Richard 2003),
Perspective-n-Point solvers (Fischler and Bolles 1981), etc.
Such techniques have been applied in modern SLAM sys-
tems (Engel, Schöps, and Cremers 2014; Mur-Artal, Mon-
tiel, and Tardos 2015; Engel, Koltun, and Cremers 2017).
However, such methods are based on feature descriptors in
the image modality to establish correspondences, and do not
work for our general image-to-point cloud registration task.

Point Cloud-to-Point Cloud Registration. The avail-
ability of 3D information enables direct registration be-
tween point clouds without establishing feature correspon-
dences. Methods like ICP (Besl and McKay 1992; Chen
and Medioni 1992), NDT (Biber and Straßer 2003) work
well with proper initial guess, and global optimization
approaches such as Go-ICP (Yang, Li, and Jia 2013)
work without initialization requirements. These methods are
widely used in point cloud based SLAM algorithms like
LOAM (Zhang and Singh 2014), Cartographer (Hess et al.
2016), etc. Recently data driven methods like DeepICP (Lu
et al. 2019), Deep-ClosestPoint (Wang and Solomon 2019),
RPM-Net (Yew and Lee 2018), etc, are also proposed. Al-
though these approaches do not require feature correspon-
dences, they still rely heavily on the geometrical details
of the point structures in the same modality to work well.
Consequently, these approaches cannot be applied to our
task on cross-modal registration. Another group of com-
mon approaches is the two-step feature-based registration.
Classical point cloud feature detectors and descriptors usu-
ally suffer from noise and clutter environments. Recently
deep learning based feature detectors like USIP (Li and Lee
2019), 3DFeatNet (Yew and Lee 2018), and descriptors like
3DMatch (Zeng et al. 2017), PPF-Net (Deng, Birdal, and
Ilic 2018b), PPF-FoldNet (Deng, Birdal, and Ilic 2018a),
PerfectMatch (Gojcic et al. 2019), have demonstrated im-
proved performances in point cloud-based registration. Sim-
ilar to image-to-image registration, these approaches require
feature descriptors that are challenging to obtain in cross-
modality registration.

Image-to-Point Cloud Registration. I2PMatch (Feng
et al. 2019) is the prior work for general image-point cloud
registration. It extracts images keypoints with SIFT (Lowe
1999), and point cloud keypoints with ISS (Zhong 2009).
The image and point cloud patches around the keypoints are
fed into each branch of a Siamese-like network and trained
with triplet loss to extract cross-modal descriptors. At in-
ference, it is a standard pipeline that consists of RANSAC-
based descriptor matching and EPnP (Lepetit, Moreno-
Noguer, and Fua 2008) solver. Despite its greatly simpli-
fied experimental settings where the point clouds and images
are captured at nearby timestamps with almost zero relative
rotation, the low inlier rate of correspondences reveals the

struggle for a deep network to learn common features across
the drastically different modalities. Another work (Yu et al.
2020) establishes 2D-3D line correspondences between im-
ages and prior Lidar maps, but they requires accurate initial-
ization, e.g., from a SLAM/Odometry system. In contrast,
the general image-to-point cloud registration do not rely
on another accurate localization system. Some other works
(Pham et al. 2020; Cattaneo et al. 2020) focus on image-to-
point cloud place recognition / retrieval without estimating
the relative rotation and translation.

Method
In this section, we outline our pipeline for visual pose esti-
mation with a 2D query image and 3D point cloud reference
map. We first introduce the overview of our pipeline in sub-
section A. In subsection B, we describe I2PMatch - a deep
network to jointly extract the descriptors of the 2D and 3D
keypoints from an image and a point cloud. The training loss
is given in subsection B. Finally, we discuss the pose estima-
tion algorithm we use to compute the camera pose given at
least three 2D-3D correspondences in subsection C.

A. Overview
Given a query image I and the 3D point cloud reference map
M of the scene, the objective of visual pose estimation is
to compute the absolute camera pose P = [R|t] of the query
image I with respect to the coordinate frame of the 3D point
cloud reference map M. Unlike existing visual pose methods
which associate image-based descriptors, e.g. SIFT (Lowe
1999), to each 3D point in the reference map, we propose
the I2PMatch - a deep network to jointly learn the descrip-
tors directly from the 2D image and 3D point cloud. We
first apply the SIFT detector on the query image I to ex-
tract a set of 2D keypoints U = {u1, . . . , uN | un ∈ R2},
and the ISS detector (Zhong 2009) on the 3D point cloud
of the reference map M to extract a set of 3D keypoints
V = {v1, . . . , vN | vm ∈ R3}.Here, N and M are the
total number of 2D and 3D keypoints extracted from the
image I and point cloud M, respectively. Given the set of
2D image patches centered around each 2D keypoint and
3D local point cloud volume centered around each 3D key-
point, our I2PMatch learns the corresponding set of 2D and
3D descriptors denoted as P = {p1, . . . , pN | pn ∈ RD}
and Q = {q1, . . . , qM | qm ∈ RD} for each correspond-
ing 2D and 3D keypoint in U and V. D is the dimension of
the descriptor. Furthermore, the descriptors P and Q learned
from our network yield a much smaller similarity distance
d(p,q) between a matching pair of 2D-3D descriptors (p,q) in
comparison to the similarity distance d(p̄, q̄) between a non-
matching pair of 2D-3D descriptors (p̄, q̄), i.e.d(p, q) ≪
d(p̄, q̄), thus establishing the 2D-3D correspondences be-
tween P and Q. Finally, the 2D-3D correspondences found
from our I2PMatch are used to estimate the absolute pose of
the camera using a PnP algorithm. We run the PnP algorithm
within RANSAC for robust estimation.

B. Our I2PMatch: Network Architecture
Our I2PMatch is a triplet-like deep network that jointly
learns the similarity between a given pair of image patch



Figure 1: Our triplet-like I2PMatch

and local point cloud volume. The network consists of three
branches as illustrated in Figure 1. One of the branches
learns the descriptor for the 2D image keypoint and the other
two branches with shared weights learn the descriptor for the
3D point cloud keypoint. The inputs to the network are (1)
image patches centered on the 2D image keypoints, and (2)
local volume of point cloud within a fixed radius sphere cen-
tered on the 3D keypoints. Details on keypoints extraction
and the definitions of image patch and point cloud sphere
are given in Sec. IV-B. The image patches and local vol-
ume of point clouds are fed into the network during training
as tuples of anchor image patch, and positive and negative
local volume point cloud. We denote the training tuple as
{xa

I , x
+
M , x−

M}. Given a set of training tuples, our network
learns the image descriptor function GxI ; θI : xI 7→ p that
maps an input image patch xI to its descriptor p, and the
point cloud descriptor function FxM ; θM : xM 7→ p that
maps an input local point cloud volume xM to its descriptor
q. θI and θM are the weights of the network learned during
training.

C. Pose Estimation
The pose of the camera is computed from the putative set of
2D-3D correspondences obtained from our 2D3DMatchNet.
Specifically, we obtain the 2D keypoints of the 2D query
image with the SIFT detector, and the 3D keypoints of the
3D point cloud with the ISS detector. We compute the 2D
and 3D keypoint descriptors with our network from the im-
agepatches and local point cloud volume extracted around
the keypoints. The similarity distance is computed for every
pair of 2D and 3D keypoints, and we find the top K clos-
est 3D point cloud keypoints for every 2D image keypoint.
Finally, we apply the EPnP algorithm to estimate the cam-
era pose with all the putative 2D-3D correspondences. The
EPnP algorithm is ran within RANSAC for robust estima-
tion to eliminate outliers.

Dataset
In this section, we introduce how to create our benchmark
dataset - Oxford 2D-3D Patches Dataset. There are 432,982
image patch to pointcloud pairs in the dataset, which allows
the training and evaluation sufficient.

A.Oxford 2D-3D Patches dataset
The Oxford 2D-3D Patches dataset is created based on the
Oxford RobotCar Dataset (Maddern et al. 2017). The Ox-
ford RobotCar Dataset collects data from different kinds of
sensors, including cameras, Lidar and GPS/INS. We use the
images from the two (left and right) Point Grey Grasshop-
per2 monocular cameras, the laser scans from the front
SICK LMS-151 2D Lidar, and the GPS/INS data from the
NovAtel SPAN-CPT ALIGN inertial and GPS navigation
system. Ignoring the traversals collected with poor GPS,
night and rain, we get 36 traversals for over a year with suffi-
ciently challenging lighting, weather and traffic conditions.
We synchronize the images from the left and right cameras,
and 2D laser scans from the Lidar with the timestamps, and
get their global poses using the GPS/INS data.

B.Training Data Generation
Keypoint Detection. We build a point cloud based refer-
ence map from the laser scans for every submap, where the
coordinates of the first laser scan is used as the reference
frame. We detect the ground plane and remove all points ly-
ing on it. This is because this plane is unlikely to contain
any good 3D keypoint and descriptor. The ISS keypoint de-
tector is applied on the remaining point cloud to extract all
3D keypoints. We apply the SIFT detector on every image
to extract all 2D keypoints. Fig. 2 shows the visualization of
3D keypoints extracted by ISS detector and Fig. 3 shows the
visualization of 2D keypoints extracted by SIFI detector.

Figure 2: 3D keypoints

Figure 3: 2D keypoints

2D-3D Correspondences. To establish the 2D-3D corre-
spondences, we project each ISS keypoint to all images



within its view and find the nearest neighbour of SIFT key-
point in each image. To increase the confidence of the corre-
spondences, we require the distance of the projected nearest
neighbour to be smaller than 3 pixels and each ISS point
must have at least SIFT correspondences in three different
views within each submap. The ISS points and their cor-
responding SIFT points that satisfy these requirements are
reserved for further processing.

ISS Volume and SIFT Patch Extraction. We remove all
ISS keypoints that are within 4m from a selected ISS key-
point in each submap, and remove all SIFT keypoints within
32 pixels from a selected SIFT keypoint in each image.
Since larger scale results in smaller patch size, we discard
SIFT keypoints with scale larger than a threshold value. In
our experiments, we set this threshold value as 4 and the
patch size at the basic scale as 128 × 128. We extract the
ISS volume and its corresponding SIFT patch if the num-
ber of points within the ISS volume is larger than 100 and
the SIFT patch is at suitable scale. We discard both the ISS
volume and SIFT patch otherwise. Fig. 4 shows the visual-
ization of projecting point cloud to image with ground truth
pose and Four examples of our data consist of the local ISS
point cloud volumes and their corresponding image patches
with different scales, viewpoints and lightings.

Figure 4: Project point cloud to image with ground truth
pose. Four examples of our dataset. The first image of each
example shows the ISS volume. The other three are some
corresponding SIFT patches across multiple frames with dif-
ferent scale, viewpoint and lighting.

Data Pre-processing. Before training, we rescale all the
SIFT patches with different scales to the same size, i.e.
128×128, and zero-center by mean subtraction. We subtract
each point within each ISS point cloud volume with the as-
sociated ISS keypoint, thus achieving zero-center and unit
norm sphere. Additionally, we pad the number of points to
1024 for each local volume in our experiments.

C.Testing Data Generation
We use the GPS/INS poses of the images as the ground
truth pose for verification. The ground truth 2D-3D corre-
spondences are computed as follows: (1) We detect all ISS
keypoints from the point cloud of each submap and retain
keypoints with more than 100 neighboring 3D points within
1m radius. (2) We detect SIFT keypoints on each image and
extract the corresponding patches with scale smaller than the
threshold value, i.e. 4 as mentioned above. (3) Each ISS key-
point is projected to all images within its view and the near-
est SIFT keypoint with a distance smaller than 3 pixels is
selected as the correspondence. We discard an ISS to SIFT
keypoint correspondence if a nearest SIFT within 3 pixels is
found in less than 3 image views.

Experiments
Our image-to-point cloud registration approach is evaluated
with Oxford Robotcar (Maddern et al. 2017).

Our network is implemented in pythorch with 2× GeForce
RTX 3090 GPUs. We train the whole network in an end-to-
end manner. For each triplet input, we choose an image patch
as the anchor, and its corresponding 3D point cloud volume
as positive sample. The negative point cloud volume is ran-
domly sampled from the rest of the point clouds. We ini-
tialize the image descriptor network branch with DenseNet
model pre-trained on ImageNet (Deng et al. 2009).Both de-
scriptor extraction networks are optimized with Adam opti-
mizer and the initial learning rate is 6× 10−5. In our exper-
iments, we train and test with the output feature dimension
128.

As mentioned in before, we reconstruct the point cloud
from GPS/INS data for each submap. Next, we detect all the
3D keypoints and infer the corresponding descriptors from
the point cloud descriptor network. Given a query image, we
extract the 2D SIFT keypoints and feed all the corresponding
image patches into the image descriptor network to get the
descriptors of the query image.

For each image descriptor, we find its top K nearest point
descriptor from our database thus establishing the 2D-3D
correspondences. The selection of K can largely effect the
localization results. With a larger K, we have more point
feature candidates for each image feature. Consequently, the
RANSAC algorithm is more likely to find the correct match.
On the other hand, a larger K unfavorably increases the num-
ber of iterations of RANSAC exponentially. Considering the
trade-off, we choose K = 5 for our experiments.

Finally, we solve the camera pose using the EPnP algo-
rithm (Lepetit, Moreno-Noguer, and Fua 2008). the registra-
tion is evaluated with two criteria: average Relative Trans-
lational Error (RTE) and average Relative Rotation Error
(RRE). The results are shown in Table 1.

Due to the lack of existing approaches in solving the
image-to-point cloud registration problem under the same
setting, we further compare our I2PMatch with 4 other ap-
proaches.

Direct Regression. Direct Regression uses a deep network
to directly regress the relative poses. The global point cloud



feature and global image feature are concatenated into a sin-
gle vector and processed by a MLP that directly regresses
Gˆ. See the supplementary materials for more details of this
method.

Monodepth2+USIP. Monodepth2+USIP converts the
cross-modality registration problem into point cloud-based
registration by using Monodepth2 (Godard et al. 2019)
to estimate a depth map from a single image. The Lidar
point cloud is used to calibrate the scale of depth map
from MonoDepth2, i.e. the scale of the depth map is
perfect. Subsequently, the poses between the depth map and
point cloud are estimated with USIP (Li and Lee 2019).
This is akin to same modality point cloud-to-point cloud
registration. Nonetheless, Table 1 shows that this approach
underperforms. This is probably because the depth map
is inaccurate and USIP does not generalize well on depth
maps.

Monodepth2+GT-ICP. Monodepth2+GT-ICP acquires a
depth map with absolute scale in the same way as Mon-
odepth2+USIP. However, it uses Iterative Closest Point
(ICP) (Besl and McKay 1992; Chen and Medioni 1992) to
estimate the pose between the depth map and point cloud.
Note that ICP fails without proper initialization, and thus
we use the ground truth (GT) relative pose for initialization.

2D3D-MatchNet. 2D3D-MatchNet (Feng et al. 2019) is
the only prior work for crossmodal image-to-point cloud
registration to our best knowledge. However, the rotation
between camera and Lidar is almost zero in their experi-
ment setting. This is because the images and point clouds
are taken from temporally consecutive timestamps without
additional augmentation. In contrast, the point clouds in our
experiments are always randomly rotated.

Table 1: Registration accuracy on the Oxford datasets.

RTE (m) RRE (°)
Direct Regression 5.02 ± 2.89 10.45 ± 16.03
MonoDepth2 + USIP 33.2 ± 46.1 142.5 ± 139.5
MonoDepth2 + GT-ICP 1.3 ± 1.5 6.4 ± 7.2
2D3D-MatchNet 1.41 6.40
Ours 6.72 10.23

Conclusion
We presented a novel method for camera pose estimation
given a 3D point cloud reference map of the outdoor en-
vironment. Instead of the association of local image de-
scriptors to points in the reference map, we proposed to
jointly learn the image and point cloud descriptors directly
through our deep network model, thus obtaining the 2D-3D
correspondences and estimating the camera pose with the
EPnP algorithm. We demonstrated that our network is able
to map crossdomain inputs (i.e. image and point cloud) to a
discriminative descriptor space where their similarity / dis-
similarity can be easily identified.
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