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Abstract

A deepling learning approach to blind denoising of im-
ages with out complete knowledge of the noise statis-
tics is considered. Dncnn,which is a deep convolu-
tional neural network(CNN)consisting if several residual
blocks(ResBlocks).With cascade training, UDNCNN with u-
net is more accurate and more computationally efficient
than the state of art denoiing networks.An edge-aware loss
function is further utilized in training UDNCNN,so that
the denoising results have better perceptive quality com-
pared to converntionally effucuebt than the state if art de-
noising networks.An edge-aware loss function.Next,we in-
troduce the depthwise separaable DN ResNet utilizing the
proposed Deptwise Seperable ResBlock instead of standard
ResBlock,which has much less computational cost.We pro-
pose the cascade evolution of UDNCNN from DNCNN by
incrementally converting ResBlocks to DS-ResBlocks. While
establishing Previous training. Therefore, high precision and
good calculation Efficiency is achieved at the same time. And
the state of art in the past is very deep The learning method
focuses on denoising Gaussian or Poisson damaged images,
we think denoising images are more practical The same is
true for Poisson with additive Gaussian noise. The results
show that DN ResNets is better than The current state-of-
the-art deep learning method, as well as a popular variant of
the BM3D algorithm, in the case of blind and non-blind de-
noising Images corrupted by Poisson, Gaussian, or Poisson-
Gaussian noise.
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Introduction

Denoising is an active topic in image processing because it
is a key step in many image processing. Practical applica-
tions, such as image and video capture. It aims to gener-
ate a Clean image X from a given noisy image Y, after the
image is degraded Model Y = D(X). For the widely used
additive Gaussian noise (AWGN) model, The ith observed
pixel is y; = D(X;) = x; + n; where n; It is i.i.d Gaus-
sian noise with zero mean and variance. AWGN has been
used to simulate signal-independent thermal noise and other
system defects. Degraded due to insufficient light shot noise
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signal dependent and has often been modeled using Pois-
son noise =y; = D(X;) = p;,p; P(x;) where P(X;) is a
Possion randon variable with x.Recently, the state of art de-
noising accuracy is achieved by deep neural net works.which
construct a mapping between the noisy image and clean
image. Unfortunately, most of existing denoising networks
cannot be executed inreal-time due to their large network
size. In addition, it is relatively difficult to set the hyperpa-
rameters when learning a very deep network, such as the
weightinitialization, the learning rate, and the weight decay
rate. With inappropriateparameters, the training might fall
into local minimum or not converge at all. Denoising Resid-
ual Network (DN-ResNet) which is more efficient and ac-
curate than prior art. DN-ResNet consists of residualblocks
(ResBlock) which are gradually inserted into the network
stage by stage during the training.This training strategy not
only allows the resulting DNResNet to converge faster, but
also allows it to be more computationally efficient than
prior art denoising networks. Even better perceptual qual-
ity have been observed by using the proposed edge-aware
loss function instead of the conventional mean square er-
ror (MSE).In addition, we introduce the depthwise sepa-
rable ResBlock (DS-ResBlock) into DNCNN to construct
the depthwiseseparable UDNCNN. UDNCNN is generated
by the proposedincremental evolution from DNCNN, where
the ResBlocks in DN-ResNet are replaced by DS-ResBlocks
stage by stage.As a result, we may obtain a 2.5 times. As a
result, we may obtain a 2.5 times complexity reduction for
DN-ResNet, with less than 0.1 dB PSNR loss. To ourknowl-
edge, DN-ResNet is the first unified deep CNN trained for
the problemof blind denoising of images corrupted by mul-
tiple type of noises. By cascading only 5 ResBlocks, DN-
ResNet and DS-DN-ResNet achieve the state of artperfor-
mance on all three denoising problems, Gaussian, Poisson,
and Poisson Gaussian, for both cases of non-blind denois-
ing (known noise level for noisyinput) and blind denoising
(unknown noise level for noisy input).

Related Work

Image Denoising

During the past years, numerous approaches have been
exploited for modeling image priors for denoising, such
as nonlocal self-similarity (NSS) [8] andsparse coding
[5]. The block matching with 3D collaborative filtering



(BM3D)[4] and its variants such as iterative BM3D with
variance stabilizing transforms(I+VST+BM3D) [1] and
generalized Anscombe variance stabilizing transform
with BM3D (GAT-BM3D) [13] are widely used. These
methods generally involve a complex optimization problem
in the testing stage, which makes the denoising process
time-consuming. To improve the efficiency, learning-based
methods are proposed to get rid of the iterative optimization
procedure, such as the trainable nonlinear reaction diffusion
(TNRD) [3], and Gaussian conditional random field [20]
for non-blind image deblurring. Unfortunately, the accuracy
of these methods is still limited due to the use of specific
image prior. It is also difficult to set the handcrafted param-
eters during the stage-wise learning.Recently, deep neural
networks have been deployed for image denoising due
totheir significant improvement of the accuracy [2]. Zhang
et al. [26] constructeda 20-layer feed-forward denoising
convolutional neural networks with residuallearning for
Gaussian denoising. Remez et al. trained 20-layer CNNs
for each object category respectively and showed good
performance for either Gaussiandenoising [15] or Poisson
denoising [16]. Zhang et al. [27] proposed FFDNetadopting
orthogonal regularization to enhance the generalization
ability of Gaussian denoising. Tai et al. designed MemNet
[22], where the feature map concatenations and skip con-
nections are utilized to construct a network for image super
resolution, Gaussian denoising, and JPEG deblocking. 1
x1convolutions areadopted to integrate the long-term mem-
orization, which shows significant accuracy improvements.
Most of the existing networks are designed for single type
of noise only. Due to the high computational cost, they can
not be executed inreal-time. In contrast, our DN-ResNet
is far more efficient. The same networkarchitecture can
be utilized for Gaussian, Poisson, and Poisson-Gaussian
noise,as well as other image enhancement tasks.

Deep Learing Based Compressed Image Restoration
Compressed image restoration aims to reduce the artifacts
of decoded compressed images, so that the images can be
stored or transmitted at low bitrates. Most of existing work
design an end-to-end network including both theencoding
(compression) and decoding procedure. Toderici et al. [24]
presenteda set of full-resolution lossy image compression
methods using recurrent neural network based encoder and
decoder with entropy coding. Theis et al. [23]constructed
the compression network by deep autoencoders with a sub-
pixel structure. In these work, although a low bit rate can
be achieved, both of theencoding and decoding procedure
are replaced by deep neural networks. As aresult, it is dif-
ficult to integrate them into real system, where efficient im-
agecompression algorithms such as JPEG are implemented.
In this paper, we consider the compressed image restoration
as a ‘denoising’ problem, where the noisecomes from im-
age compression algorithms. DN-ResNet is trained to refine
thequality of decoded compressed image. Since our network
can be considered as apost-processing step, it can be applied
to any existing image compression algorithms.
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(a) Standard ResBlock (b) ResBlock in DN-ResNet

Figure 1: ResBlocks in DN-ResNet. (a) Standard ResBlock
(b) ResBlock in DN-ResNet.

Proposed Solution

DN-CNN We aim to train a deep convolution neural
network for image denoising. Thenetwork takes a noisy
image Y as input and predicts a clean image X as its utput.
Given a training set Xi, Yi, i = 1,...,N with N samples, our
goal is to learn a model S that predicts the clean image
X% = S(Y;).ResNet [9] has demonstrated considerable
performance in computer visionapplications such as image
classification. The basic element of our proposeddenoising
residual network (DN-ResNet) is a simplified ResBlock, as
shown inFig. 1(b). Different from the standard ResBlock
in Fig. 1(a), we remove the batchnormalization layers and
the ReLU layer after the addition, because removing hese
layers will not harm the performance of feature-map based
ResNet [12].

3 layers, and proceeds to 5 layers, 7 layers, etc. Each
convolutional layer in theResBlock consists of 32 3 x 3
filters. It ensures a smaller network when goingdeeper. The
new layers are inserted just before the last 5x5 layer. The
weights ofpre-existing layers are inherited from the previous
stage, and the weights of thenew ResBlocks are randomly
initialized (Gaussian with 0.001). Hence, onlya few weights
of DN-ResNet are randomly initialized at each stage, so the
convergence will be relatively easy. We find that using a
fixed learning rate 0.0001 or all layers without any decay
is feasible. Since new convolutional layers will reduce the
size of the feature map, we zero pad 2 pixels in each new
3%3 layer. As a result, all the stages in cascade training have
the same size as the output, so that the training samples
could be shared.When cascading 5 ResBlocks, the resulting
DN-ResNet will have 5 x 2 + 3 = 13convolutional layers.
Our experiments show that such DN-ResNet-13 has al-
ready achieved the state of art accuracy on all type of noises.

UDNCNN In this section, we propose depthwise sep-
arable DN-ResNet (DS-DN-ResNet)to further reduce the
network size of DN-ResNet, as well as the computational-
cost. In the classification network MobileNet [10,19], the
standard convolutionallayer is factorized into a depthwise
convolution and a 1 x 1 pointwise convolution, which
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Figure 2: Depthwise separable convolution. The standard
convolution (left) is replaced by depthwise convolution
(middle) and pointwise convolution (right).

achieves significant efficiency gain. As shown in Fig. 2, the
standard convolution with M input channels and N K x K
filters is replaced by a depthwise convolutional layer with
M K x K filters, and a pointwise convolutionallayer with
N 1x1 convolutional filters and M input channels. Assume
the inputfeature map size is W x H, the number of the
multiplications are reduced from M x K x K x N x W x H
tOMXxKxKXxWxH+MxNxWxH.

Edge-Aware Loss Function Most of existing de-
noising networks aim to minimize the Mean Square
Error(MSE) & 3>, || X — X;||*over the training set. In this
paper, we propose an edge-aware loss function, where the
pixels in the edges are granted higher weights compared to
non-edge pixels and loss:

. 2

LS X = X% +ws L Z?:1HX1'M2' - Xl-MiH Xiis
the ground truth of ith clean image,hat X; is the ith denoised
image, M is an edge map, N is the number of images, and w
is a constant to control the trade-off between edge and non-
edge pixels.

There are two advantages of applying such edge-aware loss
function. Firstly, one of the major challenge in image denois-
ing is that the edges are difficult to be retrieved from a noisy
image. Adding a corresponding constraint in the loss func-
tion is reasonable. Secondly, the highfrequency information
such as edge is very sensitive in human vision. Increasing
the denoising accuracy of edge pixels will contribute to the
perceptual quality.

Experiments

Experiment Setting For image denoising, we use the
BSDS300 dataset [6]. We follow the same training and
testing split as [15], 1,000 testing images are used to
evaluate the performance of the proposed DN-ResNet,
while the remaining images are used for training. Random
Gaussian/Poisson/Poisson-Gaussian noisy images are gen-
erated with different noise levels.

3 layers, and proceeds to 5 layers, 7 layers, etc. Each convo-
lutional layer in theResBlock consists of 32 3 x 3 filters. It
ensures a smaller network when goingdeeper. The new lay-

Cod layers o ke ervolved . M Lapars

* Fine-tuning with sy Fine-turing with
inhiriling tha waights rarciomly inilialized waights

— - - - .- ...

SR 2R 2R
= -H-H-EB-B--

$ 4 413
- o -l-l--

+ 4133
- HEN-

Figure 3: Incremental evolution from DN-CNN to DDCNN.
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ers are inserted just before the last 5x5 layer. The weights
ofpre-existing layers are inherited from the previous stage,
and the weights of thenew ResBlocks are randomly initial-
ized (Gaussian with 0.001). Hence, onlya few weights of
DN-ResNet are randomly initialized at each stage, so the
convergence will be relatively easy. We find that using a
fixed learning rate 0.0001 or all layers without any decay
is feasible. Since new convolutional layers will reduce the
size of the feature map, we zero pad 2 pixels in each new
3%3 layer. As a result, all the stages in cascade training have
the same size as the output, so that the training samples
could be shared.When cascading 5 ResBlocks, the resulting
DN-ResNet will have 5 x 2 + 3 = 13convolutional layers.
Our experiments show that such DN-ResNet-13 has already
achieved the state of art accuracy on all type of noises.
DnCNN with all different D have residual with non-zero val-
ues now. This is because He’s initialization activates half of
the neurons which avoid vanishing gradient in the ReLU.
Now, since the output is different from the input, the gradi-
ent and weight update are different, enabling the network to
learn properly

Experiments on Image Denoising We first test the
DN-ResNets up to 13 layers on non-blind Gaussian, Pois-
son, and Poisson-Gaussian denoising. These DN-ResNets
are trained by cascading the ResBlocks in Fig. 1(b). The
conventional MSE loss is utilized for all networks. In Table
1, we find that for all the above three denoising problems,
the PSNR consistently increases along with using more
layers. Although the deepest network we show is 13-layer
DN-ResNet, the accuracy could still be further improved by
cascading more layers. This is consistent with ‘the deeper,
the better’. We also compare the cascade training versus
one-shot training (‘13-layer-os’ in Table 1), where an end-
to-end 13-layer DN-ResNet is trained from unsupervised
weight

Next, we test the DN-CNN trained by edge-aware
loss function described in Sect. 3.3, as well as utilizing



model | DnCnn
PSNR | 28.9662

UdnCnn
28.3076

DudnCnn
29.1349

Table 1: Performance comparison among DnCnn.UdnCnn.DudnCnn
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Figure 4: DNCNN with different d

DN-ResNet for blind denoising. In Table 1, we observe
that utilizing DN-ResNet for blind denoising will not
decrease the accuracy much compared to non-blind denois-
ing. This trade-off is valuable since blind denoising does
not require a time-consuming noise level estimation. In
addition, we show that utilizing edge-aware loss function
(blind+‘edge-a’/‘edgeb’) improves the SSIM 0.005-0.01,
without degrading the PSNR much. Since the conventional
MSE has the same equation as PSNR, the slightly degrada-
tion in PSNR of the edge-aware DN-ResNet is reasonable.
Using the edge map generated by Sobel gradient magnitude
(blind+‘edge-a’, w = 0.025 in Eq.
Moreover, we evaluate the DN-ResNets constructed by
different ResBlocks for the blind denoising problem. In
Table 3, We observe that DS-DN-ResNet (DS-DN) has less
than 0.1 dB PSNR degradation and less than 0.002 SSIM
degradation compared to DN-CNN, but the computational
cost (MACs, number of multiplications and accumulations)
and the network size are significantly reduced. We also
notice that if the UDCNN is constructed by one-shot
fine-tuning DN-CDD), both the PSNR and SSIM will de-
crease a lot. This indicates that the proposed incrementally
evolved DS-DN-ResNet is able to improve the efficiency of
DN-Cnn.

DnCNN with all different D have residual with non-zero
values now. This is because He’s initialization activates
half of the neurons which avoid vanishing gradient in the
ReLU. Now, since the output is different from the input,
the gradient and weight update are different, enabling the
network to learn properly.
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Comparison to the State of Art Denoising Algorithms
we compare the proposed DN-CNN to the state of art de-
noising algorithms in PASCAL VOC dataset. For fair com-
parison, we retrain other networks using the same BSDM
dataset. We observe that DN-CNN-13 blind denoising net-
work clearly outperforms other blind and non-blind Gaus-
sian denoisingalgorithms. Compared to the 20-layer DN-
CNN-S [26], DenoiseNet [15], and MemNet [22] which
contain more than 600K parameters, DN-ResNet achieves
competitive performance, but the network size (150K pa-
rameters) is 4 times smaller. DN-ResNet takes 15-20 ms to
process a 512x512 image on single Titan X GPU, compared
to 50-60 ms for DN-CNN and DenoiseNet. DS-DN-ResNet
only takes 8—10 ms to process a 512x512 image, with the
cost of less than 0.1 dB accuracy loss. These results show
the effectiveness of DN-ResNet for Gaussian denoising.



CVPR18 CLIC Validation Dataset (102 images)

PSNR (dB)

—JPEG
JPEGIIN0
BFG

» JPEG+DM-Rashet

-~ JFEGZD+ON-Rashat
BPG+DM-Reshat

o oA 02 0.3 0.4 0.5
Bit per paxel (bpp)

Figure 7: Bit per pixel vs. PSNR in dataset

PSNR A very classical (but controversial) way to

compare the quality of restoration techniques is to use the
PSNR (Peak Signal-to-Noise-Ratio) defined for images
ranging in[-1,1] as:
PSNR = 10logg H3/4_77;H2d is the desired ideal imagethe
number of elements y is the estimate obtained from in the
tensor. The PSNR measures in decibels (dB) the quality of
the restoration: the higher the better.

Applications to Other Image Enhancement Tasks We
emphasize that our proposed architecture can be trained for
other image enhancement tasks and provide state of art per-
formance on these tasks, with relatively low complexity. Im-
age Restoration: We evaluate the proposed DN-ResNet on
compressed image restoration. the curves of compression
ratio (bpp, bit per pixel) versus PSNR of the decoded com-
pressed image and restored image are given. We can find
that DN-ResNet is able to improve the quality of the de-
coded images for all compression methods. 1-2 dB, 0.5-0.7
dB, and 0.3-0.4 dB gain can be observed for JPEG, JPEG
2000, and BPG respectively. Figure 7 shows some restored
images at 0.15 bit per pixel, where DN-ResNet clearly im-
proves the perceptual quality of the decoded compressed im-
ages. Image Super Resolution: We cascade our DN-CNN to
19 layers and apply it for image super resolution [17]. The
low-resolution images are considered as noisy input, and the
high-resolution images are considered as clean image. Our
DN-ResNet achieved state of art SR performance with much
less computational complexity. For example, it achieves 0.5,
0.3, 0.2 dB PSNR gain and 0.003, 0.001, 0.001 better SSIM
for the SR scales 2, 3, and 4 in Set 14, while having only
1/3rd of the network size compared to existing networks
such as MemNet networks such as MemNet [22] or DRRN
[21]

Conclusion

In this paper, we presented the DN-CNN for image denois-
ing achieving both high accuracy and efficiency. We show
that cascade training is effective in training efficient deep

ResNets. The perceptual quality can be enhanced by us-
ing edge-aware loss function. We further propose the depth-
wise separable ResBlock and incrementally evolve the DN-
CNN to DN-CNN withU-NET, which reduced the compu-
tational cost of DN-ResNet 2.5 times with less than 0.1 dB
degradation in PSNR. For both cases of blind and non-blind
denoising, our experimental results on benchmark datasets
show that the proposed DN-ResNet achieves better accu-
racy and efficiency compared to the state of art denoising
networks on all types of noises, including Gaussian, Pois-
son, and Poisson-Gaussian. The same network architecture
can be utilized for other image enhancement applications as
well.
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