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Abstract

Retinal vessel segmentation is an important step in early
diagnosis of ocular diseases, which requires large spatial in-
formation and receiving field. There are some problems in
traditional vessel segmentation methods, such as high storage
overhead and low computational efficiency. U-Net is an ex-
cellent network for image segmentation, but it also has the
problem that the receptive field is small and large spatial in-
formation cannot be obtained. Spatial Attention U-Net (SA-
UNet) is a lightweight network, which introduces a spatial at-
tention module to expand receptive field and obtain more spa-
tial information. In this project, we utilize the SA-UNet as the
baseline model, try to use depthwise over-parameterized con-
volutional layers instead of conventional convolutional layers
in the SA-UNet. Furthermore, we add an attention module as
a channel to exploit the inter-channel relationship of features.
In terms of relevant experiments, DRIVE and CHASEDB1
are implemented as datasets to evaluate our model. Experi-
mental results demonstrate the effectiveness of the improved
SA-UNet.

Introduction

Human retina is a light-sensitive tissue with extremely rich
vascular information, which is the only non-invasive and
non-invasive visualization property. Physicians can diagnose
patients’ diseases by analyzing the number, angle, branching
and curvature of retinal vessels, so the research and analysis
of retina is very beneficial to biological sciences. Recently,
some cutting-edge technologies are also used for retinal re-
search. In these years, deep learning based feature learning
methods are widely used for fundus retinal vessel segmenta-
tion, which is different from manual feature extraction meth-
ods, but requires another better classifier for the final vessel
segmentation. Deep learning convolutional neural networks
combine feature extraction and classifier with better gener-
alization ability and robustness. Among them, U-Net is one
of the early algorithms using full convolutional networks for
semantic segmentation. The use of a symmetric U-shaped
structure containing compressed and expanded paths, which
is very innovative and has influenced to some extent the de-
sign of several segmentation networks that follow, and the
name of the network is also taken from its U-shaped shape.
U-Net is one of the earlier algorithms using multi-scale fea-
tures for semantic segmentation tasks, and its structure has
inspired many of the later algorithms. However, it also has

Figure 1: An example of Retinal vessel segmentation

certain drawbacks. Firstly, effective convolution increases
the difficulty and universality of model design, and many
current algorithms directly use same convolution, which can
also eliminate the operation of cutting edges before Feature
Map merging. Secondly, it is not symmetric with the Fea-
ture Map by cutting the edges. Therefore, for complex in-
puts such as the human retina, models are needed that are
more robust and conform to the unique characteristics of the
retina.

In U-Net, the expansion and contraction paths in the net-
work structure are essentially symmetrical, producing a U-
shaped structure, which results in a U-Net. In medical image
segmentation, U-NET has been widely used in recent years
and has shown good performance. an important modification
of U-Net is that there are a large number of feature channels
in the upsampling part, which allows the network to propa-
gate contextual information to higher resolution layers. Two
identical U-Net models form the MS-NFN model for reti-
nal fundus vascular segmentation (Wu et al. 2018). deU-Net
uses large convolution kernels to preserve spatial informa-
tion and multiscale features to obtain more semantic infor-
mation, thus expanding the spatial and perceptual fields. SD-
unet(Gadosey et al. 2020) proposed a mass normalization
algorithm, which uses a normalization method to ensure ac-
curacy, reduce computation time, shrink the model size, and
reduce the parameters by nearly 8 times. Although U-Net
variants perform well in the retinal vessel segmentation task,
they inevitably make the network more complex, less inter-
pretable, and not tailor-made for the retina as an input. so in



this project, we use a lightweight network called Spatial At-
tention U-Net (SA-UNet) as a baseline. SA-UNet introduces
a spatial attention module and structured discarded convo-
lutional blocks instead of the original convolutional blocks
of U-Net to prevent the network from overfitting. We use
deep hyperparametric convolutional layers (DO-Conv) in-
stead of some traditional convolutional layers in SA-UNet to
improve the accuracy of retinal vessel segmentation. In addi-
tion, we added a channel attention module before the spatial
attention module, which can exploit the inter-channel rela-
tionships of features. The evaluation of the project in this
paper is based on the Children’s Heart and Health Study
(CHASE-DB1) dataset.

Related Work

In the past studies, automatic analysis of the retinal vas-
cular system has become a hot topic in the field of medical
imaging. Segmentation of retinal fundus vessels is mainly
divided into manual segmentation and computer algorithm
segmentation. Computerized algorithmic segmentation has
gradually developed into a mainstream technique in the seg-
mentation field because of its excellent performance in effi-
ciency. Automatic segmentation algorithms can be divided
into two categories. The first category is image process-
ing algorithms, including pre-processing, segmentation and
post-processing. For example, wavelet transform methods
are used to enhance foreground and background for fast
vessel detection(Peter et al. 2012). The other one is based
on machine learning, which extracts feature vectors to train
classifiers to determine whether pixels in retinal images be-
long to blood vessels or not.

In the last few years, emerging work has emerged using
fully convolutional networks (FCN) to simultaneously seg-
ment and classify retinal vessels. Orlando(Orlando, Proko-
fyeva, and Blaschko 2017) successfully combined a dense
conditional random field (CRF) model with CNN for retinal
vessel segmentation, establishing remote links within im-
ages, thus addressing the problem of systolic bias” , but the
phenomenon of lesion mis-segmentation exists. Vessel seg-
mentation, which better solves the problem of inadequate
microvessel segmentation, still suffers from some microves-
sel breaks and easy chain-knotting of vessels.AlBadawi and
Frazcite 2018Arterioles used FCN with encoder-decoder
structure for pixel-by-pixel classification of arteries and
veins. The deep learning based approach has demonstrated
its potential for blood vessels. Modifying the FCN so that it
has a large number of feature channels in the upsampling
part allows the network to propagate contextual informa-
tion to higher resolution layers. Most existing unsupervised
and supervised retinal image segmentation methods rely on
hand-crafted features to characterize the differences between
vascular and non-vascular pixels. For example, the multi-
scale matched filter-based fundus segmentation method(Al-
Rawi, Qutaishat, and Arrar 2007)) uses a segmented lin-
ear approximation of retinal vessels with a Gaussian-like
intensity distribution to enhance the vessels before thresh-
olding, and although it enhances most of the tiny vessels,
there is still under-segmentation of vessel crossings and mis-
segmentation of lesions. Soares(Soares et al. 2006) uses two-

dimensional Gabor filters at different scales as an effective
alternative to train classifiers for vascular pixel detection, but
the method still suffers from broken microvessel segmenta-
tion. The network proposed by (Shi et al. 2015) et al. can ex-
tract most of the vascular features better, but the resistance
to noise is poor and the heterogeneity causes microvessel
segmentation breakage.

Although the above methods achieve better segmentation
results, these artificially selected features are still not ro-
bust enough in solving the two problems of vascular change
trends and invariance of vascular information, causing prob-
lems such as under-segmentation of microvessels, lesion and
optic disc segmentation errors.

Proposed Solution

In this project, we use a lightweight network named Spa-
tial Attention U-Net (referred to as SA-UNet) (Guo et al.
2021) as the baseline, and this network does not require
thousands of annotated training samples and can be utilized
in a data augmentation manner to use the available annotated
samples more efficiently. The SA-UNet introduces a spatial
attention module (Woo et al. 2018) which infers the attention
map along the spatial dimension, and multiplies the attention
map by the input feature map for adaptive feature refine-
ment. In addition, the SA-UNet employs structured dropout
convolutional blocks instead of the original convolutional
blocks of U-Net (Ronneberger, Fischer, and Brox 2015) to
prevent the network from overfitting.

The SA-UNet is a U-shaped network architecture with
encoder-decoder structure. In encoder, every step contains a
structured dropout convolutional block and a 2x2 max pool-
ing operation. The convolutional layer of each convolutional
block is followed by a DropBlock, a batch normalization
(BN) layer and a rectified linear unit (ReLU), and then the
max pooling operation is utilized for down-sampling with
a stride size of 2. At the same time the number of feature
channels is doubled every down-sampling step. In decoder,
each step contains a 2x2 transposed convolution operation
for up-sampling and halves the number of feature channels.
The spatial attention module is added between the encoder
and the decoder, which infers the attention map along the
spatial dimension. At the final layer, a 1x1 convolution and
a Sigmoid activation function are used to obtain the output
segmentation map. The SA-UNet also implement the fusion
of features at different scales, which improves the accuracy
of the model. The coarse feature map captures the context
information and highlights the classification and position of
the foreground object. In order to link the coarse-level and
fine-level dense predictions, the feature maps distilled from
different scales are merged by a skip connection.

In order to effectively prevent over-fitting of the net-
work, the SA-UNet adopts DropBlock (Ghiasi, Lin, and Le
2018) to regularize the network, and as a structured form
of dropout, DropBlock can effectively prevent over-fitting
problems in convolutional networks (Guo et al. 2019). Its
primary difference from dropout is that it discards contigu-
ous areas from a feature map of a layer instead of drop-
ping independent random units. Based on this, the SA-UNet
construct a structured dropout convolutional block, and each
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Figure 2: The improved network architecture of SA-UNet with a U-shaped encoder-decoder structure.

convolutional layer is followed by a DropBlock, a layer of
batch normalization and a ReLU activation unit. Unlike the
convolutional block of SD-Unet (Guo et al. 2019), the struc-
tured dropout convolutional block introduces batch normal-
ization to accelerate network convergence. The results show
that the overfitting problem is perfectly solved and accel-
erates the convergence of the network. The another impor-
tant components of SA-UNet is the spatial attention module
(SAM), which infers the attention along the spatial dimen-
sion, and multiplies the attention map by the input feature
map for adaptive feature refinement (Woo et al. 2018). The
spatial attention uses the spatial relationship between fea-
tures to produce a spatial attention map. To calculate spa-
tial attention, the spatial attention first applies maxpooling
and average-pooling operations along the channel axis and
concatenate them to produce an efficient feature descriptor.
Then a convolutional layer followed by the Sigmoid activa-
tion function on the concatenated feature descriptor is used
to generate a spatial attention map. The spatial attention can
help the network focus on important features and suppress
unnecessary ones to improve the network’s representation
capability.

We achieved some improvements based on the SA-
UNet. Fig. 2 shows the improvement network architecture
of SA-UNet with a U-shaped encoder (left side)-decoder
(right side) structure. Firstly, we used depth-wise over-
parameterized convolutional (referred to as DO-Conv) (Cao
et al. 2020) layers instead of ordinary convolutional layers
in the SA-UNet. The DO-Conv is a novel and generic way
for boosting the performance of CNNs, and it is helpful for
many image segmentation tasks. In addition, DO-Conv does
not introduce extra computation at the inference phase. Sec-
ondly, we used another spatial attention module to instead
the skip connection top of the the encoder and the decoder.
The experimental results show that the DO-Conv and the
added spatial attention module improve the performance of
retinal vessel segmentation.

Figure 3: Demonstration of our model: the images from left
to right are the original image, ground truth, and our output.

Experiments
A.Dataset

We used two data sets to evaluate our SA-UNet model,
namely DRIVE and CHASE DBI1. Both of these two data
sets are related to the public retina, see Table 1 for details.

Table 1: DRIVE AND CHASE DBI1.

Datasets DRIVE | CHASE DB1
Total number 40 28
Train/Test number 20/20 20/8
Resolution 584%*565 999*960
Resize 592*592 1008*1008

We can notice that the size of the two data sets cannot
be directly input to the network. Therefore, we used zero
padding to change its size.We used data augmentation meth-
ods, such as random rotation, adding Gaussian noise, color
jittering, horizontal, vertical and diagonal flips. We augment
the two original datasets from the original 20 training im-
ages to 256 images.



B. Implementation Detail

In order to test whether the training of our model is
over-fitting, we randomly selected 26 and 13 images in the
DRIVE and CHASE augmented datasets as auxiliary tests
in the validation set.We used the following method to re-
train SA-UNet using the augmented datasets. For the two
datasets, we used the Adam optimizer and the classified
cross-entropy loss function. In order to reduce the complex-
ity and training time, we are the first The filters of each con-
volutional layer are only 16. The epoch is 100, the learn-
ing rate in the first 60 is set to 0.001, and the learning rate
in the last 40 of the epoch is set to 0.0001.The size of the
discard blocks of DropBlock is set to 7. Respectively, for
DRIVE dataset, the batch size of the training is set to 8 and
the dropout rate of DropBlock is set to 0.18. For CHASE
DB, the batch size is set to 4 and the dropout rates is 0.13.
We use Keras-based Tensorflow for training, and all training
is performed in Google Colab.

C. Evaluation Metrics

In order to better evaluate model performance, we use
true positive (TP), false positive (FP), false negative (FN),
and true Negative (TN) as the division result, by comparing
the division result and the comparison of each pixel. Then,
the sensitivity (SE), specificity (SP), F1- score (F1), and ac-
curacy (ACC) are used to evaluate the performance of the
model. Regarding the retinal blood vessel segmentation task,
only about ten percent of the pixels belong to blood vessels,
and the others are considered background.The Matthews
Correlation Coefficient (MCC) is suitable for observing bi-
nary classification problems of different sizes.Therefore, the
MCC value can help find the optimal setting for the vessel
segmentation algorithm. MCC is defined as:

TP xTN — FP x FN
MCC =

\/(TP +TP) x (TP + FN) x (TN + FP) x (TN + FN)

The area under the ROC curve (AUC) can be used to mea-
sure the performance of the segmentation. If the AUC value
is 1, it means perfect segmentation.

D. Overall Results

By comparing our method with other segmentation meth-
ods on the CHASE and DRIVE test set, we demonstrate
that our method can achieve favorable segmentation perfor-
mance, as shown in Table 2 and Table 3. Particularly, com-
pared with the baseline SA-UNet, our improved SA-UNet
achieves superior results.

Table 2: Results on CHASE DBI1.

Method | SE SP | ACC | AUC F1 MCC

U-net |0.7677]0.9857/0.9666 |0.9789|0.8012|0.7839

Net+SA [0.788310.9845[0.9673 | 0.9809 | 0.8085 | 0.7909

SD-Unet [0.7978 | 0.9860 | 0.9695 | 0.9858 | 0.8208 | 0.8045

SA-Unet |0.8572|0.983410.9755|0.9904 | 0.8152 | 0.8033

Ours |0.8613]0.9822/0.9796(0.9910|0.8188|0.8042

Table 3: Results on DRIVE.

Method | SE SP | ACC | AUC | F1 | MCC

U-net |0.7842/0.9861|0.9733(0.9838|0.7875|0.7733

Net+SA |0.7840]0.9865|0.9738|0.9852|0.7902 | 0.7763

SD-Unet [ 0.8297]0.98540.9756|0.9897|0.8109 | 0.7981

SA-Unet [ 0.823410.9828 10.9689|0.9859 | 0.8226 | 0.8056

Ours |0.8285/0.9819/0.9749|0.9881|0.8235|0.8074

Conclusion

The analysis of human retina helps to help diagnose re-
lated conditions, and machine learning for retinal vessel seg-
mentation has also been proven to be efficient. In previous
image segmentation algorithms, neural networks often ap-
pear to be less robust as well as overly complex, and this pa-
per proposes some improvements to the retinal vessel seg-
mentation algorithm based on SA-UNet. In the present al-
gorithm, the model takes into account the spatial attention
problem in the image, but also ensures that the algorithm
is robust and lightweight, based on this, we add an atten-
tion channel to make the model more suitable for the reti-
nal blood vessel characteristics. The experimental results
show that our modifications improve the effectiveness of the
model for retinal vessel segmentation.
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